1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24 */
25
26
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <linux/fs.h>
31 #include <linux/migrate.h>
32 #include <sys/file.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/zfs_znode.h>
35 #include <sys/zfs_vfsops.h>
36 #include <sys/zfs_vnops.h>
37 #include <sys/zfs_project.h>
38 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
39 defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
40 #include <linux/pagemap.h>
41 #endif
42 #include <linux/fadvise.h>
43 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
44 #include <linux/writeback.h>
45 #endif
46
47 /*
48 * When using fallocate(2) to preallocate space, inflate the requested
49 * capacity check by 10% to account for the required metadata blocks.
50 */
51 static unsigned int zfs_fallocate_reserve_percent = 110;
52
53 static int
zpl_open(struct inode * ip,struct file * filp)54 zpl_open(struct inode *ip, struct file *filp)
55 {
56 cred_t *cr = CRED();
57 int error;
58 fstrans_cookie_t cookie;
59
60 error = generic_file_open(ip, filp);
61 if (error)
62 return (error);
63
64 crhold(cr);
65 cookie = spl_fstrans_mark();
66 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
67 spl_fstrans_unmark(cookie);
68 crfree(cr);
69 ASSERT3S(error, <=, 0);
70
71 return (error);
72 }
73
74 static int
zpl_release(struct inode * ip,struct file * filp)75 zpl_release(struct inode *ip, struct file *filp)
76 {
77 cred_t *cr = CRED();
78 int error;
79 fstrans_cookie_t cookie;
80
81 cookie = spl_fstrans_mark();
82 if (ITOZ(ip)->z_atime_dirty)
83 zfs_mark_inode_dirty(ip);
84
85 crhold(cr);
86 error = -zfs_close(ip, filp->f_flags, cr);
87 spl_fstrans_unmark(cookie);
88 crfree(cr);
89 ASSERT3S(error, <=, 0);
90
91 return (error);
92 }
93
94 static int
zpl_iterate(struct file * filp,struct dir_context * ctx)95 zpl_iterate(struct file *filp, struct dir_context *ctx)
96 {
97 cred_t *cr = CRED();
98 int error;
99 fstrans_cookie_t cookie;
100
101 crhold(cr);
102 cookie = spl_fstrans_mark();
103 error = -zfs_readdir(file_inode(filp), ctx, cr);
104 spl_fstrans_unmark(cookie);
105 crfree(cr);
106 ASSERT3S(error, <=, 0);
107
108 return (error);
109 }
110
111 static int
zpl_fsync(struct file * filp,loff_t start,loff_t end,int datasync)112 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
113 {
114 struct inode *inode = filp->f_mapping->host;
115 znode_t *zp = ITOZ(inode);
116 zfsvfs_t *zfsvfs = ITOZSB(inode);
117 cred_t *cr = CRED();
118 int error;
119 fstrans_cookie_t cookie;
120
121 /*
122 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
123 * tandem so that sync writes can detect if there are any non-sync
124 * writes going on and vice-versa. The "vice-versa" part to this logic
125 * is located in zfs_putpage() where non-sync writes check if there are
126 * any ongoing sync writes. If any sync and non-sync writes overlap,
127 * we do a commit to complete the non-sync writes since the latter can
128 * potentially take several seconds to complete and thus block sync
129 * writes in the upcoming call to filemap_write_and_wait_range().
130 */
131 atomic_inc_32(&zp->z_sync_writes_cnt);
132 /*
133 * If the following check does not detect an overlapping non-sync write
134 * (say because it's just about to start), then it is guaranteed that
135 * the non-sync write will detect this sync write. This is because we
136 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
137 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
138 * zfs_putpage() respectively.
139 */
140 if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
141 if ((error = zpl_enter(zfsvfs, FTAG)) != 0) {
142 atomic_dec_32(&zp->z_sync_writes_cnt);
143 return (error);
144 }
145 zil_commit(zfsvfs->z_log, zp->z_id);
146 zpl_exit(zfsvfs, FTAG);
147 }
148
149 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
150
151 /*
152 * The sync write is not complete yet but we decrement
153 * z_sync_writes_cnt since zfs_fsync() increments and decrements
154 * it internally. If a non-sync write starts just after the decrement
155 * operation but before we call zfs_fsync(), it may not detect this
156 * overlapping sync write but it does not matter since we have already
157 * gone past filemap_write_and_wait_range() and we won't block due to
158 * the non-sync write.
