1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC. 23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 24 */ 25 26 27 #ifdef CONFIG_COMPAT 28 #include <linux/compat.h> 29 #endif 30 #include <linux/fs.h> 31 #include <sys/file.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/zfs_znode.h> 34 #include <sys/zfs_vfsops.h> 35 #include <sys/zfs_vnops.h> 36 #include <sys/zfs_project.h> 37 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \ 38 defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO) 39 #include <linux/pagemap.h> 40 #endif 41 #ifdef HAVE_FILE_FADVISE 42 #include <linux/fadvise.h> 43 #endif 44 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO 45 #include <linux/writeback.h> 46 #endif 47 48 /* 49 * When using fallocate(2) to preallocate space, inflate the requested 50 * capacity check by 10% to account for the required metadata blocks. 51 */ 52 static unsigned int zfs_fallocate_reserve_percent = 110; 53 54 static int 55 zpl_open(struct inode *ip, struct file *filp) 56 { 57 cred_t *cr = CRED(); 58 int error; 59 fstrans_cookie_t cookie; 60 61 error = generic_file_open(ip, filp); 62 if (error) 63 return (error); 64 65 crhold(cr); 66 cookie = spl_fstrans_mark(); 67 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr); 68 spl_fstrans_unmark(cookie); 69 crfree(cr); 70 ASSERT3S(error, <=, 0); 71 72 return (error); 73 } 74 75 static int 76 zpl_release(struct inode *ip, struct file *filp) 77 { 78 cred_t *cr = CRED(); 79 int error; 80 fstrans_cookie_t cookie; 81 82 cookie = spl_fstrans_mark(); 83 if (ITOZ(ip)->z_atime_dirty) 84 zfs_mark_inode_dirty(ip); 85 86 crhold(cr); 87 error = -zfs_close(ip, filp->f_flags, cr); 88 spl_fstrans_unmark(cookie); 89 crfree(cr); 90 ASSERT3S(error, <=, 0); 91 92 return (error); 93 } 94 95 static int 96 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx) 97 { 98 cred_t *cr = CRED(); 99 int error; 100 fstrans_cookie_t cookie; 101 102 crhold(cr); 103 cookie = spl_fstrans_mark(); 104 error = -zfs_readdir(file_inode(filp), ctx, cr); 105 spl_fstrans_unmark(cookie); 106 crfree(cr); 107 ASSERT3S(error, <=, 0); 108 109 return (error); 110 } 111 112 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED) 113 static int 114 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir) 115 { 116 zpl_dir_context_t ctx = 117 ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos); 118 int error; 119 120 error = zpl_iterate(filp, &ctx); 121 filp->f_pos = ctx.pos; 122 123 return (error); 124 } 125 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */ 126 127 #if defined(HAVE_FSYNC_WITHOUT_DENTRY) 128 /* 129 * Linux 2.6.35 - 3.0 API, 130 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed 131 * redundant. The dentry is still accessible via filp->f_path.dentry, 132 * and we are guaranteed that filp will never be NULL. 133 */ 134 static int 135 zpl_fsync(struct file *filp, int datasync) 136 { 137 struct inode *inode = filp->f_mapping->host; 138 cred_t *cr = CRED(); 139 int error; 140 fstrans_cookie_t cookie; 141 142 crhold(cr); 143 cookie = spl_fstrans_mark(); 144 error = -zfs_fsync(ITOZ(inode), datasync, cr); 145 spl_fstrans_unmark(cookie); 146 crfree(cr); 147 ASSERT3S(error, <=, 0); 148 149 return (error); 150 } 151 152 #ifdef HAVE_FILE_AIO_FSYNC 153 static int 154 zpl_aio_fsync(struct kiocb *kiocb, int datasync) 155 { 156 return (zpl_fsync(kiocb->ki_filp, datasync)); 157 } 158 #endif 159 160 #elif defined(HAVE_FSYNC_RANGE) 161 /* 162 * Linux 3.1 API, 163 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has 164 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex 165 * lock is no longer held by the caller, for zfs we don't require the lock 166 * to be held so we don't acquire it. 167 */ 168 static int 169 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 170 { 171 struct inode *inode = filp->f_mapping->host; 172 znode_t *zp = ITOZ(inode); 173 zfsvfs_t *zfsvfs = ITOZSB(inode); 174 cred_t *cr = CRED(); 175 int error; 176 fstrans_cookie_t cookie; 177 178 /* 179 * The variables z_sync_writes_cnt and z_async_writes_cnt work in 180 * tandem so that sync writes can detect if there are any non-sync 181 * writes going on and vice-versa. The "vice-versa" part to this logic 182 * is located in zfs_putpage() where non-sync writes check if there are 183 * any ongoing sync writes. If any sync and non-sync writes overlap, 184 * we do a commit to complete the non-sync writes since the latter can 185 * potentially take several seconds to complete and thus block sync 186 * writes in the upcoming call to filemap_write_and_wait_range(). 187 */ 188 atomic_inc_32(&zp->z_sync_writes_cnt); 189 /* 190 * If the following check does not detect an overlapping non-sync write 191 * (say because it's just about to start), then it is guaranteed that 192 * the non-sync write will detect this sync write. This is because we 193 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing 194 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in 195 * zfs_putpage() respectively. 