xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zpl_file.c (revision 87b759f0fa1f7554d50ce640c40138512bbded44)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24  */
25 
26 
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <linux/fs.h>
31 #include <sys/file.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/zfs_znode.h>
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zfs_vnops.h>
36 #include <sys/zfs_project.h>
37 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
38     defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
39 #include <linux/pagemap.h>
40 #endif
41 #include <linux/fadvise.h>
42 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
43 #include <linux/writeback.h>
44 #endif
45 
46 /*
47  * When using fallocate(2) to preallocate space, inflate the requested
48  * capacity check by 10% to account for the required metadata blocks.
49  */
50 static unsigned int zfs_fallocate_reserve_percent = 110;
51 
52 static int
53 zpl_open(struct inode *ip, struct file *filp)
54 {
55 	cred_t *cr = CRED();
56 	int error;
57 	fstrans_cookie_t cookie;
58 
59 	error = generic_file_open(ip, filp);
60 	if (error)
61 		return (error);
62 
63 	crhold(cr);
64 	cookie = spl_fstrans_mark();
65 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
66 	spl_fstrans_unmark(cookie);
67 	crfree(cr);
68 	ASSERT3S(error, <=, 0);
69 
70 	return (error);
71 }
72 
73 static int
74 zpl_release(struct inode *ip, struct file *filp)
75 {
76 	cred_t *cr = CRED();
77 	int error;
78 	fstrans_cookie_t cookie;
79 
80 	cookie = spl_fstrans_mark();
81 	if (ITOZ(ip)->z_atime_dirty)
82 		zfs_mark_inode_dirty(ip);
83 
84 	crhold(cr);
85 	error = -zfs_close(ip, filp->f_flags, cr);
86 	spl_fstrans_unmark(cookie);
87 	crfree(cr);
88 	ASSERT3S(error, <=, 0);
89 
90 	return (error);
91 }
92 
93 static int
94 zpl_iterate(struct file *filp, struct dir_context *ctx)
95 {
96 	cred_t *cr = CRED();
97 	int error;
98 	fstrans_cookie_t cookie;
99 
100 	crhold(cr);
101 	cookie = spl_fstrans_mark();
102 	error = -zfs_readdir(file_inode(filp), ctx, cr);
103 	spl_fstrans_unmark(cookie);
104 	crfree(cr);
105 	ASSERT3S(error, <=, 0);
106 
107 	return (error);
108 }
109 
110 static int
111 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
112 {
113 	struct inode *inode = filp->f_mapping->host;
114 	znode_t *zp = ITOZ(inode);
115 	zfsvfs_t *zfsvfs = ITOZSB(inode);
116 	cred_t *cr = CRED();
117 	int error;
118 	fstrans_cookie_t cookie;
119 
120 	/*
121 	 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
122 	 * tandem so that sync writes can detect if there are any non-sync
123 	 * writes going on and vice-versa. The "vice-versa" part to this logic
124 	 * is located in zfs_putpage() where non-sync writes check if there are
125 	 * any ongoing sync writes. If any sync and non-sync writes overlap,
126 	 * we do a commit to complete the non-sync writes since the latter can
127 	 * potentially take several seconds to complete and thus block sync
128 	 * writes in the upcoming call to filemap_write_and_wait_range().
129 	 */
130 	atomic_inc_32(&zp->z_sync_writes_cnt);
131 	/*
132 	 * If the following check does not detect an overlapping non-sync write
133 	 * (say because it's just about to start), then it is guaranteed that
134 	 * the non-sync write will detect this sync write. This is because we
135 	 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
136 	 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
137 	 * zfs_putpage() respectively.
138 	 */
139 	if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
140 		if ((error = zpl_enter(zfsvfs, FTAG)) != 0) {
141 			atomic_dec_32(&zp->z_sync_writes_cnt);
142 			return (error);
143 		}
144 		zil_commit(zfsvfs->z_log, zp->z_id);
145 		zpl_exit(zfsvfs, FTAG);
146 	}
147 
148 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
149 
150 	/*
151 	 * The sync write is not complete yet but we decrement
152 	 * z_sync_writes_cnt since zfs_fsync() increments and decrements
153 	 * it internally. If a non-sync write starts just after the decrement
154 	 * operation but before we call zfs_fsync(), it may not detect this
155 	 * overlapping sync write but it does not matter since we have already
156 	 * gone past filemap_write_and_wait_range() and we won't block due to
157 	 * the non-sync write.
