1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2011, Lawrence Livermore National Security, LLC. 24 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 25 */ 26 27 28 #ifdef CONFIG_COMPAT 29 #include <linux/compat.h> 30 #endif 31 #include <linux/fs.h> 32 #include <linux/migrate.h> 33 #include <sys/file.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/zfs_znode.h> 36 #include <sys/zfs_vfsops.h> 37 #include <sys/zfs_vnops.h> 38 #include <sys/zfs_project.h> 39 #include <linux/pagemap_compat.h> 40 #include <linux/fadvise.h> 41 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO 42 #include <linux/writeback.h> 43 #endif 44 45 /* 46 * When using fallocate(2) to preallocate space, inflate the requested 47 * capacity check by 10% to account for the required metadata blocks. 48 */ 49 static unsigned int zfs_fallocate_reserve_percent = 110; 50 51 static int 52 zpl_open(struct inode *ip, struct file *filp) 53 { 54 cred_t *cr = CRED(); 55 int error; 56 fstrans_cookie_t cookie; 57 58 error = generic_file_open(ip, filp); 59 if (error) 60 return (error); 61 62 crhold(cr); 63 cookie = spl_fstrans_mark(); 64 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr); 65 spl_fstrans_unmark(cookie); 66 crfree(cr); 67 ASSERT3S(error, <=, 0); 68 69 return (error); 70 } 71 72 static int 73 zpl_release(struct inode *ip, struct file *filp) 74 { 75 cred_t *cr = CRED(); 76 int error; 77 fstrans_cookie_t cookie; 78 79 cookie = spl_fstrans_mark(); 80 if (ITOZ(ip)->z_atime_dirty) 81 zfs_mark_inode_dirty(ip); 82 83 crhold(cr); 84 error = -zfs_close(ip, filp->f_flags, cr); 85 spl_fstrans_unmark(cookie); 86 crfree(cr); 87 ASSERT3S(error, <=, 0); 88 89 return (error); 90 } 91 92 static int 93 zpl_iterate(struct file *filp, struct dir_context *ctx) 94 { 95 cred_t *cr = CRED(); 96 int error; 97 fstrans_cookie_t cookie; 98 99 crhold(cr); 100 cookie = spl_fstrans_mark(); 101 error = -zfs_readdir(file_inode(filp), ctx, cr); 102 spl_fstrans_unmark(cookie); 103 crfree(cr); 104 ASSERT3S(error, <=, 0); 105 106 return (error); 107 } 108 109 static int 110 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 111 { 112 struct inode *inode = filp->f_mapping->host; 113 znode_t *zp = ITOZ(inode); 114 cred_t *cr = CRED(); 115 int error; 116 fstrans_cookie_t cookie; 117 118 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 119 if (error) 120 return (error); 121 122 crhold(cr); 123 cookie = spl_fstrans_mark(); 124 error = -zfs_fsync(zp, datasync, cr); 125 spl_fstrans_unmark(cookie); 126 crfree(cr); 127 ASSERT3S(error, <=, 0); 128 129 return (error); 130 } 131 132 static inline int 133 zfs_io_flags(struct kiocb *kiocb) 134 { 135 int flags = 0; 136 137 #if defined(IOCB_DSYNC) 138 if (kiocb->ki_flags & IOCB_DSYNC) 139 flags |= O_DSYNC; 140 #endif 141 #if defined(IOCB_SYNC) 142 if (kiocb->ki_flags & IOCB_SYNC) 143 flags |= O_SYNC; 144 #endif 145 #if defined(IOCB_APPEND) 146 if (kiocb->ki_flags & IOCB_APPEND) 147 flags |= O_APPEND; 148 #endif 149 #if defined(IOCB_DIRECT) 150 if (kiocb->ki_flags & IOCB_DIRECT) 151 flags |= O_DIRECT; 152 #endif 153 return (flags); 154 } 155 156 /* 157 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update() 158 * is true. This is needed since datasets with inherited "relatime" property 159 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after 160 * `zfs set relatime=...