196 */ 197 if (atomic_load_32(&zp->z_async_writes_cnt) > 0) { 198 if ((error = zpl_enter(zfsvfs, FTAG)) != 0) { 199 atomic_dec_32(&zp->z_sync_writes_cnt); 200 return (error); 201 } 202 zil_commit(zfsvfs->z_log, zp->z_id); 203 zpl_exit(zfsvfs, FTAG); 204 } 205 206 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 207 208 /* 209 * The sync write is not complete yet but we decrement 210 * z_sync_writes_cnt since zfs_fsync() increments and decrements 211 * it internally. If a non-sync write starts just after the decrement 212 * operation but before we call zfs_fsync(), it may not detect this 213 * overlapping sync write but it does not matter since we have already 214 * gone past filemap_write_and_wait_range() and we won't block due to 215 * the non-sync write. 216 */ 217 atomic_dec_32(&zp->z_sync_writes_cnt); 218 219 if (error) 220 return (error); 221 222 crhold(cr); 223 cookie = spl_fstrans_mark(); 224 error = -zfs_fsync(zp, datasync, cr); 225 spl_fstrans_unmark(cookie); 226 crfree(cr); 227 ASSERT3S(error, <=, 0); 228 229 return (error); 230 } 231 232 #ifdef HAVE_FILE_AIO_FSYNC 233 static int 234 zpl_aio_fsync(struct kiocb *kiocb, int datasync) 235 { 236 return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync)); 237 } 238 #endif 239 240 #else 241 #error "Unsupported fops->fsync() implementation" 242 #endif 243 244 static inline int 245 zfs_io_flags(struct kiocb *kiocb) 246 { 247 int flags = 0; 248 249 #if defined(IOCB_DSYNC) 250 if (kiocb->ki_flags & IOCB_DSYNC) 251 flags |= O_DSYNC; 252 #endif 253 #if defined(IOCB_SYNC) 254 if (kiocb->ki_flags & IOCB_SYNC) 255 flags |= O_SYNC; 256 #endif 257 #if defined(IOCB_APPEND) 258 if (kiocb->ki_flags & IOCB_APPEND) 259 flags |= O_APPEND; 260 #endif 261 #if defined(IOCB_DIRECT) 262 if (kiocb->ki_flags & IOCB_DIRECT) 263 flags |= O_DIRECT; 264 #endif 265 return (flags); 266 } 267 268 /* 269 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update() 270 * is true. This is needed since datasets with inherited "relatime" property 271 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after 272 * `zfs set relatime=...`), which is what relatime test in VFS by 273 * relatime_need_update() is based on. 274 */ 275 static inline void 276 zpl_file_accessed(struct file *filp) 277 { 278 struct inode *ip = filp->f_mapping->host; 279 280 if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) { 281 if (zfs_relatime_need_update(ip)) 282 file_accessed(filp); 283 } else { 284 file_accessed(filp); 285 } 286 } 287 288 #if defined(HAVE_VFS_RW_ITERATE) 289 290 /* 291 * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports 292 * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to 293 * manipulate the iov_iter are available. In which case the full iov_iter 294 * can be attached to the uio and correctly handled in the lower layers. 295 * Otherwise, for older kernels extract the iovec and pass it instead. 296 */ 297 static void 298 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to, 299 loff_t pos, ssize_t count, size_t skip) 300 { 301 #if defined(HAVE_VFS_IOV_ITER) 302 zfs_uio_iov_iter_init(uio, to, pos, count, skip); 303 #else 304 #ifdef HAVE_IOV_ITER_TYPE 305 zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos, 306 iov_iter_type(to) & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE, 307 count, skip); 308 #else 309 zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos, 310 to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE, 311 count, skip); 312 #endif 313 #endif 314 } 315 316 static ssize_t 317 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to) 318 { 319 cred_t *cr = CRED(); 320 fstrans_cookie_t cookie; 321 struct file *filp = kiocb->ki_filp; 322 ssize_t count = iov_iter_count(to); 323 zfs_uio_t uio; 324 325 zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0); 326 327 crhold(cr); 328 cookie = spl_fstrans_mark(); 329 330 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio, 331 filp->f_flags | zfs_io_flags(kiocb), cr); 332 333 spl_fstrans_unmark(cookie); 334 crfree(cr); 335 336 if (error < 0) 337 return (error); 338 339 ssize_t read = count - uio.uio_resid; 340 kiocb->ki_pos += read; 341 342 zpl_file_accessed(filp); 343 344 return (read); 345 } 346 347 static inline ssize_t 348 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from, 349 size_t *countp) 350 { 351 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB 352 ssize_t ret = generic_write_checks(kiocb, from); 353 if (ret <= 0) 354 return (ret); 355 356 *countp = ret; 357 #else 358 struct file *file = kiocb->ki_filp; 359 struct address_space *mapping = file->f_mapping; 360 