158 	 */
159 	atomic_dec_32(&zp->z_sync_writes_cnt);
160 
161 	if (error)
162 		return (error);
163 
164 	crhold(cr);
165 	cookie = spl_fstrans_mark();
166 	error = -zfs_fsync(zp, datasync, cr);
167 	spl_fstrans_unmark(cookie);
168 	crfree(cr);
169 	ASSERT3S(error, <=, 0);
170 
171 	return (error);
172 }
173 
174 static inline int
175 zfs_io_flags(struct kiocb *kiocb)
176 {
177 	int flags = 0;
178 
179 #if defined(IOCB_DSYNC)
180 	if (kiocb->ki_flags & IOCB_DSYNC)
181 		flags |= O_DSYNC;
182 #endif
183 #if defined(IOCB_SYNC)
184 	if (kiocb->ki_flags & IOCB_SYNC)
185 		flags |= O_SYNC;
186 #endif
187 #if defined(IOCB_APPEND)
188 	if (kiocb->ki_flags & IOCB_APPEND)
189 		flags |= O_APPEND;
190 #endif
191 #if defined(IOCB_DIRECT)
192 	if (kiocb->ki_flags & IOCB_DIRECT)
193 		flags |= O_DIRECT;
194 #endif
195 	return (flags);
196 }
197 
198 /*
199  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
200  * is true.  This is needed since datasets with inherited "relatime" property
201  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
202  * `zfs set relatime=...`), which is what relatime test in VFS by
203  * relatime_need_update() is based on.
204  */
205 static inline void
206 zpl_file_accessed(struct file *filp)
207 {
208 	struct inode *ip = filp->f_mapping->host;
209 
210 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
211 		if (zfs_relatime_need_update(ip))
212 			file_accessed(filp);
213 	} else {
214 		file_accessed(filp);
215 	}
216 }
217 
218 /*
219  * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
220  * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
221  * manipulate the iov_iter are available.  In which case the full iov_iter
222  * can be attached to the uio and correctly handled in the lower layers.
223  * Otherwise, for older kernels extract the iovec and pass it instead.
224  */
225 static void
226 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
227     loff_t pos, ssize_t count, size_t skip)
228 {
229 #if defined(HAVE_VFS_IOV_ITER)
230 	zfs_uio_iov_iter_init(uio, to, pos, count, skip);
231 #else
232 	zfs_uio_iovec_init(uio, zfs_uio_iter_iov(to), to->nr_segs, pos,
233 	    zfs_uio_iov_iter_type(to) & ITER_KVEC ?
234 	    UIO_SYSSPACE : UIO_USERSPACE,
235 	    count, skip);
236 #endif
237 }
238 
239 static ssize_t
240 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
241 {
242 	cred_t *cr = CRED();
243 	fstrans_cookie_t cookie;
244 	struct file *filp = kiocb->ki_filp;
245 	ssize_t count = iov_iter_count(to);
246 	zfs_uio_t uio;
247 
248 	zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
249 
250 	crhold(cr);
251 	cookie = spl_fstrans_mark();
252 
253 	ssize_t ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
254 	    filp->f_flags | zfs_io_flags(kiocb), cr);
255 
256 	spl_fstrans_unmark(cookie);
257 	crfree(cr);
258 
259 	if (ret < 0)
260 		return (ret);
261 
262 	ssize_t read = count - uio.uio_resid;
263 	kiocb->ki_pos += read;
264 
265 	zpl_file_accessed(filp);
266 
267 	return (read);
268 }
269 
270 static inline ssize_t
271 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
272     size_t *countp)
273 {
274 	ssize_t ret = generic_write_checks(kiocb, from);
275 	if (ret <= 0)
276 		return (ret);
277 
278 	*countp = ret;
279 
280 	return (0);
281 }
282 
283 static ssize_t
284 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
285 {
286 	cred_t *cr = CRED();
287 	fstrans_cookie_t cookie;
288 	struct file *filp = kiocb->ki_filp;
289 	struct inode *ip = filp->f_mapping->host;
290 	zfs_uio_t uio;
291 	size_t count = 0;
292 	ssize_t ret;
293 
294 	ret = zpl_generic_write_checks(kiocb, from, &count);
295 	if (ret)
296 		return (ret);
297 
298 	zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
299 
300 	crhold(cr);
301 	cookie = spl_fstrans_mark();
302 
303 	ret = -zfs_write(ITOZ(ip), &uio,
304 	    filp->f_flags | zfs_io_flags(kiocb), cr);
305 
306 	spl_fstrans_unmark(cookie);
307 	crfree(cr);
308 
309 	if (ret < 0)
310 		return (ret);
311 
312 	ssize_t wrote = count - uio.uio_resid;
313 	kiocb->ki_pos += wrote;
314 
315 	return (wrote);
316 }
317 
318 static ssize_t
319 zpl_direct_IO_impl(void)
320 {
321 	/*
322 	 * All O_DIRECT requests should be handled by
323 	 * zpl_{iter/aio}_{write/read}(). There is no way kernel generic code
324 	 * should call the direct_IO address_space_operations function. We set
325 	 * this code path to be fatal if it is executed.