`), which is what relatime test in VFS by 161 * relatime_need_update() is based on. 162 */ 163 static inline void 164 zpl_file_accessed(struct file *filp) 165 { 166 struct inode *ip = filp->f_mapping->host; 167 168 if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) { 169 if (zfs_relatime_need_update(ip)) 170 file_accessed(filp); 171 } else { 172 file_accessed(filp); 173 } 174 } 175 176 static ssize_t 177 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to) 178 { 179 cred_t *cr = CRED(); 180 fstrans_cookie_t cookie; 181 struct file *filp = kiocb->ki_filp; 182 ssize_t count = iov_iter_count(to); 183 zfs_uio_t uio; 184 185 zfs_uio_iov_iter_init(&uio, to, kiocb->ki_pos, count); 186 187 crhold(cr); 188 cookie = spl_fstrans_mark(); 189 190 ssize_t ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio, 191 filp->f_flags | zfs_io_flags(kiocb), cr); 192 193 spl_fstrans_unmark(cookie); 194 crfree(cr); 195 196 if (ret < 0) 197 return (ret); 198 199 ssize_t read = count - uio.uio_resid; 200 kiocb->ki_pos += read; 201 202 zpl_file_accessed(filp); 203 204 return (read); 205 } 206 207 static inline ssize_t 208 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from, 209 size_t *countp) 210 { 211 ssize_t ret = generic_write_checks(kiocb, from); 212 if (ret <= 0) 213 return (ret); 214 215 *countp = ret; 216 217 return (0); 218 } 219 220 static ssize_t 221 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from) 222 { 223 cred_t *cr = CRED(); 224 fstrans_cookie_t cookie; 225 struct file *filp = kiocb->ki_filp; 226 struct inode *ip = filp->f_mapping->host; 227 zfs_uio_t uio; 228 size_t count = 0; 229 ssize_t ret; 230 231 ret = zpl_generic_write_checks(kiocb, from, &count); 232 if (ret) 233 return (ret); 234 235 zfs_uio_iov_iter_init(&uio, from, kiocb->ki_pos, count); 236 237 crhold(cr); 238 cookie = spl_fstrans_mark(); 239 240 ret = -zfs_write(ITOZ(ip), &uio, 241 filp->f_flags | zfs_io_flags(kiocb), cr); 242 243 spl_fstrans_unmark(cookie); 244 crfree(cr); 245 246 if (ret < 0) 247 return (ret); 248 249 ssize_t wrote = count - uio.uio_resid; 250 kiocb->ki_pos += wrote; 251 252 return (wrote); 253 } 254 255 static ssize_t 256 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter) 257 { 258 /* 259 * All O_DIRECT requests should be handled by 260 * zpl_iter_write/read}(). There is no way kernel generic code should 261 * call the direct_IO address_space_operations function. We set this 262 * code path to be fatal if it is executed. 263 */ 264 PANIC(0); 265 return (0); 266 } 267 268 static loff_t 269 zpl_llseek(struct file *filp, loff_t offset, int whence) 270 { 271 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 272 fstrans_cookie_t cookie; 273 274 if (whence == SEEK_DATA || whence == SEEK_HOLE) { 275 struct inode *ip = filp->f_mapping->host; 276 loff_t maxbytes = ip->i_sb->s_maxbytes; 277 loff_t error; 278 279 spl_inode_lock_shared(ip); 280 cookie = spl_fstrans_mark(); 281 error = -zfs_holey(ITOZ(ip), whence, &offset); 282 spl_fstrans_unmark(cookie); 283 if (error == 0) 284 error = lseek_execute(filp, ip, offset, maxbytes); 285 spl_inode_unlock_shared(ip); 286 287 return (error); 288 } 289 #endif /* SEEK_HOLE && SEEK_DATA */ 290 291 return (generic_file_llseek(filp, offset, whence)); 292 } 293 294 /* 295 * It's worth taking a moment to describe how mmap is implemented 296 * for zfs because it differs considerably from other Linux filesystems. 297 * However, this issue is handled the same way under OpenSolaris. 298 * 299 * The issue is that by design zfs bypasses the Linux page cache and 300 * leaves all caching up to the ARC. This has been shown to work 301 * well for the common read(2)/write(2) case. However, mmap(2) 302 * is problem because it relies on being tightly integrated with the 303 * page cache. To handle this we cache mmap'ed files twice, once in 304 * the ARC and a second time in the page cache. The code is careful 305 * to keep both copies synchronized. 306 * 307 * When a file with an mmap'ed region is written to using write(2) 308 * both the data in the ARC and existing pages in the page cache 309 * are updated. For a read(2) data will be read first from the page 310 * cache then the ARC if needed. Neither a write(2) or read(2) will 311 * will ever result in new pages being added to the page cache. 