1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC. 23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 24 */ 25 26 27 #ifdef CONFIG_COMPAT 28 #include <linux/compat.h> 29 #endif 30 #include <sys/file.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/zfs_znode.h> 33 #include <sys/zfs_vfsops.h> 34 #include <sys/zfs_vnops.h> 35 #include <sys/zfs_project.h> 36 37 /* 38 * When using fallocate(2) to preallocate space, inflate the requested 39 * capacity check by 10% to account for the required metadata blocks. 40 */ 41 unsigned int zfs_fallocate_reserve_percent = 110; 42 43 static int 44 zpl_open(struct inode *ip, struct file *filp) 45 { 46 cred_t *cr = CRED(); 47 int error; 48 fstrans_cookie_t cookie; 49 50 error = generic_file_open(ip, filp); 51 if (error) 52 return (error); 53 54 crhold(cr); 55 cookie = spl_fstrans_mark(); 56 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr); 57 spl_fstrans_unmark(cookie); 58 crfree(cr); 59 ASSERT3S(error, <=, 0); 60 61 return (error); 62 } 63 64 static int 65 zpl_release(struct inode *ip, struct file *filp) 66 { 67 cred_t *cr = CRED(); 68 int error; 69 fstrans_cookie_t cookie; 70 71 cookie = spl_fstrans_mark(); 72 if (ITOZ(ip)->z_atime_dirty) 73 zfs_mark_inode_dirty(ip); 74 75 crhold(cr); 76 error = -zfs_close(ip, filp->f_flags, cr); 77 spl_fstrans_unmark(cookie); 78 crfree(cr); 79 ASSERT3S(error, <=, 0); 80 81 return (error); 82 } 83 84 static int 85 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx) 86 { 87 cred_t *cr = CRED(); 88 int error; 89 fstrans_cookie_t cookie; 90 91 crhold(cr); 92 cookie = spl_fstrans_mark(); 93 error = -zfs_readdir(file_inode(filp), ctx, cr); 94 spl_fstrans_unmark(cookie); 95 crfree(cr); 96 ASSERT3S(error, <=, 0); 97 98 return (error); 99 } 100 101 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED) 102 static int 103 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir) 104 { 105 zpl_dir_context_t ctx = 106 ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos); 107 int error; 108 109 error = zpl_iterate(filp, &ctx); 110 filp->f_pos = ctx.pos; 111 112 return (error); 113 } 114 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */ 115 116 #if defined(HAVE_FSYNC_WITHOUT_DENTRY) 117 /* 118 * Linux 2.6.35 - 3.0 API, 119 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed 120 * redundant. The dentry is still accessible via filp->f_path.dentry, 121 * and we are guaranteed that filp will never be NULL. 122 */ 123 static int 124 zpl_fsync(struct file *filp, int datasync) 125 { 126 struct inode *inode = filp->f_mapping->host; 127 cred_t *cr = CRED(); 128 int error; 129 fstrans_cookie_t cookie; 130 131 crhold(cr); 132 cookie = spl_fstrans_mark(); 133 error = -zfs_fsync(ITOZ(inode), datasync, cr); 134 spl_fstrans_unmark(cookie); 135 crfree(cr); 136 ASSERT3S(error, <=, 0); 137 138 return (error); 139 } 140 141 #ifdef HAVE_FILE_AIO_FSYNC 142 static int 143 zpl_aio_fsync(struct kiocb *kiocb, int datasync) 144 { 145 return (zpl_fsync(kiocb->ki_filp, datasync)); 146 } 147 #endif 148 149 #elif defined(HAVE_FSYNC_RANGE) 150 /* 151 * Linux 3.1 - 3.x API, 152 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has 153 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex 154 * lock is no longer held by the caller, for zfs we don't require the lock 155 * to be held so we don't acquire it. 156 */ 157 static int 158 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 159 { 160 struct inode *inode = filp->f_mapping->host; 161 cred_t *cr = CRED(); 162 int error; 163 fstrans_cookie_t cookie; 164 165 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 166 if (error) 167 return (error); 168 