326 	 */
327 	PANIC(0);
328 	return (0);
329 }
330 
331 #if defined(HAVE_VFS_DIRECT_IO_ITER)
332 static ssize_t
333 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
334 {
335 	return (zpl_direct_IO_impl());
336 }
337 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
338 static ssize_t
339 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
340 {
341 	return (zpl_direct_IO_impl());
342 }
343 #else
344 #error "Unknown Direct I/O interface"
345 #endif
346 
347 static loff_t
348 zpl_llseek(struct file *filp, loff_t offset, int whence)
349 {
350 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
351 	fstrans_cookie_t cookie;
352 
353 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
354 		struct inode *ip = filp->f_mapping->host;
355 		loff_t maxbytes = ip->i_sb->s_maxbytes;
356 		loff_t error;
357 
358 		spl_inode_lock_shared(ip);
359 		cookie = spl_fstrans_mark();
360 		error = -zfs_holey(ITOZ(ip), whence, &offset);
361 		spl_fstrans_unmark(cookie);
362 		if (error == 0)
363 			error = lseek_execute(filp, ip, offset, maxbytes);
364 		spl_inode_unlock_shared(ip);
365 
366 		return (error);
367 	}
368 #endif /* SEEK_HOLE && SEEK_DATA */
369 
370 	return (generic_file_llseek(filp, offset, whence));
371 }
372 
373 /*
374  * It's worth taking a moment to describe how mmap is implemented
375  * for zfs because it differs considerably from other Linux filesystems.
376  * However, this issue is handled the same way under OpenSolaris.
377  *
378  * The issue is that by design zfs bypasses the Linux page cache and
379  * leaves all caching up to the ARC.  This has been shown to work
380  * well for the common read(2)/write(2) case.  However, mmap(2)
381  * is problem because it relies on being tightly integrated with the
382  * page cache.  To handle this we cache mmap'ed files twice, once in
383  * the ARC and a second time in the page cache.  The code is careful
384  * to keep both copies synchronized.
385  *
386  * When a file with an mmap'ed region is written to using write(2)
387  * both the data in the ARC and existing pages in the page cache
388  * are updated.  For a read(2) data will be read first from the page
389  * cache then the ARC if needed.  Neither a write(2) or read(2) will
390  * will ever result in new pages being added to the page cache.
391  *
392  * New pages are added to the page cache only via .readpage() which
393  * is called when the vfs needs to read a page off disk to back the
394  * virtual memory region.  These pages may be modified without
395  * notifying the ARC and will be written out periodically via
396  * .writepage().  This will occur due to either a sync or the usual
397  * page aging behavior.  Note because a read(2) of a mmap'ed file
398  * will always check the page cache first even when the ARC is out
399  * of date correct data will still be returned.
400  *
401  * While this implementation ensures correct behavior it does have
402  * have some drawbacks.  The most obvious of which is that it
403  * increases the required memory footprint when access mmap'ed
404  * files.  It also adds additional complexity to the code keeping
405  * both caches synchronized.
406  *
407  * Longer term it may be possible to cleanly resolve this wart by
408  * mapping page cache pages directly on to the ARC buffers.  The
409  * Linux address space operations are flexible enough to allow
410  * selection of which pages back a particular index.  The trick
411  * would be working out the details of which subsystem is in
412  * charge, the ARC, the page cache, or both.  It may also prove
413  * helpful to move the ARC buffers to a scatter-gather lists
414  * rather than a vmalloc'ed region.
415  */
416 static int
417 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
418 {
419 	struct inode *ip = filp->f_mapping->host;
420 	int error;
421 	fstrans_cookie_t cookie;
422 
423 	cookie = spl_fstrans_mark();
424 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
425 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
426 	spl_fstrans_unmark(cookie);
427 
428 	if (error)
429 		return (error);
430 
431 	error = generic_file_mmap(filp, vma);
432 	if (error)
433 		return (error);
434 
435 	return (error);
436 }
437 
438 /*
439  * Populate a page with data for the Linux page cache.  This function is
440  * only used to support mmap(2).  There will be an identical copy of the
441  * data in the ARC which is kept up to date via .write() and .writepage().