312 * 313 * New pages are added to the page cache only via .readpage() which 314 * is called when the vfs needs to read a page off disk to back the 315 * virtual memory region. These pages may be modified without 316 * notifying the ARC and will be written out periodically via 317 * .writepage(). This will occur due to either a sync or the usual 318 * page aging behavior. Note because a read(2) of a mmap'ed file 319 * will always check the page cache first even when the ARC is out 320 * of date correct data will still be returned. 321 * 322 * While this implementation ensures correct behavior it does have 323 * have some drawbacks. The most obvious of which is that it 324 * increases the required memory footprint when access mmap'ed 325 * files. It also adds additional complexity to the code keeping 326 * both caches synchronized. 327 * 328 * Longer term it may be possible to cleanly resolve this wart by 329 * mapping page cache pages directly on to the ARC buffers. The 330 * Linux address space operations are flexible enough to allow 331 * selection of which pages back a particular index. The trick 332 * would be working out the details of which subsystem is in 333 * charge, the ARC, the page cache, or both. It may also prove 334 * helpful to move the ARC buffers to a scatter-gather lists 335 * rather than a vmalloc'ed region. 336 */ 337 static int 338 zpl_mmap(struct file *filp, struct vm_area_struct *vma) 339 { 340 struct inode *ip = filp->f_mapping->host; 341 int error; 342 fstrans_cookie_t cookie; 343 344 cookie = spl_fstrans_mark(); 345 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start, 346 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags); 347 spl_fstrans_unmark(cookie); 348 349 if (error) 350 return (error); 351 352 error = generic_file_mmap(filp, vma); 353 if (error) 354 return (error); 355 356 return (error); 357 } 358 359 /* 360 * Populate a page with data for the Linux page cache. This function is 361 * only used to support mmap(2). There will be an identical copy of the 362 * data in the ARC which is kept up to date via .write() and .writepage(). 363 */ 364 static inline int 365 zpl_readpage_common(struct page *pp) 366 { 367 fstrans_cookie_t cookie; 368 369 ASSERT(PageLocked(pp)); 370 371 cookie = spl_fstrans_mark(); 372 int error = -zfs_getpage(pp->mapping->host, pp); 373 spl_fstrans_unmark(cookie); 374 375 unlock_page(pp); 376 377 return (error); 378 } 379 380 #ifdef HAVE_VFS_READ_FOLIO 381 static int 382 zpl_read_folio(struct file *filp, struct folio *folio) 383 { 384 return (zpl_readpage_common(&folio->page)); 385 } 386 #else 387 static int 388 zpl_readpage(struct file *filp, struct page *pp) 389 { 390 return (zpl_readpage_common(pp)); 391 } 392 #endif 393 394 static int 395 zpl_readpage_filler(void *data, struct page *pp) 396 { 397 return (zpl_readpage_common(pp)); 398 } 399 400 /* 401 * Populate a set of pages with data for the Linux page cache. This 402 * function will only be called for read ahead and never for demand 403 * paging. For simplicity, the code relies on read_cache_pages() to 404 * correctly lock each page for IO and call zpl_readpage(). 