169 crhold(cr); 170 cookie = spl_fstrans_mark(); 171 error = -zfs_fsync(ITOZ(inode), datasync, cr); 172 spl_fstrans_unmark(cookie); 173 crfree(cr); 174 ASSERT3S(error, <=, 0); 175 176 return (error); 177 } 178 179 #ifdef HAVE_FILE_AIO_FSYNC 180 static int 181 zpl_aio_fsync(struct kiocb *kiocb, int datasync) 182 { 183 return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync)); 184 } 185 #endif 186 187 #else 188 #error "Unsupported fops->fsync() implementation" 189 #endif 190 191 static inline int 192 zfs_io_flags(struct kiocb *kiocb) 193 { 194 int flags = 0; 195 196 #if defined(IOCB_DSYNC) 197 if (kiocb->ki_flags & IOCB_DSYNC) 198 flags |= O_DSYNC; 199 #endif 200 #if defined(IOCB_SYNC) 201 if (kiocb->ki_flags & IOCB_SYNC) 202 flags |= O_SYNC; 203 #endif 204 #if defined(IOCB_APPEND) 205 if (kiocb->ki_flags & IOCB_APPEND) 206 flags |= O_APPEND; 207 #endif 208 #if defined(IOCB_DIRECT) 209 if (kiocb->ki_flags & IOCB_DIRECT) 210 flags |= O_DIRECT; 211 #endif 212 return (flags); 213 } 214 215 /* 216 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update() 217 * is true. This is needed since datasets with inherited "relatime" property 218 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after 219 * `zfs set relatime=...`), which is what relatime test in VFS by 220 * relatime_need_update() is based on. 221 */ 222 static inline void 223 zpl_file_accessed(struct file *filp) 224 { 225 struct inode *ip = filp->f_mapping->host; 226 227 if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) { 228 if (zfs_relatime_need_update(ip)) 229 file_accessed(filp); 230 } else { 231 file_accessed(filp); 232 } 233 } 234 235 #if defined(HAVE_VFS_RW_ITERATE) 236 237 /* 238 * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports 239 * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to 240 * manipulate the iov_iter are available. In which case the full iov_iter 241 * can be attached to the uio and correctly handled in the lower layers. 242 * Otherwise, for older kernels extract the iovec and pass it instead. 243 */ 244 static void 245 zpl_uio_init(uio_t *uio, struct kiocb *kiocb, struct iov_iter *to, 246 loff_t pos, ssize_t count, size_t skip) 247 { 248 #if defined(HAVE_VFS_IOV_ITER) 249 uio_iov_iter_init(uio, to, pos, count, skip); 250 #else 251 uio_iovec_init(uio, to->iov, to->nr_segs, pos, 252 to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE, 253 count, skip); 254 #endif 255 } 256 257 static ssize_t 258 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to) 259 { 260 cred_t *cr = CRED(); 261 fstrans_cookie_t cookie; 262 struct file *filp = kiocb->ki_filp; 263 ssize_t count = iov_iter_count(to); 264 uio_t uio; 265 266 zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0); 267 268 crhold(cr); 269 cookie = spl_fstrans_mark(); 270 271 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio, 272 filp->f_flags | zfs_io_flags(kiocb), cr); 273 274 spl_fstrans_unmark(cookie); 275 crfree(cr); 276 277 if (error < 0) 278 return (error); 279 280 ssize_t read = count - uio.uio_resid; 281 kiocb->ki_pos += read; 282 283 zpl_file_accessed(filp); 284 285 return (read); 286 } 287 288 static inline ssize_t 289 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from, 290 size_t *countp) 291 { 292 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB 293 ssize_t ret = generic_write_checks(kiocb, from); 294 if (ret <= 0) 295 return (ret); 296 297 *countp = ret; 298 #else 299 struct file *file = kiocb->ki_filp; 300 struct address_space *mapping = file->f_mapping; 301 struct inode *ip = mapping->host; 302 int isblk = S_ISBLK(ip->i_mode); 303 304 *countp = iov_iter_count(from); 305 ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk); 306 if (ret) 307 return (ret); 308 #endif 309 310 return (0); 311 } 312 313 static ssize_t 314 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from) 315 { 316 cred_t *cr = CRED(); 317 fstrans_cookie_t cookie; 318 struct file *filp = kiocb->ki_filp; 319 struct inode *ip = filp->f_mapping->host; 320 uio_t uio; 321 size_t count = 0; 322 ssize_t ret; 323 324 ret = zpl_generic_write_checks(kiocb, from, &count); 325 if (ret) 326 return (ret); 327 328 zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset); 329 330 crhold(cr); 331 cookie = spl_fstrans_mark(); 332 333 int error = -zfs_write(ITOZ(ip), &uio, 334 filp->f_flags | zfs_io_flags(kiocb), cr); 335 336 spl_fstrans_unmark(cookie); 337 crfree(cr); 338 339 if (error < 0) 340 return (error); 341 342 ssize_t wrote = count - uio.uio_resid; 343 kiocb->ki_pos += wrote; 344 345 if (wrote > 0) 346 iov_iter_advance(from, wrote); 347 348 return (wrote); 349 } 350 351 #else /* !HAVE_VFS_RW_ITERATE */ 352 353 static ssize_t 354 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov, 355 unsigned long nr_segs, loff_t pos) 356 { 357 cred_t *cr = CRED(); 358 fstrans_cookie_t cookie; 359 struct file *filp = kiocb->ki_filp; 360 size_t count; 361 ssize_t ret; 362 363 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 364 if (ret) 365 return (ret); 366 367 uio_t uio; 368 uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE, 369 count, 0); 370 371 crhold(cr); 372 cookie = spl_fstrans_mark(); 373 374 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio, 375 filp->f_flags | zfs_io_flags(kiocb), cr); 376 377 spl_fstrans_unmark(cookie); 378 crfree(cr); 379 380 if (error < 0) 381 return (error); 382 383 ssize_t read = count - uio.uio_resid; 384 kiocb->ki_pos += read; 385 386 zpl_file_accessed(filp); 387 388 return (read); 389 } 390 391 static ssize_t 392 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov, 393 unsigned long nr_segs, loff_t pos) 394 { 395 cred_t *cr = CRED(); 396 fstrans_cookie_t cookie; 397 struct file *filp = kiocb->ki_filp; 398 struct inode *ip = filp->f_mapping->host; 399 size_t count; 400 ssize_t ret; 401 402 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ); 403 if (ret) 404 return (ret); 405 406 ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode)); 407 if (ret) 408 return (ret); 409 410 uio_t uio; 411 uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE, 412 count, 0); 413 414 crhold(cr); 415 cookie = spl_fstrans_mark(); 416 417 int error = -zfs_write(ITOZ(ip), &uio, 418 filp->f_flags | zfs_io_flags(kiocb), cr); 419 420 spl_fstrans_unmark(cookie); 421 crfree(cr); 422 423 if (error < 0) 424 return (error); 425 426 ssize_t wrote = count - uio.uio_resid; 427 kiocb->ki_pos += wrote; 428 429 return (wrote); 430 } 431 #endif /* HAVE_VFS_RW_ITERATE */ 432 433 #if defined(HAVE_VFS_RW_ITERATE) 434 static ssize_t 435 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter) 436 { 437 if (rw == WRITE) 438 return (zpl_iter_write(kiocb, iter)); 439 else 440 return (zpl_iter_read(kiocb, iter)); 441 } 442 #if defined(HAVE_VFS_DIRECT_IO_ITER) 443 static ssize_t 444 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter) 445 { 446 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter)); 447 } 448 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET) 449 static ssize_t 450 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 451 { 452 ASSERT3S(pos, ==, kiocb->ki_pos); 453 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter)); 454 } 455 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET) 456 static ssize_t 457 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 