159 */
160 atomic_dec_32(&zp->z_sync_writes_cnt);
161
162 if (error)
163 return (error);
164
165 crhold(cr);
166 cookie = spl_fstrans_mark();
167 error = -zfs_fsync(zp, datasync, cr);
168 spl_fstrans_unmark(cookie);
169 crfree(cr);
170 ASSERT3S(error, <=, 0);
171
172 return (error);
173 }
174
175 static inline int
zfs_io_flags(struct kiocb * kiocb)176 zfs_io_flags(struct kiocb *kiocb)
177 {
178 int flags = 0;
179
180 #if defined(IOCB_DSYNC)
181 if (kiocb->ki_flags & IOCB_DSYNC)
182 flags |= O_DSYNC;
183 #endif
184 #if defined(IOCB_SYNC)
185 if (kiocb->ki_flags & IOCB_SYNC)
186 flags |= O_SYNC;
187 #endif
188 #if defined(IOCB_APPEND)
189 if (kiocb->ki_flags & IOCB_APPEND)
190 flags |= O_APPEND;
191 #endif
192 #if defined(IOCB_DIRECT)
193 if (kiocb->ki_flags & IOCB_DIRECT)
194 flags |= O_DIRECT;
195 #endif
196 return (flags);
197 }
198
199 /*
200 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
201 * is true. This is needed since datasets with inherited "relatime" property
202 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
203 * `zfs set relatime=...`), which is what relatime test in VFS by
204 * relatime_need_update() is based on.
205 */
206 static inline void
zpl_file_accessed(struct file * filp)207 zpl_file_accessed(struct file *filp)
208 {
209 struct inode *ip = filp->f_mapping->host;
210
211 if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
212 if (zfs_relatime_need_update(ip))
213 file_accessed(filp);
214 } else {
215 file_accessed(filp);
216 }
217 }
218
219 static ssize_t
zpl_iter_read(struct kiocb * kiocb,struct iov_iter * to)220 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
221 {
222 cred_t *cr = CRED();
223 fstrans_cookie_t cookie;
224 struct file *filp = kiocb->ki_filp;
225 ssize_t count = iov_iter_count(to);
226 zfs_uio_t uio;
227
228 zfs_uio_iov_iter_init(&uio, to, kiocb->ki_pos, count, 0);
229
230 crhold(cr);
231 cookie = spl_fstrans_mark();
232
233 ssize_t ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
234 filp->f_flags | zfs_io_flags(kiocb), cr);
235
236 spl_fstrans_unmark(cookie);
237 crfree(cr);
238
239 if (ret < 0)
240 return (ret);
241
242 ssize_t read = count - uio.uio_resid;
243 kiocb->ki_pos += read;
244
245 zpl_file_accessed(filp);
246
247 return (read);
248 }
249
250 static inline ssize_t
zpl_generic_write_checks(struct kiocb * kiocb,struct iov_iter * from,size_t * countp)251 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
252 size_t *countp)
253 {
254 ssize_t ret = generic_write_checks(kiocb, from);
255 if (ret <= 0)
256 return (ret);
257
258 *countp = ret;
259
260 return (0);
261 }
262
263 static ssize_t
zpl_iter_write(struct kiocb * kiocb,struct iov_iter * from)264 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
265 {
266 cred_t *cr = CRED();
267 fstrans_cookie_t cookie;
268 struct file *filp = kiocb->ki_filp;
269 struct inode *ip = filp->f_mapping->host;
270 zfs_uio_t uio;
271 size_t count = 0;
272 ssize_t ret;
273
274 ret = zpl_generic_write_checks(kiocb, from, &count);
275 if (ret)
276 return (ret);
277
278 zfs_uio_iov_iter_init(&uio, from, kiocb->ki_pos, count,
279 from->iov_offset);
280
281 crhold(cr);
282 cookie = spl_fstrans_mark();
283
284 ret = -zfs_write(ITOZ(ip), &uio,
285 filp->f_flags | zfs_io_flags(kiocb), cr);
286
287 spl_fstrans_unmark(cookie);
288 crfree(cr);
289
290 if (ret < 0)
291 return (ret);
292
293 ssize_t wrote = count - uio.uio_resid;
294 kiocb->ki_pos += wrote;
295
296 return (wrote);
297 }
298
299 static ssize_t
zpl_direct_IO(struct kiocb * kiocb,struct iov_iter * iter)300 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
301 {
302 /*
303 * All O_DIRECT requests should be handled by
304 * zpl_iter_write/read}(). There is no way kernel generic code should
305 * call the direct_IO address_space_operations function. We set this
306 * code path to be fatal if it is executed.