442  */
443 static inline int
444 zpl_readpage_common(struct page *pp)
445 {
446 	fstrans_cookie_t cookie;
447 
448 	ASSERT(PageLocked(pp));
449 
450 	cookie = spl_fstrans_mark();
451 	int error = -zfs_getpage(pp->mapping->host, pp);
452 	spl_fstrans_unmark(cookie);
453 
454 	unlock_page(pp);
455 
456 	return (error);
457 }
458 
459 #ifdef HAVE_VFS_READ_FOLIO
460 static int
461 zpl_read_folio(struct file *filp, struct folio *folio)
462 {
463 	return (zpl_readpage_common(&folio->page));
464 }
465 #else
466 static int
467 zpl_readpage(struct file *filp, struct page *pp)
468 {
469 	return (zpl_readpage_common(pp));
470 }
471 #endif
472 
473 static int
474 zpl_readpage_filler(void *data, struct page *pp)
475 {
476 	return (zpl_readpage_common(pp));
477 }
478 
479 /*
480  * Populate a set of pages with data for the Linux page cache.  This
481  * function will only be called for read ahead and never for demand
482  * paging.  For simplicity, the code relies on read_cache_pages() to
483  * correctly lock each page for IO and call zpl_readpage().
484  */
485 #ifdef HAVE_VFS_READPAGES
486 static int
487 zpl_readpages(struct file *filp, struct address_space *mapping,
488     struct list_head *pages, unsigned nr_pages)
489 {
490 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
491 }
492 #else
493 static void
494 zpl_readahead(struct readahead_control *ractl)
495 {
496 	struct page *page;
497 
498 	while ((page = readahead_page(ractl)) != NULL) {
499 		int ret;
500 
501 		ret = zpl_readpage_filler(NULL, page);
502 		put_page(page);
503 		if (ret)
504 			break;
505 	}
506 }
507 #endif
508 
509 static int
510 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
511 {
512 	boolean_t *for_sync = data;
513 	fstrans_cookie_t cookie;
514 	int ret;
515 
516 	ASSERT(PageLocked(pp));
517 	ASSERT(!PageWriteback(pp));
518 
519 	cookie = spl_fstrans_mark();
520 	ret = zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
521 	spl_fstrans_unmark(cookie);
522 
523 	return (ret);
524 }
525 
526 #ifdef HAVE_WRITEPAGE_T_FOLIO
527 static int
528 zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data)
529 {
530 	return (zpl_putpage(&pp->page, wbc, data));
531 }
532 #endif
533 
534 static inline int
535 zpl_write_cache_pages(struct address_space *mapping,
536     struct writeback_control *wbc, void *data)
537 {
538 	int result;
539 
540 #ifdef HAVE_WRITEPAGE_T_FOLIO
541 	result = write_cache_pages(mapping, wbc, zpl_putfolio, data);
542 #else
543 	result = write_cache_pages(mapping, wbc, zpl_putpage, data);
544 #endif
545 	return (result);
546 }
547 
548 static int
549 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
550 {
551 	znode_t		*zp = ITOZ(mapping->host);
552 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
553 	enum writeback_sync_modes sync_mode;
554 	int result;
555 
556 	if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
557 		return (result);
558 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
559 		wbc->sync_mode = WB_SYNC_ALL;
560 	zpl_exit(zfsvfs, FTAG);
561 	sync_mode = wbc->sync_mode;
562 
563 	/*
564 	 * We don't want to run write_cache_pages() in SYNC mode here, because
565 	 * that would make putpage() wait for a single page to be committed to
566 	 * disk every single time, resulting in atrocious performance. Instead
567 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
568 	 * and then we commit it all in one go.
569 	 */
570 	boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
571 	wbc->sync_mode = WB_SYNC_NONE;
572 	result = zpl_write_cache_pages(mapping, wbc, &for_sync);
573 	if (sync_mode != wbc->sync_mode) {
574 		if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
575 			return (result);
576 		if (zfsvfs->z_log != NULL)
577 			zil_commit(zfsvfs->z_log, zp->z_id);
578 		zpl_exit(zfsvfs, FTAG);
579 
580 		/*
581 		 * We need to call write_cache_pages() again (we can't just
582 		 * return after the commit) because the previous call in
583 		 * non-SYNC mode does not guarantee that we got all the dirty
584 		 * pages (see the implementation of write_cache_pages() for
585 		 * details). That being said, this is a no-op in most cases.
586 		 */
587 		wbc->sync_mode = sync_mode;
588 		result = zpl_write_cache_pages(mapping, wbc, &for_sync);
589 	}
590 	return (result);
591 }
592 
593 /*
594  * Write out dirty pages to the ARC, this function is only required to
595  * support mmap(2).  Mapped pages may be dirtied by memory operations
596  * which never call .write().  These dirty pages are kept in sync with
597  * the ARC buffers via this hook.