struct inode *ip = mapping->host; 361 int isblk = S_ISBLK(ip->i_mode); 362 363 *countp = iov_iter_count(from); 364 ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk); 365 if (ret) 366 return (ret); 367 #endif 368 369 return (0); 370 } 371 372 static ssize_t 373 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from) 374 { 375 cred_t *cr = CRED(); 376 fstrans_cookie_t cookie; 377 struct file *filp = kiocb->ki_filp; 378 struct inode *ip = filp->f_mapping->host; 379 zfs_uio_t uio; 380 size_t count = 0; 381 ssize_t ret; 382 383 ret = zpl_generic_write_checks(kiocb, from, &count); 384 if (ret) 385 return (ret); 386 387 zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset); 388 389 crhold(cr); 390 cookie = spl_fstrans_mark(); 391 392 int error = -zfs_write(ITOZ(ip), &uio, 393 filp->f_flags | zfs_io_flags(kiocb), cr); 394 395 spl_fstrans_unmark(cookie); 396 crfree(cr); 397 398 if (error < 0) 399 return (error); 400 401 ssize_t wrote = count - uio.uio_resid; 402 kiocb->ki_pos += wrote; 403 404 return (wrote); 405 } 406 407 #else /* !HAVE_VFS_RW_ITERATE */ 408 409 static ssize_t 410 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov, 411 unsigned long nr_segs, loff_t pos) 412 { 413 cred_t *cr = CRED(); 414 fstrans_cookie_t cookie; 415 struct file *filp = kiocb->ki_filp; 416 size_t count; 417 ssize_t ret; 418 419 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 420 if (ret) 421 return (ret); 422 423 zfs_uio_t uio; 424 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE, 425 count, 0); 426 427 crhold(cr); 428 cookie = spl_fstrans_mark(); 429 430 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio, 431 filp->f_flags | zfs_io_flags(kiocb), cr); 432 433 spl_fstrans_unmark(cookie); 434 crfree(cr); 435 436 if (error < 0) 437 return (error); 438 439 ssize_t read = count - uio.uio_resid; 440 kiocb->ki_pos += read; 441 442 zpl_file_accessed(filp); 443 444 return (read); 445 } 446 447 static ssize_t 448 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov, 449 unsigned long nr_segs, loff_t pos) 450 { 451 cred_t *cr = CRED(); 452 fstrans_cookie_t cookie; 453 struct file *filp = kiocb->ki_filp; 454 struct inode *ip = filp->f_mapping->host; 455 size_t count; 456 ssize_t ret; 457 458 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ); 459 if (ret) 460 return (ret); 461 462 ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode)); 463 if (ret) 464 return (ret); 465 466 kiocb->ki_pos = pos; 467 468 zfs_uio_t uio; 469 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE, 470 count, 0); 471 472 crhold(cr); 473 cookie = spl_fstrans_mark(); 474 475 int error = -zfs_write(ITOZ(ip), &uio, 476 filp->f_flags | zfs_io_flags(kiocb), cr); 477 478 spl_fstrans_unmark(cookie); 479 crfree(cr); 480 481 if (error < 0) 482 return (error); 483 484 ssize_t wrote = count - uio.uio_resid; 485 kiocb->ki_pos += wrote; 486 487 return (wrote); 488 } 489 #endif /* HAVE_VFS_RW_ITERATE */ 490 491 #if defined(HAVE_VFS_RW_ITERATE) 492 static ssize_t 493 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter) 494 { 495 if (rw == WRITE) 496 return (zpl_iter_write(kiocb, iter)); 497 else 498 return (zpl_iter_read(kiocb, iter)); 499 } 500 #if defined(HAVE_VFS_DIRECT_IO_ITER) 501 static ssize_t 502 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter) 503 { 504 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter)); 505 } 506 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET) 507 static ssize_t 508 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 509 { 510 ASSERT3S(pos, ==, kiocb->ki_pos); 511 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter)); 512 } 513 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET) 514 static ssize_t 515 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 516 { 517 ASSERT3S(pos, ==, kiocb->ki_pos); 518 return (zpl_direct_IO_impl(rw, kiocb, iter)); 519 } 520 #else 521 #error "Unknown direct IO interface" 522 #endif 523 524 #else /* HAVE_VFS_RW_ITERATE */ 525 526 #if defined(HAVE_VFS_DIRECT_IO_IOVEC) 527 static ssize_t 528 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov, 529 loff_t pos, unsigned long nr_segs) 530 { 531 if (rw == WRITE) 532 return (zpl_aio_write(kiocb, iov, nr_segs, pos)); 533 else 534 return (zpl_aio_read(kiocb, iov, nr_segs, pos)); 535 } 536 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET) 537 static ssize_t 538 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 539 { 540 const struct iovec *iovp = iov_iter_iovec(iter); 541 unsigned long nr_segs = iter->nr_segs; 542 543 ASSERT3S(pos, ==, kiocb->ki_pos); 544 if (rw == WRITE) 545 return (zpl_aio_write(kiocb, iovp, nr_segs, pos)); 546 else 547 return (zpl_aio_read(kiocb, iovp, nr_segs, pos)); 548 } 549 #else 550 #error "Unknown direct IO interface" 551 #endif 552 553 #endif /* HAVE_VFS_RW_ITERATE */ 554 555 static loff_t 556 zpl_llseek(struct file *filp, loff_t offset, int whence) 557 { 558 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 559 fstrans_cookie_t cookie; 560 561 if (whence == SEEK_DATA || whence == SEEK_HOLE) { 562 struct inode *ip = filp->f_mapping->host; 563 loff_t maxbytes = ip->i_sb->s_maxbytes; 564 loff_t error; 565 566 spl_inode_lock_shared(ip); 567 cookie = spl_fstrans_mark(); 568 error = -zfs_holey(ITOZ(ip), whence, &offset); 569 spl_fstrans_unmark(cookie); 570 if (error == 0) 571 error = lseek_execute(filp, ip, offset, maxbytes); 572 spl_inode_unlock_shared(ip); 573 574 return (error); 575 } 576 #endif /* SEEK_HOLE && SEEK_DATA */ 577 578 return (generic_file_llseek(filp, offset, whence)); 579 } 580 581 /* 582 * It's worth taking a moment to describe how mmap is implemented 583 * for zfs because it differs considerably from other Linux filesystems. 584 * However, this issue is handled the same way under OpenSolaris. 585 * 586 * The issue is that by design zfs bypasses the Linux page cache and 587 * leaves all caching up to the ARC. This has been shown to work 588 * well for the common read(2)/write(2) case. However, mmap(2) 589 * is problem because it relies on being tightly integrated with the 590 * page cache. To handle this we cache mmap'ed files twice, once in 591 * the ARC and a second time in the page cache. The code is careful 592 * to keep both copies synchronized. 593 * 594 * When a file with an mmap'ed region is written to using write(2) 595 * both the data in the ARC and existing pages in the page cache 596 * are updated. For a read(2) data will be read first from the page 597 * cache then the ARC if needed. Neither a write(2) or read(2) will 598 * will ever result in new pages being added to the page cache. 599 * 600 * New pages are added to the page cache only via .readpage() which 601 * is called when the vfs needs to read a page off disk to back the 602 * virtual memory region. These pages may be modified without 603 * notifying the ARC and will be written out periodically via 604 * .writepage(). This will occur due to either a sync or the usual 605 * page aging behavior. Note because a read(2) of a mmap'ed file 606 * will always check the page cache first even when the ARC is out 607 * of date correct data will still be returned. 608 * 609 * While this implementation ensures correct behavior it does have 610 * have some drawbacks. The most obvious of which is that it 611 * increases the required memory footprint when access mmap'ed 612 * files. It also adds additional complexity to the code keeping 613 * both caches synchronized. 614 * 615 * Longer term it may be possible to cleanly resolve this wart by 616 * mapping page cache pages directly on to the ARC buffers. The 617 * Linux address space operations are flexible enough to allow 618 * selection of which pages back a particular index. The trick 619 * would be working out the details of which subsystem is in 620 * charge, the ARC, the page cache, or both. It may also prove 621 * helpful to move the ARC buffers to a scatter-gather lists 622 * rather than a vmalloc'ed region. 623 */ 624 static int 625 zpl_mmap(struct file *filp, struct vm_area_struct *vma) 626 { 627 struct inode *ip = filp->f_mapping->host; 628 int error; 629 fstrans_cookie_t cookie; 630 631 cookie = spl_fstrans_mark(); 632 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start, 633 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags); 634 spl_fstrans_unmark(cookie); 635 if (error) 636 return (error); 637 638 error = generic_file_mmap(filp, vma); 639 if (error) 640 return (error); 641 642 #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE) 643 znode_t *zp = ITOZ(ip); 644 mutex_enter(&zp->z_lock); 645 zp->z_is_mapped = B_TRUE; 646 mutex_exit(&zp->z_lock); 647 #endif 648 649 return (error); 650 } 651 652 /* 653 * Populate a page with data for the Linux page cache. This function is 654 * only used to support mmap(2). There will be an identical copy of the 655 * data in the ARC which is kept up to date via .write() and .writepage(). 656 */ 657 static inline int 658 zpl_readpage_common(struct page *pp) 659 { 660 struct inode *ip; 661 struct page *pl[1]; 662 int error = 0; 663 fstrans_cookie_t cookie; 664 665 ASSERT(PageLocked(pp)); 666 ip = pp->mapping->host; 667 pl[0] = pp; 668 669 cookie = spl_fstrans_mark(); 670 error = -zfs_getpage(ip, pl, 1); 671 spl_fstrans_unmark(cookie); 672 673 if (error) { 674 SetPageError(pp); 675 ClearPageUptodate(pp); 676 } else { 677 ClearPageError(pp); 678 SetPageUptodate(pp); 679 flush_dcache_page(pp); 680 } 681 682 unlock_page(pp); 683 return (error); 684 } 685 686 #ifdef HAVE_VFS_READ_FOLIO 687 static int 688 zpl_read_folio(struct file *filp, struct folio *folio) 689 { 690 return (zpl_readpage_common(&folio->page)); 691 } 692 #else 693 static int 694 zpl_readpage(struct file *filp, struct page *pp) 695 { 696 return (zpl_readpage_common(pp)); 697 } 698 #endif 699 700 static int 701 zpl_readpage_filler(void *data, struct page *pp) 702 { 703 return (zpl_readpage_common(pp)); 704 } 705 706 /* 707 * Populate a set of pages with data for the Linux page cache. This 708 * function will only be called for read ahead and never for demand 709 * paging. For simplicity, the code relies on read_cache_pages() to 710 * correctly lock each page for IO and call zpl_readpage(). 