307 */
308 PANIC(0);
309 return (0);
310 }
311
312 static loff_t
zpl_llseek(struct file * filp,loff_t offset,int whence)313 zpl_llseek(struct file *filp, loff_t offset, int whence)
314 {
315 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
316 fstrans_cookie_t cookie;
317
318 if (whence == SEEK_DATA || whence == SEEK_HOLE) {
319 struct inode *ip = filp->f_mapping->host;
320 loff_t maxbytes = ip->i_sb->s_maxbytes;
321 loff_t error;
322
323 spl_inode_lock_shared(ip);
324 cookie = spl_fstrans_mark();
325 error = -zfs_holey(ITOZ(ip), whence, &offset);
326 spl_fstrans_unmark(cookie);
327 if (error == 0)
328 error = lseek_execute(filp, ip, offset, maxbytes);
329 spl_inode_unlock_shared(ip);
330
331 return (error);
332 }
333 #endif /* SEEK_HOLE && SEEK_DATA */
334
335 return (generic_file_llseek(filp, offset, whence));
336 }
337
338 /*
339 * It's worth taking a moment to describe how mmap is implemented
340 * for zfs because it differs considerably from other Linux filesystems.
341 * However, this issue is handled the same way under OpenSolaris.
342 *
343 * The issue is that by design zfs bypasses the Linux page cache and
344 * leaves all caching up to the ARC. This has been shown to work
345 * well for the common read(2)/write(2) case. However, mmap(2)
346 * is problem because it relies on being tightly integrated with the
347 * page cache. To handle this we cache mmap'ed files twice, once in
348 * the ARC and a second time in the page cache. The code is careful
349 * to keep both copies synchronized.
350 *
351 * When a file with an mmap'ed region is written to using write(2)
352 * both the data in the ARC and existing pages in the page cache
353 * are updated. For a read(2) data will be read first from the page
354 * cache then the ARC if needed. Neither a write(2) or read(2) will
355 * will ever result in new pages being added to the page cache.
356 *
357 * New pages are added to the page cache only via .readpage() which
358 * is called when the vfs needs to read a page off disk to back the
359 * virtual memory region. These pages may be modified without
360 * notifying the ARC and will be written out periodically via
361 * .writepage(). This will occur due to either a sync or the usual
362 * page aging behavior. Note because a read(2) of a mmap'ed file
363 * will always check the page cache first even when the ARC is out
364 * of date correct data will still be returned.
365 *
366 * While this implementation ensures correct behavior it does have
367 * have some drawbacks. The most obvious of which is that it
368 * increases the required memory footprint when access mmap'ed
369 * files. It also adds additional complexity to the code keeping
370 * both caches synchronized.
371 *
372 * Longer term it may be possible to cleanly resolve this wart by
373 * mapping page cache pages directly on to the ARC buffers. The
374 * Linux address space operations are flexible enough to allow
375 * selection of which pages back a particular index. The trick
376 * would be working out the details of which subsystem is in
377 * charge, the ARC, the page cache, or both. It may also prove
378 * helpful to move the ARC buffers to a scatter-gather lists
379 * rather than a vmalloc'ed region.
380 */
381 static int
zpl_mmap(struct file * filp,struct vm_area_struct * vma)382 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
383 {
384 struct inode *ip = filp->f_mapping->host;
385 int error;
386 fstrans_cookie_t cookie;
387
388 cookie = spl_fstrans_mark();
389 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
390 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
391 spl_fstrans_unmark(cookie);
392
393 if (error)
394 return (error);
395
396 error = generic_file_mmap(filp, vma);
397 if (error)
398 return (error);
399
400 return (error);
401 }
402
403 /*
404 * Populate a page with data for the Linux page cache. This function is
405 * only used to support mmap(2). There will be an identical copy of the
406 * data in the ARC which is kept up to date via .write() and .writepage().