598  */
599 static int
600 zpl_writepage(struct page *pp, struct writeback_control *wbc)
601 {
602 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
603 		wbc->sync_mode = WB_SYNC_ALL;
604 
605 	boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
606 
607 	return (zpl_putpage(pp, wbc, &for_sync));
608 }
609 
610 static int
611 zpl_releasepage(struct page *pp, gfp_t gfp)
612 {
613 	if (PagePrivate(pp)) {
614 		ClearPagePrivate(pp);
615 		put_page(pp);
616 	}
617 	return (1);
618 }
619 
620 #ifdef HAVE_VFS_RELEASE_FOLIO
621 static bool
622 zpl_release_folio(struct folio *folio, gfp_t gfp)
623 {
624 	return (zpl_releasepage(&folio->page, gfp));
625 }
626 #endif
627 
628 #ifdef HAVE_VFS_INVALIDATE_FOLIO
629 static void
630 zpl_invalidate_folio(struct folio *folio, size_t offset, size_t len)
631 {
632 	if ((offset == 0) && (len == PAGE_SIZE)) {
633 		zpl_releasepage(&folio->page, 0);
634 	}
635 }
636 #else
637 static void
638 zpl_invalidatepage(struct page *pp, unsigned int offset, unsigned int len)
639 {
640 	if ((offset == 0) && (len == PAGE_SIZE)) {
641 		zpl_releasepage(pp, 0);
642 	}
643 }
644 #endif
645 
646 /*
647  * The flag combination which matches the behavior of zfs_space() is
648  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
649  * flag was introduced in the 2.6.38 kernel.
650  *
651  * The original mode=0 (allocate space) behavior can be reasonably emulated
652  * by checking if enough space exists and creating a sparse file, as real
653  * persistent space reservation is not possible due to COW, snapshots, etc.
654  */
655 static long
656 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
657 {
658 	cred_t *cr = CRED();
659 	loff_t olen;
660 	fstrans_cookie_t cookie;
661 	int error = 0;
662 
663 	int test_mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE;
664 
665 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
666 		return (-EOPNOTSUPP);
667 
668 	if (offset < 0 || len <= 0)
669 		return (-EINVAL);
670 
671 	spl_inode_lock(ip);
672 	olen = i_size_read(ip);
673 
674 	crhold(cr);
675 	cookie = spl_fstrans_mark();
676 	if (mode & (test_mode)) {
677 		flock64_t bf;
678 
679 		if (mode & FALLOC_FL_KEEP_SIZE) {
680 			if (offset > olen)
681 				goto out_unmark;
682 
683 			if (offset + len > olen)
684 				len = olen - offset;
685 		}
686 		bf.l_type = F_WRLCK;
687 		bf.l_whence = SEEK_SET;
688 		bf.l_start = offset;
689 		bf.l_len = len;
690 		bf.l_pid = 0;
691 
692 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
693 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
694 		unsigned int percent = zfs_fallocate_reserve_percent;
695 		struct kstatfs statfs;
696 
697 		/* Legacy mode, disable fallocate compatibility. */
698 		if (percent == 0) {
699 			error = -EOPNOTSUPP;
700 			goto out_unmark;
701 		}
702 
703 		/*
704 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
705 		 * also checks project quota limits, which are relevant here.
706 		 */
707 		error = zfs_statvfs(ip, &statfs);
708 		if (error)
709 			goto out_unmark;
710 
711 		/*
712 		 * Shrink available space a bit to account for overhead/races.
713 		 * We know the product previously fit into availbytes from
714 		 * dmu_objset_space(), so the smaller product will also fit.
715 		 */
716 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
717 			error = -ENOSPC;
718 			goto out_unmark;
719 		}
720 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
721 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
722 	}
723 out_unmark:
724 	spl_fstrans_unmark(cookie);
725 	spl_inode_unlock(ip);
726 
727 	crfree(cr);
728 
729 	return (error);
730 }
731 
732 static long
733 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
734 {
735 	return zpl_fallocate_common(file_inode(filp),
736 	    mode, offset, len);
737 }
738 
739 static int
740 zpl_ioctl_getversion(struct file *filp, void __user *arg)
741 {
742 	uint32_t generation = file_inode(filp)->i_generation;
743 
744 	return (copy_to_user(arg, &generation, sizeof (generation)));
745 }
746 
747 static int
748 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
749 {
750 	struct inode *ip = file_inode(filp);
751 	znode_t *zp = ITOZ(ip);
752 	zfsvfs_t *zfsvfs = ITOZSB(ip);
753 	objset_t *os = zfsvfs->z_os;
754 	int error = 0;
755 
756 	if (S_ISFIFO(ip->i_mode))
757 		return (-ESPIPE);
758 
759 	if (offset < 0 || len < 0)
760 		return (-EINVAL);
761 
762 	if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
763 		return (error);
764 
765 	switch (advice) {
766 	case POSIX_FADV_SEQUENTIAL:
767 	case POSIX_FADV_WILLNEED:
768 #ifdef HAVE_GENERIC_FADVISE
769 		if (zn_has_cached_data(zp, offset, offset + len - 1))
770 			error = generic_fadvise(filp, offset, len, advice);
771 #endif
772 		/*
773 		 * Pass on the caller's size directly, but note that
774 		 * dmu_prefetch_max will effectively cap it.  If there
775 		 * really is a larger sequential access pattern, perhaps
776 		 * dmu_zfetch will detect it.