405 */ 406 #ifdef HAVE_VFS_READPAGES 407 static int 408 zpl_readpages(struct file *filp, struct address_space *mapping, 409 struct list_head *pages, unsigned nr_pages) 410 { 411 return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL)); 412 } 413 #else 414 static void 415 zpl_readahead(struct readahead_control *ractl) 416 { 417 struct page *page; 418 419 while ((page = readahead_page(ractl)) != NULL) { 420 int ret; 421 422 ret = zpl_readpage_filler(NULL, page); 423 put_page(page); 424 if (ret) 425 break; 426 } 427 } 428 #endif 429 430 static int 431 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data) 432 { 433 boolean_t *for_sync = data; 434 fstrans_cookie_t cookie; 435 int ret; 436 437 ASSERT(PageLocked(pp)); 438 ASSERT(!PageWriteback(pp)); 439 440 cookie = spl_fstrans_mark(); 441 ret = zfs_putpage(pp->mapping->host, pp, wbc, *for_sync); 442 spl_fstrans_unmark(cookie); 443 444 return (ret); 445 } 446 447 #ifdef HAVE_WRITEPAGE_T_FOLIO 448 static int 449 zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data) 450 { 451 return (zpl_putpage(&pp->page, wbc, data)); 452 } 453 #endif 454 455 static inline int 456 zpl_write_cache_pages(struct address_space *mapping, 457 struct writeback_control *wbc, void *data) 458 { 459 int result; 460 461 #ifdef HAVE_WRITEPAGE_T_FOLIO 462 result = write_cache_pages(mapping, wbc, zpl_putfolio, data); 463 #else 464 result = write_cache_pages(mapping, wbc, zpl_putpage, data); 465 #endif 466 return (result); 467 } 468 469 static int 470 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc) 471 { 472 znode_t *zp = ITOZ(mapping->host); 473 zfsvfs_t *zfsvfs = ITOZSB(mapping->host); 474 enum writeback_sync_modes sync_mode; 475 int result; 476 477 if ((result = zpl_enter(zfsvfs, FTAG)) != 0) 478 return (result); 479 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 480 wbc->sync_mode = WB_SYNC_ALL; 481 zpl_exit(zfsvfs, FTAG); 482 sync_mode = wbc->sync_mode; 483 484 /* 485 * We don't want to run write_cache_pages() in SYNC mode here, because 486 * that would make putpage() wait for a single page to be committed to 487 * disk every single time, resulting in atrocious performance. Instead 488 * we run it once in non-SYNC mode so that the ZIL gets all the data, 489 * and then we commit it all in one go. 490 */ 491 boolean_t for_sync = (sync_mode == WB_SYNC_ALL); 492 wbc->sync_mode = WB_SYNC_NONE; 493 result = zpl_write_cache_pages(mapping, wbc, &for_sync); 494 if (sync_mode != wbc->sync_mode) { 495 if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 496 return (result); 497 if (zfsvfs->z_log != NULL) 498 zil_commit(zfsvfs->z_log, zp->z_id); 499 zpl_exit(zfsvfs, FTAG); 500 501 /* 502 * We need to call write_cache_pages() again (we can't just 503 * return after the commit) because the previous call in 504 * non-SYNC mode does not guarantee that we got all the dirty 505 * pages (see the implementation of write_cache_pages() for 506 * details). That being said, this is a no-op in most cases. 507 */ 508 wbc->sync_mode = sync_mode; 509 result = zpl_write_cache_pages(mapping, wbc, &for_sync); 510 } 511 return (result); 512 } 513 514 #ifdef HAVE_VFS_WRITEPAGE 515 /* 516 * Write out dirty pages to the ARC, this function is only required to 517 * support mmap(2). Mapped pages may be dirtied by memory operations 518 * which never call .write(). These dirty pages are kept in sync with 519 * the ARC buffers via this hook. 520 */ 521 static int 522 zpl_writepage(struct page *pp, struct writeback_control *wbc) 523 { 524 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS) 525 wbc->sync_mode = WB_SYNC_ALL; 526 527 boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL); 528 529 return (zpl_putpage(pp, wbc, &for_sync)); 530 } 531 #endif 532 533 /* 534 * The flag combination which matches the behavior of zfs_space() is 535 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE 536 * flag was introduced in the 2.6.38 kernel. 