407 */
408 static inline int
zpl_readpage_common(struct page * pp)409 zpl_readpage_common(struct page *pp)
410 {
411 fstrans_cookie_t cookie;
412
413 ASSERT(PageLocked(pp));
414
415 cookie = spl_fstrans_mark();
416 int error = -zfs_getpage(pp->mapping->host, pp);
417 spl_fstrans_unmark(cookie);
418
419 unlock_page(pp);
420
421 return (error);
422 }
423
424 #ifdef HAVE_VFS_READ_FOLIO
425 static int
zpl_read_folio(struct file * filp,struct folio * folio)426 zpl_read_folio(struct file *filp, struct folio *folio)
427 {
428 return (zpl_readpage_common(&folio->page));
429 }
430 #else
431 static int
zpl_readpage(struct file * filp,struct page * pp)432 zpl_readpage(struct file *filp, struct page *pp)
433 {
434 return (zpl_readpage_common(pp));
435 }
436 #endif
437
438 static int
zpl_readpage_filler(void * data,struct page * pp)439 zpl_readpage_filler(void *data, struct page *pp)
440 {
441 return (zpl_readpage_common(pp));
442 }
443
444 /*
445 * Populate a set of pages with data for the Linux page cache. This
446 * function will only be called for read ahead and never for demand
447 * paging. For simplicity, the code relies on read_cache_pages() to
448 * correctly lock each page for IO and call zpl_readpage().
449 */
450 #ifdef HAVE_VFS_READPAGES
451 static int
zpl_readpages(struct file * filp,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)452 zpl_readpages(struct file *filp, struct address_space *mapping,
453 struct list_head *pages, unsigned nr_pages)
454 {
455 return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
456 }
457 #else
458 static void
zpl_readahead(struct readahead_control * ractl)459 zpl_readahead(struct readahead_control *ractl)
460 {
461 struct page *page;
462
463 while ((page = readahead_page(ractl)) != NULL) {
464 int ret;
465
466 ret = zpl_readpage_filler(NULL, page);
467 put_page(page);
468 if (ret)
469 break;
470 }
471 }
472 #endif
473
474 static int
zpl_putpage(struct page * pp,struct writeback_control * wbc,void * data)475 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
476 {
477 boolean_t *for_sync = data;
478 fstrans_cookie_t cookie;
479 int ret;
480
481 ASSERT(PageLocked(pp));
482 ASSERT(!PageWriteback(pp));
483
484 cookie = spl_fstrans_mark();
485 ret = zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
486 spl_fstrans_unmark(cookie);
487
488 return (ret);
489 }
490
491 #ifdef HAVE_WRITEPAGE_T_FOLIO
492 static int
zpl_putfolio(struct folio * pp,struct writeback_control * wbc,void * data)493 zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data)
494 {
495 return (zpl_putpage(&pp->page, wbc, data));
496 }
497 #endif
498
499 static inline int
zpl_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,void * data)500 zpl_write_cache_pages(struct address_space *mapping,
501 struct writeback_control *wbc, void *data)
502 {
503 int result;
504
505 #ifdef HAVE_WRITEPAGE_T_FOLIO
506 result = write_cache_pages(mapping, wbc, zpl_putfolio, data);
507 #else
508 result = write_cache_pages(mapping, wbc, zpl_putpage, data);
509 #endif
510 return (result);
511 }
512
513 static int
zpl_writepages(struct address_space * mapping,struct writeback_control * wbc)514 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
515 {
516 znode_t *zp = ITOZ(mapping->host);
517 zfsvfs_t *zfsvfs = ITOZSB(mapping->host);
518 enum writeback_sync_modes sync_mode;
519 int result;
520
521 if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
522 return (result);
523 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
524 wbc->sync_mode = WB_SYNC_ALL;
525 zpl_exit(zfsvfs, FTAG);
526 sync_mode = wbc->sync_mode;
527
528 /*
529 * We don't want to run write_cache_pages() in SYNC mode here, because
530 * that would make putpage() wait for a single page to be committed to
531 * disk every single time, resulting in atrocious performance. Instead
532 * we run it once in non-SYNC mode so that the ZIL gets all the data,
533 * and then we commit it all in one go.
534 */
535 boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
536 wbc->sync_mode = WB_SYNC_NONE;
537 result = zpl_write_cache_pages(mapping, wbc, &for_sync);
538 if (sync_mode != wbc->sync_mode) {
539 if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
540 return (result);
541 if (zfsvfs->z_log != NULL)
542 zil_commit(zfsvfs->z_log, zp->z_id);
543 zpl_exit(zfsvfs, FTAG);
544
545 /*
546 * We need to call write_cache_pages() again (we can't just
547 * return after the commit) because the previous call in
548 * non-SYNC mode does not guarantee that we got all the dirty
549 * pages (see the implementation of write_cache_pages() for
550 * details). That being said, this is a no-op in most cases.