777 		 */
778 		if (len == 0)
779 			len = i_size_read(ip) - offset;
780 
781 		dmu_prefetch(os, zp->z_id, 0, offset, len,
782 		    ZIO_PRIORITY_ASYNC_READ);
783 		break;
784 	case POSIX_FADV_NORMAL:
785 	case POSIX_FADV_RANDOM:
786 	case POSIX_FADV_DONTNEED:
787 	case POSIX_FADV_NOREUSE:
788 		/* ignored for now */
789 		break;
790 	default:
791 		error = -EINVAL;
792 		break;
793 	}
794 
795 	zfs_exit(zfsvfs, FTAG);
796 
797 	return (error);
798 }
799 
800 #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
801 #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
802 
803 static uint32_t
804 __zpl_ioctl_getflags(struct inode *ip)
805 {
806 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
807 	uint32_t ioctl_flags = 0;
808 
809 	if (zfs_flags & ZFS_IMMUTABLE)
810 		ioctl_flags |= FS_IMMUTABLE_FL;
811 
812 	if (zfs_flags & ZFS_APPENDONLY)
813 		ioctl_flags |= FS_APPEND_FL;
814 
815 	if (zfs_flags & ZFS_NODUMP)
816 		ioctl_flags |= FS_NODUMP_FL;
817 
818 	if (zfs_flags & ZFS_PROJINHERIT)
819 		ioctl_flags |= ZFS_PROJINHERIT_FL;
820 
821 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
822 }
823 
824 /*
825  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
826  * attributes common to both Linux and Solaris are mapped.
827  */
828 static int
829 zpl_ioctl_getflags(struct file *filp, void __user *arg)
830 {
831 	uint32_t flags;
832 	int err;
833 
834 	flags = __zpl_ioctl_getflags(file_inode(filp));
835 	err = copy_to_user(arg, &flags, sizeof (flags));
836 
837 	return (err);
838 }
839 
840 /*
841  * fchange() is a helper macro to detect if we have been asked to change a
842  * flag. This is ugly, but the requirement that we do this is a consequence of
843  * how the Linux file attribute interface was designed. Another consequence is
844  * that concurrent modification of files suffers from a TOCTOU race. Neither
845  * are things we can fix without modifying the kernel-userland interface, which
846  * is outside of our jurisdiction.
847  */
848 
849 #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
850 
851 static int
852 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
853 {
854 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
855 	xoptattr_t *xoap;
856 
857 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
858 	    ZFS_PROJINHERIT_FL))
859 		return (-EOPNOTSUPP);
860 
861 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
862 		return (-EACCES);
863 
864 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
865 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
866 	    !capable(CAP_LINUX_IMMUTABLE))
867 		return (-EPERM);
868 
869 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
870 		return (-EACCES);
871 
872 	xva_init(xva);
873 	xoap = xva_getxoptattr(xva);
874 
875 #define	FLAG_CHANGE(iflag, zflag, xflag, xfield)	do {	\
876 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) ||	\
877 	    ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) {	\
878 		XVA_SET_REQ(xva, (xflag));	\
879 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
880 	}	\
881 } while (0)
882 
883 	FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
884 	    xoap->xoa_immutable);
885 	FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
886 	    xoap->xoa_appendonly);
887 	FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
888 	    xoap->xoa_nodump);
889 	FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
890 	    xoap->xoa_projinherit);
891 
892 #undef	FLAG_CHANGE
893 
894 	return (0);
895 }
896 
897 static int
898 zpl_ioctl_setflags(struct file *filp, void __user *arg)
899 {
900 	struct inode *ip = file_inode(filp);
901 	uint32_t flags;
902 	cred_t *cr = CRED();
903 	xvattr_t xva;
904 	int err;
905 	fstrans_cookie_t cookie;
906 
907 	if (copy_from_user(&flags, arg, sizeof (flags)))
908 		return (-EFAULT);
909 
910 	err = __zpl_ioctl_setflags(ip, flags, &xva);
911 	if (err)
912 		return (err);
913 
914 	crhold(cr);
915 	cookie = spl_fstrans_mark();
916 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
917 	spl_fstrans_unmark(cookie);