458 { 459 ASSERT3S(pos, ==, kiocb->ki_pos); 460 return (zpl_direct_IO_impl(rw, kiocb, iter)); 461 } 462 #else 463 #error "Unknown direct IO interface" 464 #endif 465 466 #else /* HAVE_VFS_RW_ITERATE */ 467 468 #if defined(HAVE_VFS_DIRECT_IO_IOVEC) 469 static ssize_t 470 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov, 471 loff_t pos, unsigned long nr_segs) 472 { 473 if (rw == WRITE) 474 return (zpl_aio_write(kiocb, iov, nr_segs, pos)); 475 else 476 return (zpl_aio_read(kiocb, iov, nr_segs, pos)); 477 } 478 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET) 479 static ssize_t 480 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 481 { 482 const struct iovec *iovp = iov_iter_iovec(iter); 483 unsigned long nr_segs = iter->nr_segs; 484 485 ASSERT3S(pos, ==, kiocb->ki_pos); 486 if (rw == WRITE) 487 return (zpl_aio_write(kiocb, iovp, nr_segs, pos)); 488 else 489 return (zpl_aio_read(kiocb, iovp, nr_segs, pos)); 490 } 491 #else 492 #error "Unknown direct IO interface" 493 #endif 494 495 #endif /* HAVE_VFS_RW_ITERATE */ 496 497 static loff_t 498 zpl_llseek(struct file *filp, loff_t offset, int whence) 499 { 500 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 501 fstrans_cookie_t cookie; 502 503 if (whence == SEEK_DATA || whence == SEEK_HOLE) { 504 struct inode *ip = filp->f_mapping->host; 505 loff_t maxbytes = ip->i_sb->s_maxbytes; 506 loff_t error; 507 508 spl_inode_lock_shared(ip); 509 cookie = spl_fstrans_mark(); 510 error = -zfs_holey(ITOZ(ip), whence, &offset); 511 spl_fstrans_unmark(cookie); 512 if (error == 0) 513 error = lseek_execute(filp, ip, offset, maxbytes); 514 spl_inode_unlock_shared(ip); 515 516 return (error); 517 } 518 #endif /* SEEK_HOLE && SEEK_DATA */ 519 520 return (generic_file_llseek(filp, offset, whence)); 521 } 522 523 /* 524 * It's worth taking a moment to describe how mmap is implemented 525 * for zfs because it differs considerably from other Linux filesystems. 526 * However, this issue is handled the same way under OpenSolaris. 527 * 528 * The issue is that by design zfs bypasses the Linux page cache and 529 * leaves all caching up to the ARC. This has been shown to work 530 * well for the common read(2)/write(2) case. However, mmap(2) 531 * is problem because it relies on being tightly integrated with the 532 * page cache. To handle this we cache mmap'ed files twice, once in 533 * the ARC and a second time in the page cache. The code is careful 534 * to keep both copies synchronized. 535 * 536 * When a file with an mmap'ed region is written to using write(2) 537 * both the data in the ARC and existing pages in the page cache 538 * are updated. For a read(2) data will be read first from the page 539 * cache then the ARC if needed. Neither a write(2) or read(2) will 540 * will ever result in new pages being added to the page cache. 541 * 542 * New pages are added to the page cache only via .readpage() which 543 * is called when the vfs needs to read a page off disk to back the 544 * virtual memory region. These pages may be modified without 545 * notifying the ARC and will be written out periodically via 546 * .writepage(). This will occur due to either a sync or the usual 547 * page aging behavior. Note because a read(2) of a mmap'ed file 548 * will always check the page cache first even when the ARC is out 549 * of date correct data will still be returned. 550 * 551 * While this implementation ensures correct behavior it does have 552 * have some drawbacks. The most obvious of which is that it 553 * increases the required memory footprint when access mmap'ed 554 * files. It also adds additional complexity to the code keeping 555 * both caches synchronized. 