551 */
552 wbc->sync_mode = sync_mode;
553 result = zpl_write_cache_pages(mapping, wbc, &for_sync);
554 }
555 return (result);
556 }
557
558 /*
559 * Write out dirty pages to the ARC, this function is only required to
560 * support mmap(2). Mapped pages may be dirtied by memory operations
561 * which never call .write(). These dirty pages are kept in sync with
562 * the ARC buffers via this hook.
563 */
564 static int
zpl_writepage(struct page * pp,struct writeback_control * wbc)565 zpl_writepage(struct page *pp, struct writeback_control *wbc)
566 {
567 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
568 wbc->sync_mode = WB_SYNC_ALL;
569
570 boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
571
572 return (zpl_putpage(pp, wbc, &for_sync));
573 }
574
575 /*
576 * The flag combination which matches the behavior of zfs_space() is
577 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
578 * flag was introduced in the 2.6.38 kernel.
579 *
580 * The original mode=0 (allocate space) behavior can be reasonably emulated
581 * by checking if enough space exists and creating a sparse file, as real
582 * persistent space reservation is not possible due to COW, snapshots, etc.
583 */
584 static long
zpl_fallocate_common(struct inode * ip,int mode,loff_t offset,loff_t len)585 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
586 {
587 cred_t *cr = CRED();
588 loff_t olen;
589 fstrans_cookie_t cookie;
590 int error = 0;
591
592 int test_mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE;
593
594 if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
595 return (-EOPNOTSUPP);
596
597 if (offset < 0 || len <= 0)
598 return (-EINVAL);
599
600 spl_inode_lock(ip);
601 olen = i_size_read(ip);
602
603 crhold(cr);
604 cookie = spl_fstrans_mark();
605 if (mode & (test_mode)) {
606 flock64_t bf;
607
608 if (mode & FALLOC_FL_KEEP_SIZE) {
609 if (offset > olen)
610 goto out_unmark;
611
612 if (offset + len > olen)
613 len = olen - offset;
614 }
615 bf.l_type = F_WRLCK;
616 bf.l_whence = SEEK_SET;
617 bf.l_start = offset;
618 bf.l_len = len;
619 bf.l_pid = 0;
620
621 error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
622 } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
623 unsigned int percent = zfs_fallocate_reserve_percent;
624 struct kstatfs statfs;
625
626 /* Legacy mode, disable fallocate compatibility. */
627 if (percent == 0) {
628 error = -EOPNOTSUPP;
629 goto out_unmark;
630 }
631
632 /*
633 * Use zfs_statvfs() instead of dmu_objset_space() since it
634 * also checks project quota limits, which are relevant here.
635 */
636 error = zfs_statvfs(ip, &statfs);
637 if (error)
638 goto out_unmark;
639
640 /*
641 * Shrink available space a bit to account for overhead/races.
642 * We know the product previously fit into availbytes from
643 * dmu_objset_space(), so the smaller product will also fit.
644 */
645 if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
646 error = -ENOSPC;
647 goto out_unmark;
648 }
649 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
650 error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
651 }
652 out_unmark:
653 spl_fstrans_unmark(cookie);
654 spl_inode_unlock(ip);
655
656 crfree(cr);
657
658 return (error);
659 }
660
661 static long
zpl_fallocate(struct file * filp,int mode,loff_t offset,loff_t len)662 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
663 {
664 return zpl_fallocate_common(file_inode(filp),
665 mode, offset, len);
666 }
667
668 static int
zpl_ioctl_getversion(struct file * filp,void __user * arg)669 zpl_ioctl_getversion(struct file *filp, void __user *arg)
670 {
671 uint32_t generation = file_inode(filp)->i_generation;
672
673 return (copy_to_user(arg, &generation, sizeof (generation)));
674 }
675
676 static int
zpl_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)677 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
678 {
679 struct inode *ip = file_inode(filp);
680 znode_t *zp = ITOZ(ip);
681 zfsvfs_t *zfsvfs = ITOZSB(ip);
682 objset_t *os = zfsvfs->z_os;
683 int error = 0;
684
685 if (S_ISFIFO(ip->i_mode))
686 return (-ESPIPE);
687
688 if (offset < 0 || len < 0)
689 return (-EINVAL);
690
691 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
692 return (error);
693
694 switch (advice) {
695 case POSIX_FADV_SEQUENTIAL:
696 case POSIX_FADV_WILLNEED:
697 #ifdef HAVE_GENERIC_FADVISE
698 if (zn_has_cached_data(zp, offset, offset + len - 1))
699 error = generic_fadvise(filp, offset, len, advice);
700 #endif
701 /*
702 * Pass on the caller's size directly, but note that
703 * dmu_prefetch_max will effectively cap it. If there
704 * really is a larger sequential access pattern, perhaps
705 * dmu_zfetch will detect it.