537 * 538 * The original mode=0 (allocate space) behavior can be reasonably emulated 539 * by checking if enough space exists and creating a sparse file, as real 540 * persistent space reservation is not possible due to COW, snapshots, etc. 541 */ 542 static long 543 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len) 544 { 545 cred_t *cr = CRED(); 546 loff_t olen; 547 fstrans_cookie_t cookie; 548 int error = 0; 549 550 int test_mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE; 551 552 if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0) 553 return (-EOPNOTSUPP); 554 555 if (offset < 0 || len <= 0) 556 return (-EINVAL); 557 558 spl_inode_lock(ip); 559 olen = i_size_read(ip); 560 561 crhold(cr); 562 cookie = spl_fstrans_mark(); 563 if (mode & (test_mode)) { 564 flock64_t bf; 565 566 if (mode & FALLOC_FL_KEEP_SIZE) { 567 if (offset > olen) 568 goto out_unmark; 569 570 if (offset + len > olen) 571 len = olen - offset; 572 } 573 bf.l_type = F_WRLCK; 574 bf.l_whence = SEEK_SET; 575 bf.l_start = offset; 576 bf.l_len = len; 577 bf.l_pid = 0; 578 579 error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr); 580 } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) { 581 unsigned int percent = zfs_fallocate_reserve_percent; 582 struct kstatfs statfs; 583 584 /* Legacy mode, disable fallocate compatibility. */ 585 if (percent == 0) { 586 error = -EOPNOTSUPP; 587 goto out_unmark; 588 } 589 590 /* 591 * Use zfs_statvfs() instead of dmu_objset_space() since it 592 * also checks project quota limits, which are relevant here. 593 */ 594 error = zfs_statvfs(ip, &statfs); 595 if (error) 596 goto out_unmark; 597 598 /* 599 * Shrink available space a bit to account for overhead/races. 600 * We know the product previously fit into availbytes from 601 * dmu_objset_space(), so the smaller product will also fit. 602 */ 603 if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) { 604 error = -ENOSPC; 605 goto out_unmark; 606 } 607 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen) 608 error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE); 609 } 610 out_unmark: 611 spl_fstrans_unmark(cookie); 612 spl_inode_unlock(ip); 613 614 crfree(cr); 615 616 return (error); 617 } 618 619 static long 620 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len) 621 { 622 return zpl_fallocate_common(file_inode(filp), 623 mode, offset, len); 624 } 625 626 static int 627 zpl_ioctl_getversion(struct file *filp, void __user *arg) 628 { 629 uint32_t generation = file_inode(filp)->i_generation; 630 631 return (copy_to_user(arg, &generation, sizeof (generation))); 632 } 633 634 static int 635 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice) 636 { 637 struct inode *ip = file_inode(filp); 638 znode_t *zp = ITOZ(ip); 639 zfsvfs_t *zfsvfs = ITOZSB(ip); 640 objset_t *os = zfsvfs->z_os; 641 int error = 0; 642 643 if (S_ISFIFO(ip->i_mode)) 644 return (-ESPIPE); 645 646 if (offset < 0 || len < 0) 647 return (-EINVAL); 648 649 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 650 return (error); 651 652 switch (advice) { 653 case POSIX_FADV_SEQUENTIAL: 654 case POSIX_FADV_WILLNEED: 655 #ifdef HAVE_GENERIC_FADVISE 656 if (zn_has_cached_data(zp, offset, offset + len - 1)) 657 error = generic_fadvise(filp, offset, len, advice); 658 #endif 659 /* 660 * Pass on the caller's size directly, but note that 661 * dmu_prefetch_max will effectively cap it. If there 662 * really is a larger sequential access pattern, perhaps 663 * dmu_zfetch will detect it. 664 */ 665 if (len == 0) 666 len = i_size_read(ip) - offset; 667 668 dmu_prefetch(os, zp->z_id, 0, offset, len, 669 ZIO_PRIORITY_ASYNC_READ); 670 break; 671 case POSIX_FADV_NORMAL: 672 case POSIX_FADV_RANDOM: 673 case POSIX_FADV_DONTNEED: 674 case POSIX_FADV_NOREUSE: 675 /* ignored for now */ 676 break; 677 default: 678 error = -EINVAL; 679 break; 680 } 681 682 zfs_exit(zfsvfs, FTAG); 683 684 return (error); 685 } 686 687 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL) 688 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL) 689 690 static uint32_t 691 __zpl_ioctl_getflags(struct inode *ip) 692 { 693 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 694 uint32_t ioctl_flags = 0; 695 696 if (zfs_flags & ZFS_IMMUTABLE) 697 ioctl_flags |= FS_IMMUTABLE_FL; 698 699 if (zfs_flags & ZFS_APPENDONLY) 700 ioctl_flags |= FS_APPEND_FL; 701 702 if (zfs_flags & ZFS_NODUMP) 703 ioctl_flags |= FS_NODUMP_FL; 704 705 if (zfs_flags & ZFS_PROJINHERIT) 706 ioctl_flags |= ZFS_PROJINHERIT_FL; 707 708 return (ioctl_flags & ZFS_FL_USER_VISIBLE); 709 } 710 711 /* 712 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file 713 * attributes common to both Linux and Solaris are mapped. 