556 * 557 * Longer term it may be possible to cleanly resolve this wart by 558 * mapping page cache pages directly on to the ARC buffers. The 559 * Linux address space operations are flexible enough to allow 560 * selection of which pages back a particular index. The trick 561 * would be working out the details of which subsystem is in 562 * charge, the ARC, the page cache, or both. It may also prove 563 * helpful to move the ARC buffers to a scatter-gather lists 564 * rather than a vmalloc'ed region. 565 */ 566 static int 567 zpl_mmap(struct file *filp, struct vm_area_struct *vma) 568 { 569 struct inode *ip = filp->f_mapping->host; 570 znode_t *zp = ITOZ(ip); 571 int error; 572 fstrans_cookie_t cookie; 573 574 cookie = spl_fstrans_mark(); 575 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start, 576 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags); 577 spl_fstrans_unmark(cookie); 578 if (error) 579 return (error); 580 581 error = generic_file_mmap(filp, vma); 582 if (error) 583 return (error); 584 585 mutex_enter(&zp->z_lock); 586 zp->z_is_mapped = B_TRUE; 587 mutex_exit(&zp->z_lock); 588 589 return (error); 590 } 591 592 /* 593 * Populate a page with data for the Linux page cache. This function is 594 * only used to support mmap(2). There will be an identical copy of the 595 * data in the ARC which is kept up to date via .write() and .writepage(). 596 */ 597 static int 598 zpl_readpage(struct file *filp, struct page *pp) 599 { 600 struct inode *ip; 601 struct page *pl[1]; 602 int error = 0; 603 fstrans_cookie_t cookie; 604 605 ASSERT(PageLocked(pp)); 606 ip = pp->mapping->host; 607 pl[0] = pp; 608 609 cookie = spl_fstrans_mark(); 610 error = -zfs_getpage(ip, pl, 1); 611 spl_fstrans_unmark(cookie); 612 613 if (error) { 614 SetPageError(pp); 615 ClearPageUptodate(pp); 616 } else { 617 ClearPageError(pp); 618 SetPageUptodate(pp); 619 flush_dcache_page(pp); 620 } 621 622 unlock_page(pp); 623 return (error); 624 } 625 626 /* 627 * Populate a set of pages with data for the Linux page cache. This 628 * function will only be called for read ahead and never for demand 629 * paging. For simplicity, the code relies on read_cache_pages() to 630 * correctly lock each page for IO and call zpl_readpage(). 631 */ 632 static int 633 zpl_readpages(struct file *filp, struct address_space *mapping, 634 struct list_head *pages, unsigned nr_pages) 635 { 636 return (read_cache_pages(mapping, pages, 637 (filler_t *)zpl_readpage, filp)); 638 } 639 640 static int 641 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data) 642 { 643 struct address_space *mapping = data; 644 fstrans_cookie_t cookie; 645 646 ASSERT(PageLocked(pp)); 647 ASSERT(!PageWriteback(pp)); 648 649 cookie = spl_fstrans_mark(); 650 (void) zfs_putpage(mapping->host, pp, wbc); 651 spl_fstrans_unmark(cookie); 652 653 return (0); 654 } 655 656 static int 657 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc) 658 { 659 znode_t *zp = ITOZ(mapping->host); 660 zfsvfs_t *zfsvfs = ITOZSB(mapping->host); 661 enum writeback_sync_modes sync_mode; 662 int result; 663 664 ZPL_ENTER(zfsvfs); 665 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 666 wbc->sync_mode = WB_SYNC_ALL; 667 ZPL_EXIT(zfsvfs); 668 sync_mode = wbc->sync_mode; 669 670 /* 671 * We don't want to run write_cache_pages() in SYNC mode here, because 672 * that would make putpage() wait for a single page to be committed to 673 * disk every single time, resulting in atrocious performance. Instead 674 * we run it once in non-SYNC mode so that the ZIL gets all the data, 675 * and then we commit it all in