706 */
707 if (len == 0)
708 len = i_size_read(ip) - offset;
709
710 dmu_prefetch(os, zp->z_id, 0, offset, len,
711 ZIO_PRIORITY_ASYNC_READ);
712 break;
713 case POSIX_FADV_NORMAL:
714 case POSIX_FADV_RANDOM:
715 case POSIX_FADV_DONTNEED:
716 case POSIX_FADV_NOREUSE:
717 /* ignored for now */
718 break;
719 default:
720 error = -EINVAL;
721 break;
722 }
723
724 zfs_exit(zfsvfs, FTAG);
725
726 return (error);
727 }
728
729 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
730 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
731
732 static uint32_t
__zpl_ioctl_getflags(struct inode * ip)733 __zpl_ioctl_getflags(struct inode *ip)
734 {
735 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
736 uint32_t ioctl_flags = 0;
737
738 if (zfs_flags & ZFS_IMMUTABLE)
739 ioctl_flags |= FS_IMMUTABLE_FL;
740
741 if (zfs_flags & ZFS_APPENDONLY)
742 ioctl_flags |= FS_APPEND_FL;
743
744 if (zfs_flags & ZFS_NODUMP)
745 ioctl_flags |= FS_NODUMP_FL;
746
747 if (zfs_flags & ZFS_PROJINHERIT)
748 ioctl_flags |= ZFS_PROJINHERIT_FL;
749
750 return (ioctl_flags & ZFS_FL_USER_VISIBLE);
751 }
752
753 /*
754 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
755 * attributes common to both Linux and Solaris are mapped.
756 */
757 static int
zpl_ioctl_getflags(struct file * filp,void __user * arg)758 zpl_ioctl_getflags(struct file *filp, void __user *arg)
759 {
760 uint32_t flags;
761 int err;
762
763 flags = __zpl_ioctl_getflags(file_inode(filp));
764 err = copy_to_user(arg, &flags, sizeof (flags));
765
766 return (err);
767 }
768
769 /*
770 * fchange() is a helper macro to detect if we have been asked to change a
771 * flag. This is ugly, but the requirement that we do this is a consequence of
772 * how the Linux file attribute interface was designed. Another consequence is
773 * that concurrent modification of files suffers from a TOCTOU race. Neither
774 * are things we can fix without modifying the kernel-userland interface, which
775 * is outside of our jurisdiction.
776 */
777
778 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
779
780 static int
__zpl_ioctl_setflags(struct inode * ip,uint32_t ioctl_flags,xvattr_t * xva)781 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
782 {
783 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
784 xoptattr_t *xoap;
785
786 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
787 ZFS_PROJINHERIT_FL))
788 return (-EOPNOTSUPP);
789
790 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
791 return (-EACCES);
792
793 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
794 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
795 !capable(CAP_LINUX_IMMUTABLE))
796 return (-EPERM);
797
798 if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
799 return (-EACCES);
800
801 xva_init(xva);
802 xoap = xva_getxoptattr(xva);
803
804 #define FLAG_CHANGE(iflag, zflag, xflag, xfield) do { \
805 if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) || \
806 ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) { \
807 XVA_SET_REQ(xva, (xflag)); \
808 (xfield) = ((ioctl_flags & (iflag)) != 0); \
809 } \
810 } while (0)
811
812 FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
813 xoap->xoa_immutable);
814 FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
815 xoap->xoa_appendonly);
816 FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
817 xoap->xoa_nodump);
818 FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
819 xoap->xoa_projinherit);
820
821 #undef FLAG_CHANGE
822
823 return (0);
824 }
825
826 static int
zpl_ioctl_setflags(struct file * filp,void __user * arg)827 zpl_ioctl_setflags(struct file *filp, void __user *arg)
828 {
829 struct inode *ip = file_inode(filp);
830 uint32_t flags;
831 cred_t *cr = CRED();
832 xvattr_t xva;
833 int err;