714 */ 715 static int 716 zpl_ioctl_getflags(struct file *filp, void __user *arg) 717 { 718 uint32_t flags; 719 int err; 720 721 flags = __zpl_ioctl_getflags(file_inode(filp)); 722 err = copy_to_user(arg, &flags, sizeof (flags)); 723 724 return (err); 725 } 726 727 /* 728 * fchange() is a helper macro to detect if we have been asked to change a 729 * flag. This is ugly, but the requirement that we do this is a consequence of 730 * how the Linux file attribute interface was designed. Another consequence is 731 * that concurrent modification of files suffers from a TOCTOU race. Neither 732 * are things we can fix without modifying the kernel-userland interface, which 733 * is outside of our jurisdiction. 734 */ 735 736 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1))) 737 738 static int 739 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva) 740 { 741 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 742 xoptattr_t *xoap; 743 744 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL | 745 ZFS_PROJINHERIT_FL)) 746 return (-EOPNOTSUPP); 747 748 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE) 749 return (-EACCES); 750 751 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) || 752 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) && 753 !capable(CAP_LINUX_IMMUTABLE)) 754 return (-EPERM); 755 756 if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip)) 757 return (-EACCES); 758 759 xva_init(xva); 760 xoap = xva_getxoptattr(xva); 761 762 #define FLAG_CHANGE(iflag, zflag, xflag, xfield) do { \ 763 if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) || \ 764 ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) { \ 765 XVA_SET_REQ(xva, (xflag)); \ 766 (xfield) = ((ioctl_flags & (iflag)) != 0); \ 767 } \ 768 } while (0) 769 770 FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE, 771 xoap->xoa_immutable); 772 FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY, 773 xoap->xoa_appendonly); 774 FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP, 775 xoap->xoa_nodump); 776 FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT, 777 xoap->xoa_projinherit); 778 779 #undef FLAG_CHANGE 780 781 return (0); 782 } 783 784 static int 785 zpl_ioctl_setflags(struct file *filp, void __user *arg) 786 { 787 struct inode *ip = file_inode(filp); 788 uint32_t flags; 789 cred_t *cr = CRED(); 790 xvattr_t xva; 791 int err; 792 fstrans_cookie_t cookie; 793 794 if (copy_from_user(&flags, arg, sizeof (flags))) 795 return (-EFAULT); 796 797 err = __zpl_ioctl_setflags(ip, flags, &xva); 798 if (err) 799 return (err); 800 801 crhold(cr); 802 cookie = spl_fstrans_mark(); 803 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap); 804 spl_fstrans_unmark(cookie); 805 crfree(cr); 806 807 return (err); 808 } 809 810 static int 811 zpl_ioctl_getxattr(struct file *filp, void __user *arg) 812 { 813 zfsxattr_t fsx = { 0 }; 814 struct inode *ip = file_inode(filp); 815 int err; 816 817 fsx.fsx_xflags = __zpl_ioctl_getflags(ip); 818 fsx.fsx_projid = ITOZ(ip)->z_projid; 819 err = copy_to_user(arg, &fsx, sizeof (fsx)); 820 821 return (err); 822 } 823 824 static int 825 zpl_ioctl_setxattr(struct file *filp, void __user *arg) 826 { 827 struct