918 	crfree(cr);
919 
920 	return (err);
921 }
922 
923 static int
924 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
925 {
926 	zfsxattr_t fsx = { 0 };
927 	struct inode *ip = file_inode(filp);
928 	int err;
929 
930 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
931 	fsx.fsx_projid = ITOZ(ip)->z_projid;
932 	err = copy_to_user(arg, &fsx, sizeof (fsx));
933 
934 	return (err);
935 }
936 
937 static int
938 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
939 {
940 	struct inode *ip = file_inode(filp);
941 	zfsxattr_t fsx;
942 	cred_t *cr = CRED();
943 	xvattr_t xva;
944 	xoptattr_t *xoap;
945 	int err;
946 	fstrans_cookie_t cookie;
947 
948 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
949 		return (-EFAULT);
950 
951 	if (!zpl_is_valid_projid(fsx.fsx_projid))
952 		return (-EINVAL);
953 
954 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
955 	if (err)
956 		return (err);
957 
958 	xoap = xva_getxoptattr(&xva);
959 	XVA_SET_REQ(&xva, XAT_PROJID);
960 	xoap->xoa_projid = fsx.fsx_projid;
961 
962 	crhold(cr);
963 	cookie = spl_fstrans_mark();
964 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
965 	spl_fstrans_unmark(cookie);
966 	crfree(cr);
967 
968 	return (err);
969 }
970 
971 /*
972  * Expose Additional File Level Attributes of ZFS.
973  */
974 static int
975 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
976 {
977 	struct inode *ip = file_inode(filp);
978 	uint64_t dosflags = ITOZ(ip)->z_pflags;
979 	dosflags &= ZFS_DOS_FL_USER_VISIBLE;
980 	int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
981 
982 	return (err);
983 }
984 
985 static int
986 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
987 {
988 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
989 	xoptattr_t *xoap;
990 
991 	if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
992 		return (-EOPNOTSUPP);
993 
994 	if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
995 	    fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
996 	    !capable(CAP_LINUX_IMMUTABLE))
997 		return (-EPERM);
998 
999 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
1000 		return (-EACCES);
1001 
1002 	xva_init(xva);
1003 	xoap = xva_getxoptattr(xva);
1004 
1005 #define	FLAG_CHANGE(iflag, xflag, xfield)	do {	\
1006 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) ||	\
1007 	    ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) {	\
1008 		XVA_SET_REQ(xva, (xflag));	\
1009 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
1010 	}	\
1011 } while (0)
1012 
1013 	FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
1014 	FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
1015 	FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
1016 	FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
1017 	FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
1018 	FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
1019 	FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
1020 	FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
1021 	FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
1022 	FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
1023 	FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
1024 
1025 #undef	FLAG_CHANGE
1026 
1027 	return (0);
1028 }
1029 
1030 /*
1031  * Set Additional File Level Attributes of ZFS.
1032  */
1033 static int
1034 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
1035 {
1036 	struct inode *ip = file_inode(filp);
1037 	uint64_t dosflags;
1038 	cred_t *cr = CRED();
1039 	xvattr_t xva;
1040 	int err;
1041 	fstrans_cookie_t cookie;
1042 
1043 	if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
1044 		return (-EFAULT);
1045 
1046 	err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
1047 	if (err)
1048 		return (err);
1049 
1050 	crhold(cr);
1051 	cookie = spl_fstrans_mark();
1052 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
1053 	spl_fstrans_unmark(cookie);
1054 	crfree(cr);
1055 
1056 	return (err);
1057 }
1058 
1059 static long