one go. 676 */ 677 wbc->sync_mode = WB_SYNC_NONE; 678 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping); 679 if (sync_mode != wbc->sync_mode) { 680 ZPL_ENTER(zfsvfs); 681 ZPL_VERIFY_ZP(zp); 682 if (zfsvfs->z_log != NULL) 683 zil_commit(zfsvfs->z_log, zp->z_id); 684 ZPL_EXIT(zfsvfs); 685 686 /* 687 * We need to call write_cache_pages() again (we can't just 688 * return after the commit) because the previous call in 689 * non-SYNC mode does not guarantee that we got all the dirty 690 * pages (see the implementation of write_cache_pages() for 691 * details). That being said, this is a no-op in most cases. 692 */ 693 wbc->sync_mode = sync_mode; 694 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping); 695 } 696 return (result); 697 } 698 699 /* 700 * Write out dirty pages to the ARC, this function is only required to 701 * support mmap(2). Mapped pages may be dirtied by memory operations 702 * which never call .write(). These dirty pages are kept in sync with 703 * the ARC buffers via this hook. 704 */ 705 static int 706 zpl_writepage(struct page *pp, struct writeback_control *wbc) 707 { 708 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS) 709 wbc->sync_mode = WB_SYNC_ALL; 710 711 return (zpl_putpage(pp, wbc, pp->mapping)); 712 } 713 714 /* 715 * The flag combination which matches the behavior of zfs_space() is 716 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE 717 * flag was introduced in the 2.6.38 kernel. 718 * 719 * The original mode=0 (allocate space) behavior can be reasonably emulated 720 * by checking if enough space exists and creating a sparse file, as real 721 * persistent space reservation is not possible due to COW, snapshots, etc. 722 */ 723 static long 724 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len) 725 { 726 cred_t *cr = CRED(); 727 loff_t olen; 728 fstrans_cookie_t cookie; 729 int error = 0; 730 731 if ((mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) != 0) 732 return (-EOPNOTSUPP); 733 734 if (offset < 0 || len <= 0) 735 return (-EINVAL); 736 737 spl_inode_lock(ip); 738 olen = i_size_read(ip); 739 740 crhold(cr); 741 cookie = spl_fstrans_mark(); 742 if (mode & FALLOC_FL_PUNCH_HOLE) { 743 flock64_t bf; 744 745 if (offset > olen) 746 goto out_unmark; 747 748 if (offset + len > olen) 749 len = olen - offset; 750 bf.l_type = F_WRLCK; 751 bf.l_whence = SEEK_SET; 752 bf.l_start = offset; 753 bf.l_len = len; 754 bf.l_pid = 0; 755 756 error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr); 757 } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) { 758 unsigned int percent = zfs_fallocate_reserve_percent; 759 struct kstatfs statfs; 760 761 /* Legacy mode, disable fallocate compatibility. */ 762 if (percent == 0) { 763 error = -EOPNOTSUPP; 764 goto out_unmark; 765 } 766 767 /* 768 * Use zfs_statvfs() instead of dmu_objset_space() since it 769 * also checks project quota limits, which are relevant here. 770 */ 771 error = zfs_statvfs(ip, &statfs); 772 if (error) 773 goto out_unmark; 774 775 /* 776 * Shrink available space a bit to account for overhead/races. 777 * We know the product previously fit into availbytes from 778 * dmu_objset_space(), so the smaller product will also fit. 779 */ 780 if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) { 781 error = -ENOSPC; 782 goto out_unmark; 783 } 784 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen) 785 error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE); 786 } 787 out_unmark: 788 spl_fstrans_unmark(cookie); 789 spl_inode_unlock(ip); 790 791 crfree(cr); 792 793 return (error); 794 } 795 796 static long 797 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len) 