711 */ 712 #ifdef HAVE_VFS_READPAGES 713 static int 714 zpl_readpages(struct file *filp, struct address_space *mapping, 715 struct list_head *pages, unsigned nr_pages) 716 { 717 return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL)); 718 } 719 #else 720 static void 721 zpl_readahead(struct readahead_control *ractl) 722 { 723 struct page *page; 724 725 while ((page = readahead_page(ractl)) != NULL) { 726 int ret; 727 728 ret = zpl_readpage_filler(NULL, page); 729 put_page(page); 730 if (ret) 731 break; 732 } 733 } 734 #endif 735 736 static int 737 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data) 738 { 739 boolean_t *for_sync = data; 740 fstrans_cookie_t cookie; 741 742 ASSERT(PageLocked(pp)); 743 ASSERT(!PageWriteback(pp)); 744 745 cookie = spl_fstrans_mark(); 746 (void) zfs_putpage(pp->mapping->host, pp, wbc, *for_sync); 747 spl_fstrans_unmark(cookie); 748 749 return (0); 750 } 751 752 static int 753 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc) 754 { 755 znode_t *zp = ITOZ(mapping->host); 756 zfsvfs_t *zfsvfs = ITOZSB(mapping->host); 757 enum writeback_sync_modes sync_mode; 758 int result; 759 760 if ((result = zpl_enter(zfsvfs, FTAG)) != 0) 761 return (result); 762 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 763 wbc->sync_mode = WB_SYNC_ALL; 764 zpl_exit(zfsvfs, FTAG); 765 sync_mode = wbc->sync_mode; 766 767 /* 768 * We don't want to run write_cache_pages() in SYNC mode here, because 769 * that would make putpage() wait for a single page to be committed to 770 * disk every single time, resulting in atrocious performance. Instead 771 * we run it once in non-SYNC mode so that the ZIL gets all the data, 772 * and then we commit it all in one go. 773 */ 774 boolean_t for_sync = (sync_mode == WB_SYNC_ALL); 775 wbc->sync_mode = WB_SYNC_NONE; 776 result = write_cache_pages(mapping, wbc, zpl_putpage, &for_sync); 777 if (sync_mode != wbc->sync_mode) { 778 if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 779 return (result); 780 if (zfsvfs->z_log != NULL) 781 zil_commit(zfsvfs->z_log, zp->z_id); 782 zpl_exit(zfsvfs, FTAG); 783 784 /* 785 * We need to call write_cache_pages() again (we can't just 786 * return after the commit) because the previous call in 787 * non-SYNC mode does not guarantee that we got all the dirty 788 * pages (see the implementation of write_cache_pages() for 789 * details). That being said, this is a no-op in most cases. 790 */ 791 wbc->sync_mode = sync_mode; 792 result = write_cache_pages(mapping, wbc, zpl_putpage, 793 &for_sync); 794 } 795 return (result); 796 } 797 798 /* 799 * Write out dirty pages to the ARC, this function is only required to 800 * support mmap(2). Mapped pages may be dirtied by memory operations 801 * which never call .write(). These dirty pages are kept in sync with 802 * the ARC buffers via this hook. 803 */ 804 static int 805 zpl_writepage(struct page *pp, struct writeback_control *wbc) 806 { 807 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS) 808 wbc->sync_mode = WB_SYNC_ALL; 809 810 boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL); 811 812 return (zpl_putpage(pp, wbc, &for_sync)); 813 } 814 815 /* 816 * The flag combination which matches the behavior of zfs_space() is 817 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE 818 * flag was introduced in the 2.6.38 kernel. 819 * 820 * The original mode=0 (allocate space) behavior can be reasonably emulated 821 * by checking if enough space exists and creating a sparse file, as real 822 * persistent space reservation is not possible due to COW, snapshots, etc. 823 */ 824 static long 825 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len) 826 { 827 cred_t *cr = CRED(); 828 loff_t olen; 829 fstrans_cookie_t cookie; 830 int error = 0; 831 832 int test_mode = FALLOC_FL_PUNCH_HOLE; 833 #ifdef HAVE_FALLOC_FL_ZERO_RANGE 834 test_mode |= FALLOC_FL_ZERO_RANGE; 835 #endif 836 837 if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0) 838 return (-EOPNOTSUPP); 839 840 if (offset < 0 || len <= 0) 841 return (-EINVAL); 842 843 spl_inode_lock(ip); 844 olen = i_size_read(ip); 845 846 crhold(cr); 847 cookie = spl_fstrans_mark(); 848 if (mode & (test_mode)) { 849 flock64_t bf; 850 