inode *ip = file_inode(filp); 828 zfsxattr_t fsx; 829 cred_t *cr = CRED(); 830 xvattr_t xva; 831 xoptattr_t *xoap; 832 int err; 833 fstrans_cookie_t cookie; 834 835 if (copy_from_user(&fsx, arg, sizeof (fsx))) 836 return (-EFAULT); 837 838 if (!zpl_is_valid_projid(fsx.fsx_projid)) 839 return (-EINVAL); 840 841 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva); 842 if (err) 843 return (err); 844 845 xoap = xva_getxoptattr(&xva); 846 XVA_SET_REQ(&xva, XAT_PROJID); 847 xoap->xoa_projid = fsx.fsx_projid; 848 849 crhold(cr); 850 cookie = spl_fstrans_mark(); 851 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap); 852 spl_fstrans_unmark(cookie); 853 crfree(cr); 854 855 return (err); 856 } 857 858 /* 859 * Expose Additional File Level Attributes of ZFS. 860 */ 861 static int 862 zpl_ioctl_getdosflags(struct file *filp, void __user *arg) 863 { 864 struct inode *ip = file_inode(filp); 865 uint64_t dosflags = ITOZ(ip)->z_pflags; 866 dosflags &= ZFS_DOS_FL_USER_VISIBLE; 867 int err = copy_to_user(arg, &dosflags, sizeof (dosflags)); 868 869 return (err); 870 } 871 872 static int 873 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva) 874 { 875 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 876 xoptattr_t *xoap; 877 878 if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE)) 879 return (-EOPNOTSUPP); 880 881 if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) || 882 fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) && 883 !capable(CAP_LINUX_IMMUTABLE)) 884 return (-EPERM); 885 886 if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip)) 887 return (-EACCES); 888 889 xva_init(xva); 890 xoap = xva_getxoptattr(xva); 891 892 #define FLAG_CHANGE(iflag, xflag, xfield) do { \ 893 if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) || \ 894 ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) { \ 895 XVA_SET_REQ(xva, (xflag)); \ 896 (xfield) = ((ioctl_flags & (iflag)) != 0); \ 897 } \ 898 } while (0) 899 900 FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable); 901 FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly); 902 FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump); 903 FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly); 904 FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden); 905 FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system); 906 FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive); 907 FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink); 908 FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse); 909 FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline); 910 FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse); 911 912 #undef FLAG_CHANGE 913 914 return (0); 915 } 916 917 /* 918 * Set Additional File Level Attributes of ZFS. 919 */ 920 static int 921 zpl_ioctl_setdosflags(struct file *filp, void __user *arg) 922 { 923 struct inode *ip = file_inode(filp); 924 uint64_t dosflags; 925 cred_t *cr = CRED(); 926 xvattr_t xva; 927 int err; 928 fstrans_cookie_t cookie; 929 930 if (copy_from_user(&dosflags, arg, sizeof (dosflags))) 931 return (-EFAULT); 932 933 err = __zpl_ioctl_setdosflags(ip, dosflags, &xva); 934 if (err) 935 return (err); 936 937 crhold(cr); 938 cookie = spl_fstrans_mark(); 939 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap); 940 spl_fstrans_unmark(cookie); 941 crfree(cr); 942 943 return (err); 944 } 945 946 static int 947 zpl_ioctl_rewrite(struct file *filp, void __user *arg) 948 { 949 struct inode *ip = file_inode(filp); 950 zfs_rewrite_args_t args; 951 fstrans_cookie_t cookie; 952 int err; 953 954 if (copy_from_user(&args, arg, sizeof (args))) 955 return (-EFAULT); 956 957 if (unlikely(!