798 { 799 return zpl_fallocate_common(file_inode(filp), 800 mode, offset, len); 801 } 802 803 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL) 804 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL) 805 806 static uint32_t 807 __zpl_ioctl_getflags(struct inode *ip) 808 { 809 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 810 uint32_t ioctl_flags = 0; 811 812 if (zfs_flags & ZFS_IMMUTABLE) 813 ioctl_flags |= FS_IMMUTABLE_FL; 814 815 if (zfs_flags & ZFS_APPENDONLY) 816 ioctl_flags |= FS_APPEND_FL; 817 818 if (zfs_flags & ZFS_NODUMP) 819 ioctl_flags |= FS_NODUMP_FL; 820 821 if (zfs_flags & ZFS_PROJINHERIT) 822 ioctl_flags |= ZFS_PROJINHERIT_FL; 823 824 return (ioctl_flags & ZFS_FL_USER_VISIBLE); 825 } 826 827 /* 828 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file 829 * attributes common to both Linux and Solaris are mapped. 830 */ 831 static int 832 zpl_ioctl_getflags(struct file *filp, void __user *arg) 833 { 834 uint32_t flags; 835 int err; 836 837 flags = __zpl_ioctl_getflags(file_inode(filp)); 838 err = copy_to_user(arg, &flags, sizeof (flags)); 839 840 return (err); 841 } 842 843 /* 844 * fchange() is a helper macro to detect if we have been asked to change a 845 * flag. This is ugly, but the requirement that we do this is a consequence of 846 * how the Linux file attribute interface was designed. Another consequence is 847 * that concurrent modification of files suffers from a TOCTOU race. Neither 848 * are things we can fix without modifying the kernel-userland interface, which 849 * is outside of our jurisdiction. 850 */ 851 852 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1))) 853 854 static int 855 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva) 856 { 857 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 858 xoptattr_t *xoap; 859 860 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL | 861 ZFS_PROJINHERIT_FL)) 862 return (-EOPNOTSUPP); 863 864 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE) 865 return (-EACCES); 866 867 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) || 868 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) && 869 !capable(CAP_LINUX_IMMUTABLE)) 870 return (-EACCES); 871 872 if (!inode_owner_or_capable(ip)) 873 return (-EACCES); 874 875 xva_init(xva); 876 xoap = xva_getxoptattr(xva); 877 878 XVA_SET_REQ(xva, XAT_IMMUTABLE); 879 if (ioctl_flags & FS_IMMUTABLE_FL) 880 xoap->xoa_immutable = B_TRUE; 881 882 XVA_SET_REQ(xva, XAT_APPENDONLY); 883 if (ioctl_flags & FS_APPEND_FL) 884 xoap->xoa_appendonly = B_TRUE; 885 886 XVA_SET_REQ(xva, XAT_NODUMP); 887 if (ioctl_flags & FS_NODUMP_FL) 888 xoap->xoa_nodump = B_TRUE; 889 890 XVA_SET_REQ(xva, XAT_PROJINHERIT); 891 if (ioctl_flags & ZFS_PROJINHERIT_FL) 892 xoap->xoa_projinherit = B_TRUE; 893 894 return (0); 895 } 896 897 static int 898 zpl_ioctl_setflags(struct file *filp, void __user *arg) 899 { 900 struct inode *ip = file_inode(filp); 901 uint32_t flags; 902 cred_t *cr = CRED(); 903 xvattr_t xva; 904 int err; 905 fstrans_cookie_t cookie; 906 907 if (copy_from_user(&flags, arg, sizeof (flags))) 908 return (-EFAULT); 909 910 err = __zpl_ioctl_setflags(ip, flags, &xva); 911 if (err) 912 return (err); 913 914 crhold(cr); 915 cookie = spl_fstrans_mark(); 916 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr); 917 spl_fstrans_unmark(cookie); 918 crfree(cr); 919 920 return (err); 921 } 922 923 static int 924 zpl_ioctl_getxattr(struct file *filp, void __user *arg) 925 { 926 zfsxattr_t fsx = { 0 }; 927 struct inode *ip = file_inode(filp); 928 int err; 929 930 fsx.fsx_xflags = __zpl_ioctl_getflags(ip); 931 fsx.fsx_projid = ITOZ(ip)->z_projid; 932 err = copy_to_user(arg, &fsx, sizeof (fsx)); 933 934 return (err); 935 } 936 937 static int 938 zpl_ioctl_setxattr(struct file *filp, void __user *arg) 939 { 940 struct inode *ip = file_inode(filp); 941 zfsxattr_t fsx; 942 cred_t *cr = CRED(); 943 xvattr_t xva; 944 xoptattr_t *xoap; 945 int err; 946 fstrans_cookie_t cookie; 947 948 if (copy_from_user(&fsx, arg, sizeof (fsx))) 949 return (-EFAULT); 950 951 if (!zpl_is_valid_projid(fsx.fsx_projid)) 952 return (-EINVAL); 953 954 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva); 955 if (err) 956 return (err); 957 958 xoap = xva_getxoptattr(&xva); 959 XVA_SET_REQ(&xva, XAT_PROJID); 960 xoap->xoa_projid = fsx.fsx_projid; 961 962 crhold(cr); 963 cookie = spl_fstrans_mark(); 964 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr); 965 spl_fstrans_unmark(cookie); 966 crfree(cr); 967 968 return (err); 969 } 970 971 static long 972 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 973 { 974 switch (cmd) { 975 case FS_IOC_GETFLAGS: 976 return (zpl_ioctl_getflags(filp, (void *)arg)); 977 case FS_IOC_SETFLAGS: 978 return (zpl_ioctl_setflags(filp, (void *)arg)); 979 case ZFS_IOC_FSGETXATTR: 980 return (zpl_ioctl_getxattr(filp, (void *)arg)); 981 case ZFS_IOC_FSSETXATTR: 982 return (zpl_ioctl_setxattr(filp, (void *)arg)); 983 default: 984 return (-ENOTTY); 985 } 986 } 987 988 #ifdef CONFIG_COMPAT 989 static long 990 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 991 { 992 switch (cmd) { 993 case FS_IOC32_GETFLAGS: 994 cmd = FS_IOC_GETFLAGS; 995 break; 996 case FS_IOC32_SETFLAGS: 997 cmd = FS_IOC_SETFLAGS; 998 break; 999 default: 1000 return (-ENOTTY); 1001 } 1002 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg))); 1003 } 1004 #endif /* CONFIG_COMPAT */ 1005 1006 1007 const struct address_space_operations zpl_address_space_operations = { 1008 .readpages = zpl_readpages, 1009 .readpage = zpl_readpage, 1010 .writepage = zpl_writepage, 1011 .writepages = zpl_writepages, 1012 .direct_IO = zpl_direct_IO, 1013 }; 1014 1015 const struct file_operations zpl_file_operations = { 1016 .open = zpl_open, 1017 .release = zpl_release, 1018 .llseek = zpl_llseek, 1019 #ifdef HAVE_VFS_RW_ITERATE 1020 #ifdef HAVE_NEW_SYNC_READ 1021 .read = new_sync_read, 1022 .write = new_sync_write, 1023 #endif 1024 .read_iter = zpl_iter_read, 1025 .write_iter = zpl_iter_write, 1026 #ifdef HAVE_VFS_IOV_ITER 1027 .splice_read = generic_file_splice_read, 1028 .splice_write = iter_file_splice_write, 1029 #endif 1030 #else 1031 .read = do_sync_read, 1032 .write = do_sync_write, 1033 .aio_read = zpl_aio_read, 1034 .aio_write = zpl_aio_write, 1035 #endif 1036 .mmap = zpl_mmap, 1037 .fsync = zpl_fsync, 1038 #ifdef HAVE_FILE_AIO_FSYNC 1039 .aio_fsync = zpl_aio_fsync, 1040 #endif 1041 .fallocate = zpl_fallocate, 1042 .unlocked_ioctl = zpl_ioctl, 1043 #ifdef CONFIG_COMPAT 1044 .compat_ioctl = zpl_compat_ioctl, 1045 #endif 1046 }; 1047 1048 const struct file_operations zpl_dir_file_operations = { 1049 .llseek = generic_file_llseek, 1050 .read = generic_read_dir, 1051 #if defined(HAVE_VFS_ITERATE_SHARED) 1052 .iterate_shared = zpl_iterate, 1053 #elif defined(HAVE_VFS_ITERATE) 1054 .iterate = zpl_iterate, 1055 #else 1056 .readdir = zpl_readdir, 1057 #endif 1058 .fsync = zpl_fsync, 1059 .unlocked_ioctl = zpl_ioctl, 1060 #ifdef CONFIG_COMPAT 1061 .compat_ioctl = zpl_compat_ioctl, 1062 #endif 1063 }; 1064 1065 /* BEGIN CSTYLED */ 1066 module_param(zfs_fallocate_reserve_percent, uint, 0644); 1067 MODULE_PARM_DESC(zfs_fallocate_reserve_percent, 1068 "Percentage of length to use for the available capacity check"); 1069 /* END CSTYLED */ 1070