834 fstrans_cookie_t cookie;
835
836 if (copy_from_user(&flags, arg, sizeof (flags)))
837 return (-EFAULT);
838
839 err = __zpl_ioctl_setflags(ip, flags, &xva);
840 if (err)
841 return (err);
842
843 crhold(cr);
844 cookie = spl_fstrans_mark();
845 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
846 spl_fstrans_unmark(cookie);
847 crfree(cr);
848
849 return (err);
850 }
851
852 static int
zpl_ioctl_getxattr(struct file * filp,void __user * arg)853 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
854 {
855 zfsxattr_t fsx = { 0 };
856 struct inode *ip = file_inode(filp);
857 int err;
858
859 fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
860 fsx.fsx_projid = ITOZ(ip)->z_projid;
861 err = copy_to_user(arg, &fsx, sizeof (fsx));
862
863 return (err);
864 }
865
866 static int
zpl_ioctl_setxattr(struct file * filp,void __user * arg)867 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
868 {
869 struct inode *ip = file_inode(filp);
870 zfsxattr_t fsx;
871 cred_t *cr = CRED();
872 xvattr_t xva;
873 xoptattr_t *xoap;
874 int err;
875 fstrans_cookie_t cookie;
876
877 if (copy_from_user(&fsx, arg, sizeof (fsx)))
878 return (-EFAULT);
879
880 if (!zpl_is_valid_projid(fsx.fsx_projid))
881 return (-EINVAL);
882
883 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
884 if (err)
885 return (err);
886
887 xoap = xva_getxoptattr(&xva);
888 XVA_SET_REQ(&xva, XAT_PROJID);
889 xoap->xoa_projid = fsx.fsx_projid;
890
891 crhold(cr);
892 cookie = spl_fstrans_mark();
893 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
894 spl_fstrans_unmark(cookie);
895 crfree(cr);
896
897 return (err);
898 }
899
900 /*
901 * Expose Additional File Level Attributes of ZFS.
902 */
903 static int
zpl_ioctl_getdosflags(struct file * filp,void __user * arg)904 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
905 {
906 struct inode *ip = file_inode(filp);
907 uint64_t dosflags = ITOZ(ip)->z_pflags;
908 dosflags &= ZFS_DOS_FL_USER_VISIBLE;
909 int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
910
911 return (err);
912 }
913
914 static int
__zpl_ioctl_setdosflags(struct inode * ip,uint64_t ioctl_flags,xvattr_t * xva)915 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
916 {
917 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
918 xoptattr_t *xoap;
919
920 if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
921 return (-EOPNOTSUPP);
922
923 if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
924 fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
925 !capable(CAP_LINUX_IMMUTABLE))
926 return (-EPERM);
927
928 if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
929 return (-EACCES);
930
931 xva_init(xva);
932 xoap = xva_getxoptattr(xva);
933
934 #define FLAG_CHANGE(iflag, xflag, xfield) do { \
935 if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) || \
936 ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) { \
937 XVA_SET_REQ(xva, (xflag)); \
938 (xfield) = ((ioctl_flags & (iflag)) != 0); \
939 } \
940 } while (0)
941
942 FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
943 FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
944 FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
945 FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
946 FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
947 FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
948 FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
949 FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
950 FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
951 FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
952 FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
953
954 #undef FLAG_CHANGE
955
956 return (0);
957 }
958
959 /*
960 * Set Additional File Level Attributes of ZFS.