851 if (mode & FALLOC_FL_KEEP_SIZE) { 852 if (offset > olen) 853 goto out_unmark; 854 855 if (offset + len > olen) 856 len = olen - offset; 857 } 858 bf.l_type = F_WRLCK; 859 bf.l_whence = SEEK_SET; 860 bf.l_start = offset; 861 bf.l_len = len; 862 bf.l_pid = 0; 863 864 error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr); 865 } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) { 866 unsigned int percent = zfs_fallocate_reserve_percent; 867 struct kstatfs statfs; 868 869 /* Legacy mode, disable fallocate compatibility. */ 870 if (percent == 0) { 871 error = -EOPNOTSUPP; 872 goto out_unmark; 873 } 874 875 /* 876 * Use zfs_statvfs() instead of dmu_objset_space() since it 877 * also checks project quota limits, which are relevant here. 878 */ 879 error = zfs_statvfs(ip, &statfs); 880 if (error) 881 goto out_unmark; 882 883 /* 884 * Shrink available space a bit to account for overhead/races. 885 * We know the product previously fit into availbytes from 886 * dmu_objset_space(), so the smaller product will also fit. 887 */ 888 if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) { 889 error = -ENOSPC; 890 goto out_unmark; 891 } 892 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen) 893 error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE); 894 } 895 out_unmark: 896 spl_fstrans_unmark(cookie); 897 spl_inode_unlock(ip); 898 899 crfree(cr); 900 901 return (error); 902 } 903 904 static long 905 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len) 906 { 907 return zpl_fallocate_common(file_inode(filp), 908 mode, offset, len); 909 } 910 911 static int 912 zpl_ioctl_getversion(struct file *filp, void __user *arg) 913 { 914 uint32_t generation = file_inode(filp)->i_generation; 915 916 return (copy_to_user(arg, &generation, sizeof (generation))); 917 } 918 919 #ifdef HAVE_FILE_FADVISE 920 static int 921 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice) 922 { 923 struct inode *ip = file_inode(filp); 924 znode_t *zp = ITOZ(ip); 925 zfsvfs_t *zfsvfs = ITOZSB(ip); 926 objset_t *os = zfsvfs->z_os; 927 int error = 0; 928 929 if (S_ISFIFO(ip->i_mode)) 930 return (-ESPIPE); 931 932 if (offset < 0 || len < 0) 933 return (-EINVAL); 934 935 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 936 return (error); 937 938 switch (advice) { 939 case POSIX_FADV_SEQUENTIAL: 940 case POSIX_FADV_WILLNEED: 941 #ifdef HAVE_GENERIC_FADVISE 942 if (zn_has_cached_data(zp, offset, offset + len - 1)) 943 error = generic_fadvise(filp, offset, len, advice); 944 #endif 945 /* 946 * Pass on the caller's size directly, but note that 947 * dmu_prefetch_max will effectively cap it. If there 948 * really is a larger sequential access pattern, perhaps 949 * dmu_zfetch will detect it. 950 */ 951 if (len == 0) 952 len = i_size_read(ip) - offset; 953 954 dmu_prefetch(os, zp->z_id, 0, offset, len, 955 ZIO_PRIORITY_ASYNC_READ); 956 break; 957 case POSIX_FADV_NORMAL: 958 case POSIX_FADV_RANDOM: 959 case POSIX_FADV_DONTNEED: 960 case POSIX_FADV_NOREUSE: 961 /* ignored for now */ 962 break; 963 default: 964 error = -EINVAL; 965 break; 966 } 967 968 zfs_exit(zfsvfs, FTAG); 969 970 return (error); 971 } 972 #endif /* HAVE_FILE_FADVISE */ 973 974 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL) 975 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL) 976 977 static uint32_t 978 __zpl_ioctl_getflags(struct inode *ip) 979 { 980 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 981 uint32_t ioctl_flags = 0; 982 983 if (zfs_flags & ZFS_IMMUTABLE) 984 ioctl_flags |= FS_IMMUTABLE_FL; 985 986 if (zfs_flags & ZFS_APPENDONLY) 987 ioctl_flags |= FS_APPEND_FL; 988 989 if (zfs_flags & ZFS_NODUMP) 990 ioctl_flags |= FS_NODUMP_FL; 991 992 if (zfs_flags & ZFS_PROJINHERIT) 993 ioctl_flags |= ZFS_PROJINHERIT_FL; 994 995 return (ioctl_flags & ZFS_FL_USER_VISIBLE); 996 } 997 998 /* 999 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file 1000 * attributes common to both Linux and Solaris are mapped. 1001 */ 1002 static int 1003 zpl_ioctl_getflags(struct file *filp, void __user *arg) 1004 { 1005 uint32_t flags; 1006 int err; 1007 1008 flags = __zpl_ioctl_getflags(file_inode(filp)); 1009 err = copy_to_user(arg, &flags, sizeof (flags)); 1010 1011 return (err); 1012 } 1013 1014 /* 1015 * fchange() is a helper macro to detect if we have been asked to change a 1016 * flag. This is ugly, but the requirement that we do this is a consequence of 1017 * how the Linux file attribute interface was designed. Another consequence is 1018 * that concurrent modification of files suffers from a TOCTOU race. Neither 1019 * are things we can fix without modifying the kernel-userland interface, which 1020 * is outside of our jurisdiction. 