(filp->f_mode & FMODE_WRITE))) 958 return (-EBADF); 959 960 cookie = spl_fstrans_mark(); 961 err = -zfs_rewrite(ITOZ(ip), args.off, args.len, args.flags, args.arg); 962 spl_fstrans_unmark(cookie); 963 964 return (err); 965 } 966 967 static long 968 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 969 { 970 switch (cmd) { 971 case FS_IOC_GETVERSION: 972 return (zpl_ioctl_getversion(filp, (void *)arg)); 973 case FS_IOC_GETFLAGS: 974 return (zpl_ioctl_getflags(filp, (void *)arg)); 975 case FS_IOC_SETFLAGS: 976 return (zpl_ioctl_setflags(filp, (void *)arg)); 977 case ZFS_IOC_FSGETXATTR: 978 return (zpl_ioctl_getxattr(filp, (void *)arg)); 979 case ZFS_IOC_FSSETXATTR: 980 return (zpl_ioctl_setxattr(filp, (void *)arg)); 981 case ZFS_IOC_GETDOSFLAGS: 982 return (zpl_ioctl_getdosflags(filp, (void *)arg)); 983 case ZFS_IOC_SETDOSFLAGS: 984 return (zpl_ioctl_setdosflags(filp, (void *)arg)); 985 case ZFS_IOC_REWRITE: 986 return (zpl_ioctl_rewrite(filp, (void *)arg)); 987 default: 988 return (-ENOTTY); 989 } 990 } 991 992 #ifdef CONFIG_COMPAT 993 static long 994 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 995 { 996 switch (cmd) { 997 case FS_IOC32_GETVERSION: 998 cmd = FS_IOC_GETVERSION; 999 break; 1000 case FS_IOC32_GETFLAGS: 1001 cmd = FS_IOC_GETFLAGS; 1002 break; 1003 case FS_IOC32_SETFLAGS: 1004 cmd = FS_IOC_SETFLAGS; 1005 break; 1006 default: 1007 return (-ENOTTY); 1008 } 1009 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg))); 1010 } 1011 #endif /* CONFIG_COMPAT */ 1012 1013 const struct address_space_operations zpl_address_space_operations = { 1014 #ifdef HAVE_VFS_READPAGES 1015 .readpages = zpl_readpages, 1016 #else 1017 .readahead = zpl_readahead, 1018 #endif 1019 #ifdef HAVE_VFS_READ_FOLIO 1020 .read_folio = zpl_read_folio, 1021 #else 1022 .readpage = zpl_readpage, 1023 #endif 1024 #ifdef HAVE_VFS_WRITEPAGE 1025 .writepage = zpl_writepage, 1026 #endif 1027 .writepages = zpl_writepages, 1028 .direct_IO = zpl_direct_IO, 1029 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS 1030 .set_page_dirty = __set_page_dirty_nobuffers, 1031 #endif 1032 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO 1033 .dirty_folio = filemap_dirty_folio, 1034 #endif 1035 #ifdef HAVE_VFS_MIGRATE_FOLIO 1036 .migrate_folio = migrate_folio, 1037 #elif defined(HAVE_VFS_MIGRATEPAGE) 1038 .migratepage = migrate_page, 1039 #endif 1040 }; 1041 1042 const struct file_operations zpl_file_operations = { 1043 .open = zpl_open, 1044 .release = zpl_release, 1045 .llseek = zpl_llseek, 1046 .read_iter = zpl_iter_read, 1047 .write_iter = zpl_iter_write, 1048 #ifdef HAVE_COPY_SPLICE_READ 1049 .splice_read = copy_splice_read, 1050 #else 1051 .splice_read = generic_file_splice_read, 1052 #endif 1053 .splice_write = iter_file_splice_write, 1054 .mmap = zpl_mmap, 1055 .fsync = zpl_fsync, 1056 .fallocate = zpl_fallocate, 1057 .copy_file_range = zpl_copy_file_range, 1058 #ifdef HAVE_VFS_CLONE_FILE_RANGE 1059 .clone_file_range = zpl_clone_file_range, 1060 #endif 1061 #ifdef HAVE_VFS_REMAP_FILE_RANGE 1062 .remap_file_range = zpl_remap_file_range, 1063 #endif 1064 #ifdef HAVE_VFS_DEDUPE_FILE_RANGE 1065 .dedupe_file_range = zpl_dedupe_file_range, 1066 #endif 1067 .fadvise = zpl_fadvise, 1068 .unlocked_ioctl = zpl_ioctl, 1069 #ifdef CONFIG_COMPAT 1070 .compat_ioctl = zpl_compat_ioctl, 1071 #endif 1072 }; 1073 1074 const struct file_operations zpl_dir_file_operations = { 1075 .llseek = generic_file_llseek, 1076 .read = generic_read_dir, 1077 .iterate_shared = zpl_iterate, 1078 .fsync = zpl_fsync, 1079 .unlocked_ioctl = zpl_ioctl, 1080 #ifdef CONFIG_COMPAT 1081 .compat_ioctl = zpl_compat_ioctl, 1082 #endif 1083 }; 1084 1085 module_param(zfs_fallocate_reserve_percent, uint, 0644); 1086 MODULE_PARM_DESC(zfs_fallocate_reserve_percent, 1087 "Percentage of length to use for the available capacity check"); 1088