961 */
962 static int
zpl_ioctl_setdosflags(struct file * filp,void __user * arg)963 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
964 {
965 struct inode *ip = file_inode(filp);
966 uint64_t dosflags;
967 cred_t *cr = CRED();
968 xvattr_t xva;
969 int err;
970 fstrans_cookie_t cookie;
971
972 if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
973 return (-EFAULT);
974
975 err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
976 if (err)
977 return (err);
978
979 crhold(cr);
980 cookie = spl_fstrans_mark();
981 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
982 spl_fstrans_unmark(cookie);
983 crfree(cr);
984
985 return (err);
986 }
987
988 static long
zpl_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)989 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
990 {
991 switch (cmd) {
992 case FS_IOC_GETVERSION:
993 return (zpl_ioctl_getversion(filp, (void *)arg));
994 case FS_IOC_GETFLAGS:
995 return (zpl_ioctl_getflags(filp, (void *)arg));
996 case FS_IOC_SETFLAGS:
997 return (zpl_ioctl_setflags(filp, (void *)arg));
998 case ZFS_IOC_FSGETXATTR:
999 return (zpl_ioctl_getxattr(filp, (void *)arg));
1000 case ZFS_IOC_FSSETXATTR:
1001 return (zpl_ioctl_setxattr(filp, (void *)arg));
1002 case ZFS_IOC_GETDOSFLAGS:
1003 return (zpl_ioctl_getdosflags(filp, (void *)arg));
1004 case ZFS_IOC_SETDOSFLAGS:
1005 return (zpl_ioctl_setdosflags(filp, (void *)arg));
1006 case ZFS_IOC_COMPAT_FICLONE:
1007 return (zpl_ioctl_ficlone(filp, (void *)arg));
1008 case ZFS_IOC_COMPAT_FICLONERANGE:
1009 return (zpl_ioctl_ficlonerange(filp, (void *)arg));
1010 case ZFS_IOC_COMPAT_FIDEDUPERANGE:
1011 return (zpl_ioctl_fideduperange(filp, (void *)arg));
1012 default:
1013 return (-ENOTTY);
1014 }
1015 }
1016
1017 #ifdef CONFIG_COMPAT
1018 static long
zpl_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1019 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1020 {
1021 switch (cmd) {
1022 case FS_IOC32_GETVERSION:
1023 cmd = FS_IOC_GETVERSION;
1024 break;
1025 case FS_IOC32_GETFLAGS:
1026 cmd = FS_IOC_GETFLAGS;
1027 break;
1028 case FS_IOC32_SETFLAGS:
1029 cmd = FS_IOC_SETFLAGS;
1030 break;
1031 default:
1032 return (-ENOTTY);
1033 }
1034 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1035 }
1036 #endif /* CONFIG_COMPAT */
1037
1038 const struct address_space_operations zpl_address_space_operations = {
1039 #ifdef HAVE_VFS_READPAGES
1040 .readpages = zpl_readpages,
1041 #else
1042 .readahead = zpl_readahead,
1043 #endif
1044 #ifdef HAVE_VFS_READ_FOLIO
1045 .read_folio = zpl_read_folio,
1046 #else
1047 .readpage = zpl_readpage,
1048 #endif
1049 .writepage = zpl_writepage,
1050 .writepages = zpl_writepages,
1051 .direct_IO = zpl_direct_IO,
1052 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1053 .set_page_dirty = __set_page_dirty_nobuffers,
1054 #endif
1055 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1056 .dirty_folio = filemap_dirty_folio,
1057 #endif
1058 #ifdef HAVE_VFS_MIGRATE_FOLIO
1059 .migrate_folio = migrate_folio,
1060 #else
1061 .migratepage = migrate_page,
1062 #endif
1063 };
1064
1065 const struct file_operations zpl_file_operations = {
1066 .open = zpl_open,
1067 .release = zpl_release,
1068 .llseek = zpl_llseek,
1069 .read_iter = zpl_iter_read,
1070 .write_iter = zpl_iter_write,
1071 #ifdef HAVE_COPY_SPLICE_READ
1072 .splice_read = copy_splice_read,
1073 #else
1074 .splice_read = generic_file_splice_read,
1075 #endif
1076 .splice_write = iter_file_splice_write,
1077 .mmap = zpl_mmap,
1078 .fsync = zpl_fsync,
1079 .fallocate = zpl_fallocate,
1080 .copy_file_range = zpl_copy_file_range,
1081 #ifdef HAVE_VFS_CLONE_FILE_RANGE
1082 .clone_file_range = zpl_clone_file_range,
1083 #endif
1084 #ifdef HAVE_VFS_REMAP_FILE_RANGE
1085 .remap_file_range = zpl_remap_file_range,
1086 #endif
1087 #ifdef HAVE_VFS_DEDUPE_FILE_RANGE
1088 .dedupe_file_range = zpl_dedupe_file_range,
1089 #endif
1090 .fadvise = zpl_fadvise,
1091 .unlocked_ioctl = zpl_ioctl,
1092 #ifdef CONFIG_COMPAT
1093 .compat_ioctl = zpl_compat_ioctl,
1094 #endif
1095 };
1096
1097 const struct file_operations zpl_dir_file_operations = {
1098 .llseek = generic_file_llseek,
1099 .read = generic_read_dir,
1100 .iterate_shared = zpl_iterate,
1101 .fsync = zpl_fsync,
1102 .unlocked_ioctl = zpl_ioctl,
1103 #ifdef CONFIG_COMPAT
1104 .compat_ioctl = zpl_compat_ioctl,
1105 #endif
1106 };
1107
1108 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1109 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1110 "Percentage of length to use for the available capacity check");
1111