1021 */ 1022 1023 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1))) 1024 1025 static int 1026 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva) 1027 { 1028 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 1029 xoptattr_t *xoap; 1030 1031 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL | 1032 ZFS_PROJINHERIT_FL)) 1033 return (-EOPNOTSUPP); 1034 1035 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE) 1036 return (-EACCES); 1037 1038 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) || 1039 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) && 1040 !capable(CAP_LINUX_IMMUTABLE)) 1041 return (-EPERM); 1042 1043 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip)) 1044 return (-EACCES); 1045 1046 xva_init(xva); 1047 xoap = xva_getxoptattr(xva); 1048 1049 #define FLAG_CHANGE(iflag, zflag, xflag, xfield) do { \ 1050 if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) || \ 1051 ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) { \ 1052 XVA_SET_REQ(xva, (xflag)); \ 1053 (xfield) = ((ioctl_flags & (iflag)) != 0); \ 1054 } \ 1055 } while (0) 1056 1057 FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE, 1058 xoap->xoa_immutable); 1059 FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY, 1060 xoap->xoa_appendonly); 1061 FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP, 1062 xoap->xoa_nodump); 1063 FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT, 1064 xoap->xoa_projinherit); 1065 1066 #undef FLAG_CHANGE 1067 1068 return (0); 1069 } 1070 1071 static int 1072 zpl_ioctl_setflags(struct file *filp, void __user *arg) 1073 { 1074 struct inode *ip = file_inode(filp); 1075 uint32_t flags; 1076 cred_t *cr = CRED(); 1077 xvattr_t xva; 1078 int err; 1079 fstrans_cookie_t cookie; 1080 1081 if (copy_from_user(&flags, arg, sizeof (flags))) 1082 return (-EFAULT); 1083 1084 err = __zpl_ioctl_setflags(ip, flags, &xva); 1085 if (err) 1086 return (err); 1087 1088 crhold(cr); 1089 cookie = spl_fstrans_mark(); 1090 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, kcred->user_ns); 1091 spl_fstrans_unmark(cookie); 1092 crfree(cr); 1093 1094 return (err); 1095 } 1096 1097 static int 1098 zpl_ioctl_getxattr(struct file *filp, void __user *arg) 1099 { 1100 zfsxattr_t fsx = { 0 }; 1101 struct inode *ip = file_inode(filp); 1102 int err; 1103 1104 fsx.fsx_xflags = __zpl_ioctl_getflags(ip); 1105 fsx.fsx_projid = ITOZ(ip)->z_projid; 1106 err = copy_to_user(arg, &fsx, sizeof (fsx)); 1107 1108 return (err); 1109 } 1110 1111 static int 1112 zpl_ioctl_setxattr(struct file *filp, void __user *arg) 1113 { 1114 struct inode *ip = file_inode(filp); 1115 zfsxattr_t fsx; 1116 cred_t *cr = CRED(); 1117 xvattr_t xva; 1118 xoptattr_t *xoap; 1119 int err; 1120 fstrans_cookie_t cookie; 1121 1122 if (copy_from_user(&fsx, arg, sizeof (fsx))) 1123 return (-EFAULT); 1124 1125 if (!zpl_is_valid_projid(fsx.fsx_projid)) 1126 return (-EINVAL); 1127 1128 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva); 1129 if (err) 1130 return (err); 1131 1132 xoap = xva_getxoptattr(&xva); 1133 XVA_SET_REQ(&xva, XAT_PROJID); 1134 xoap->xoa_projid = fsx.fsx_projid; 1135 1136 crhold(cr); 1137 cookie = spl_fstrans_mark(); 1138 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, kcred->user_ns); 1139 spl_fstrans_unmark(cookie); 1140 crfree(cr); 1141 1142 return (err); 1143 } 1144 1145 /* 1146 * Expose Additional File Level Attributes of ZFS. 1147 */ 1148 static int 1149 zpl_ioctl_getdosflags(struct file *filp, void __user *arg) 1150 { 1151 struct inode *ip = file_inode(filp); 1152 uint64_t dosflags = ITOZ(ip)->z_pflags; 1153 dosflags &= ZFS_DOS_FL_USER_VISIBLE; 1154 int err = copy_to_user(arg, &dosflags, sizeof (dosflags)); 1155 1156 return (err); 1157 } 1158 1159 static int 1160 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva) 1161 { 1162 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 1163 xoptattr_t *xoap; 1164 1165 if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE)) 1166 return (-EOPNOTSUPP); 1167 1168 if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) || 1169 fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) && 1170 !capable(CAP_LINUX_IMMUTABLE)) 1171 return (-EPERM); 1172 1173 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip)) 1174 return (-EACCES); 1175 1176 xva_init(xva); 1177 xoap = xva_getxoptattr(xva); 1178 1179 #define FLAG_CHANGE(iflag, xflag, xfield) do { \ 1180 if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) || \ 1181 ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) { \ 1182 XVA_SET_REQ(xva, (xflag)); \ 1183 (xfield) = ((ioctl_flags & (iflag)) != 0); \ 1184 } \ 1185 } while (0) 1186 1187 FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable); 1188 FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly); 1189 FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump); 1190 FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly); 