1060 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1061 {
1062 	switch (cmd) {
1063 	case FS_IOC_GETVERSION:
1064 		return (zpl_ioctl_getversion(filp, (void *)arg));
1065 	case FS_IOC_GETFLAGS:
1066 		return (zpl_ioctl_getflags(filp, (void *)arg));
1067 	case FS_IOC_SETFLAGS:
1068 		return (zpl_ioctl_setflags(filp, (void *)arg));
1069 	case ZFS_IOC_FSGETXATTR:
1070 		return (zpl_ioctl_getxattr(filp, (void *)arg));
1071 	case ZFS_IOC_FSSETXATTR:
1072 		return (zpl_ioctl_setxattr(filp, (void *)arg));
1073 	case ZFS_IOC_GETDOSFLAGS:
1074 		return (zpl_ioctl_getdosflags(filp, (void *)arg));
1075 	case ZFS_IOC_SETDOSFLAGS:
1076 		return (zpl_ioctl_setdosflags(filp, (void *)arg));
1077 	case ZFS_IOC_COMPAT_FICLONE:
1078 		return (zpl_ioctl_ficlone(filp, (void *)arg));
1079 	case ZFS_IOC_COMPAT_FICLONERANGE:
1080 		return (zpl_ioctl_ficlonerange(filp, (void *)arg));
1081 	case ZFS_IOC_COMPAT_FIDEDUPERANGE:
1082 		return (zpl_ioctl_fideduperange(filp, (void *)arg));
1083 	default:
1084 		return (-ENOTTY);
1085 	}
1086 }
1087 
1088 #ifdef CONFIG_COMPAT
1089 static long
1090 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1091 {
1092 	switch (cmd) {
1093 	case FS_IOC32_GETVERSION:
1094 		cmd = FS_IOC_GETVERSION;
1095 		break;
1096 	case FS_IOC32_GETFLAGS:
1097 		cmd = FS_IOC_GETFLAGS;
1098 		break;
1099 	case FS_IOC32_SETFLAGS:
1100 		cmd = FS_IOC_SETFLAGS;
1101 		break;
1102 	default:
1103 		return (-ENOTTY);
1104 	}
1105 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1106 }
1107 #endif /* CONFIG_COMPAT */
1108 
1109 const struct address_space_operations zpl_address_space_operations = {
1110 #ifdef HAVE_VFS_READPAGES
1111 	.readpages	= zpl_readpages,
1112 #else
1113 	.readahead	= zpl_readahead,
1114 #endif
1115 #ifdef HAVE_VFS_READ_FOLIO
1116 	.read_folio	= zpl_read_folio,
1117 #else
1118 	.readpage	= zpl_readpage,
1119 #endif
1120 	.writepage	= zpl_writepage,
1121 	.writepages	= zpl_writepages,
1122 	.direct_IO	= zpl_direct_IO,
1123 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1124 	.set_page_dirty = __set_page_dirty_nobuffers,
1125 #endif
1126 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1127 	.dirty_folio	= filemap_dirty_folio,
1128 #endif
1129 #ifdef HAVE_VFS_RELEASE_FOLIO
1130 	.release_folio	= zpl_release_folio,
1131 #else
1132 	.releasepage	= zpl_releasepage,
1133 #endif
1134 #ifdef HAVE_VFS_INVALIDATE_FOLIO
1135 	.invalidate_folio = zpl_invalidate_folio,
1136 #else
1137 	.invalidatepage = zpl_invalidatepage,
1138 #endif
1139 };
1140 
1141 const struct file_operations zpl_file_operations = {
1142 	.open		= zpl_open,
1143 	.release	= zpl_release,
1144 	.llseek		= zpl_llseek,
1145 	.read_iter	= zpl_iter_read,
1146 	.write_iter	= zpl_iter_write,
1147 #ifdef HAVE_VFS_IOV_ITER
1148 #ifdef HAVE_COPY_SPLICE_READ
1149 	.splice_read	= copy_splice_read,
1150 #else
1151 	.splice_read	= generic_file_splice_read,
1152 #endif
1153 	.splice_write	= iter_file_splice_write,
1154 #endif
1155 	.mmap		= zpl_mmap,
1156 	.fsync		= zpl_fsync,
1157 	.fallocate	= zpl_fallocate,
1158 	.copy_file_range	= zpl_copy_file_range,
1159 #ifdef HAVE_VFS_CLONE_FILE_RANGE
1160 	.clone_file_range	= zpl_clone_file_range,
1161 #endif
1162 #ifdef HAVE_VFS_REMAP_FILE_RANGE
1163 	.remap_file_range	= zpl_remap_file_range,
1164 #endif
1165 #ifdef HAVE_VFS_DEDUPE_FILE_RANGE
1166 	.dedupe_file_range	= zpl_dedupe_file_range,
1167 #endif
1168 	.fadvise	= zpl_fadvise,
1169 	.unlocked_ioctl	= zpl_ioctl,
1170 #ifdef CONFIG_COMPAT
1171 	.compat_ioctl	= zpl_compat_ioctl,
1172 #endif
1173 };
1174 
1175 const struct file_operations zpl_dir_file_operations = {
1176 	.llseek		= generic_file_llseek,
1177 	.read		= generic_read_dir,
1178 	.iterate_shared	= zpl_iterate,
1179 	.fsync		= zpl_fsync,
1180 	.unlocked_ioctl = zpl_ioctl,
1181 #ifdef CONFIG_COMPAT
1182 	.compat_ioctl   = zpl_compat_ioctl,
1183 #endif
1184 };
1185 
1186 /* CSTYLED */
1187 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1188 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1189 	"Percentage of length to use for the available capacity check");
1190