1191 FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden); 1192 FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system); 1193 FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive); 1194 FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink); 1195 FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse); 1196 FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline); 1197 FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse); 1198 1199 #undef FLAG_CHANGE 1200 1201 return (0); 1202 } 1203 1204 /* 1205 * Set Additional File Level Attributes of ZFS. 1206 */ 1207 static int 1208 zpl_ioctl_setdosflags(struct file *filp, void __user *arg) 1209 { 1210 struct inode *ip = file_inode(filp); 1211 uint64_t dosflags; 1212 cred_t *cr = CRED(); 1213 xvattr_t xva; 1214 int err; 1215 fstrans_cookie_t cookie; 1216 1217 if (copy_from_user(&dosflags, arg, sizeof (dosflags))) 1218 return (-EFAULT); 1219 1220 err = __zpl_ioctl_setdosflags(ip, dosflags, &xva); 1221 if (err) 1222 return (err); 1223 1224 crhold(cr); 1225 cookie = spl_fstrans_mark(); 1226 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, kcred->user_ns); 1227 spl_fstrans_unmark(cookie); 1228 crfree(cr); 1229 1230 return (err); 1231 } 1232 1233 static long 1234 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 1235 { 1236 switch (cmd) { 1237 case FS_IOC_GETVERSION: 1238 return (zpl_ioctl_getversion(filp, (void *)arg)); 1239 case FS_IOC_GETFLAGS: 1240 return (zpl_ioctl_getflags(filp, (void *)arg)); 1241 case FS_IOC_SETFLAGS: 1242 return (zpl_ioctl_setflags(filp, (void *)arg)); 1243 case ZFS_IOC_FSGETXATTR: 1244 return (zpl_ioctl_getxattr(filp, (void *)arg)); 1245 case ZFS_IOC_FSSETXATTR: 1246 return (zpl_ioctl_setxattr(filp, (void *)arg)); 1247 case ZFS_IOC_GETDOSFLAGS: 1248 return (zpl_ioctl_getdosflags(filp, (void *)arg)); 1249 case ZFS_IOC_SETDOSFLAGS: 1250 return (zpl_ioctl_setdosflags(filp, (void *)arg)); 1251 default: 1252 return (-ENOTTY); 1253 } 1254 } 1255 1256 #ifdef CONFIG_COMPAT 1257 static long 1258 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 1259 { 1260 switch (cmd) { 1261 case FS_IOC32_GETVERSION: 1262 cmd = FS_IOC_GETVERSION; 1263 break; 1264 case FS_IOC32_GETFLAGS: 1265 cmd = FS_IOC_GETFLAGS; 1266 break; 1267 case FS_IOC32_SETFLAGS: 1268 cmd = FS_IOC_SETFLAGS; 1269 break; 1270 default: 1271 return (-ENOTTY); 1272 } 1273 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg))); 1274 } 1275 #endif /* CONFIG_COMPAT */ 1276 1277 1278 const struct address_space_operations zpl_address_space_operations = { 1279 #ifdef HAVE_VFS_READPAGES 1280 .readpages = zpl_readpages, 1281 #else 1282 .readahead = zpl_readahead, 1283 #endif 1284 #ifdef HAVE_VFS_READ_FOLIO 1285 .read_folio = zpl_read_folio, 1286 #else 1287 .readpage = zpl_readpage, 1288 #endif 1289 .writepage = zpl_writepage, 1290 .writepages = zpl_writepages, 1291 .direct_IO = zpl_direct_IO, 1292 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS 1293 .set_page_dirty = __set_page_dirty_nobuffers, 1294 #endif 1295 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO 1296 .dirty_folio = filemap_dirty_folio, 1297 #endif 1298 }; 1299 1300 const struct file_operations zpl_file_operations = { 1301 .open = zpl_open, 1302 .release = zpl_release, 1303 .llseek = zpl_llseek, 1304 #ifdef HAVE_VFS_RW_ITERATE 1305 #ifdef HAVE_NEW_SYNC_READ 1306 .read = new_sync_read, 1307 .write = new_sync_write, 1308 #endif 1309 .read_iter = zpl_iter_read, 1310 .write_iter = zpl_iter_write, 1311 #ifdef HAVE_VFS_IOV_ITER 1312 .splice_read = generic_file_splice_read, 1313 .splice_write = iter_file_splice_write, 1314 #endif 1315 #else 1316 .read = do_sync_read, 1317 .write = do_sync_write, 1318 .aio_read = zpl_aio_read, 1319 .aio_write = zpl_aio_write, 1320 #endif 1321 .mmap = zpl_mmap, 1322 .fsync = zpl_fsync, 1323 #ifdef HAVE_FILE_AIO_FSYNC 1324 .aio_fsync = zpl_aio_fsync, 1325 #endif 1326 .fallocate = zpl_fallocate, 1327 #ifdef HAVE_FILE_FADVISE 1328 .fadvise = zpl_fadvise, 1329 #endif 1330 .unlocked_ioctl = zpl_ioctl, 1331 #ifdef CONFIG_COMPAT 1332 .compat_ioctl = zpl_compat_ioctl, 1333 #endif 1334 }; 1335 1336 const struct file_operations zpl_dir_file_operations = { 1337 .llseek = generic_file_llseek, 1338 .read = generic_read_dir, 1339 #if defined(HAVE_VFS_ITERATE_SHARED) 1340 .iterate_shared = zpl_iterate, 1341 #elif defined(HAVE_VFS_ITERATE) 1342 .iterate = zpl_iterate, 1343 #else 1344 .readdir = zpl_readdir, 1345 #endif 1346 .fsync = zpl_fsync, 1347 .unlocked_ioctl = zpl_ioctl, 1348 #ifdef CONFIG_COMPAT 1349 .compat_ioctl = zpl_compat_ioctl, 1350 #endif 1351 }; 1352 1353 /* CSTYLED */ 1354 module_param(zfs_fallocate_reserve_percent, uint, 0644); 1355 MODULE_PARM_DESC(zfs_fallocate_reserve_percent, 1356 "Percentage of length to use for the available capacity check"); 1357