1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC. 23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 24 */ 25 26 27 #ifdef CONFIG_COMPAT 28 #include <linux/compat.h> 29 #endif 30 #include <linux/fs.h> 31 #include <sys/file.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/zfs_znode.h> 34 #include <sys/zfs_vfsops.h> 35 #include <sys/zfs_vnops.h> 36 #include <sys/zfs_project.h> 37 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \ 38 defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO) 39 #include <linux/pagemap.h> 40 #endif 41 #ifdef HAVE_FILE_FADVISE 42 #include <linux/fadvise.h> 43 #endif 44 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO 45 #include <linux/writeback.h> 46 #endif 47 48 /* 49 * When using fallocate(2) to preallocate space, inflate the requested 50 * capacity check by 10% to account for the required metadata blocks. 51 */ 52 static unsigned int zfs_fallocate_reserve_percent = 110; 53 54 static int 55 zpl_open(struct inode *ip, struct file *filp) 56 { 57 cred_t *cr = CRED(); 58 int error; 59 fstrans_cookie_t cookie; 60 61 error = generic_file_open(ip, filp); 62 if (error) 63 return (error); 64 65 crhold(cr); 66 cookie = spl_fstrans_mark(); 67 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr); 68 spl_fstrans_unmark(cookie); 69 crfree(cr); 70 ASSERT3S(error, <=, 0); 71 72 return (error); 73 } 74 75 static int 76 zpl_release(struct inode *ip, struct file *filp) 77 { 78 cred_t *cr = CRED(); 79 int error; 80 fstrans_cookie_t cookie; 81 82 cookie = spl_fstrans_mark(); 83 if (ITOZ(ip)->z_atime_dirty) 84 zfs_mark_inode_dirty(ip); 85 86 crhold(cr); 87 error = -zfs_close(ip, filp->f_flags, cr); 88 spl_fstrans_unmark(cookie); 89 crfree(cr); 90 ASSERT3S(error, <=, 0); 91 92 return (error); 93 } 94 95 static int 96 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx) 97 { 98 cred_t *cr = CRED(); 99 int error; 100 fstrans_cookie_t cookie; 101 102 crhold(cr); 103 cookie = spl_fstrans_mark(); 104 error = -zfs_readdir(file_inode(filp), ctx, cr); 105 spl_fstrans_unmark(cookie); 106 crfree(cr); 107 ASSERT3S(error, <=, 0); 108 109 return (error); 110 } 111 112 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED) 113 static int 114 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir) 115 { 116 zpl_dir_context_t ctx = 117 ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos); 118 int error; 119 120 error = zpl_iterate(filp, &ctx); 121 filp->f_pos = ctx.pos; 122 123 return (error); 124 } 125 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */ 126 127 #if defined(HAVE_FSYNC_WITHOUT_DENTRY) 128 /* 129 * Linux 2.6.35 - 3.0 API, 130 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed 131 * redundant. The dentry is still accessible via filp->f_path.dentry, 132 * and we are guaranteed that filp will never be NULL. 133 */ 134 static int 135 zpl_fsync(struct file *filp, int datasync) 136 { 137 struct inode *inode = filp->f_mapping->host; 138 cred_t *cr = CRED(); 139 int error; 140 fstrans_cookie_t cookie; 141 142 crhold(cr); 143 cookie = spl_fstrans_mark(); 144 error = -zfs_fsync(ITOZ(inode), datasync, cr); 145 spl_fstrans_unmark(cookie); 146 crfree(cr); 147 ASSERT3S(error, <=, 0); 148 149 return (error); 150 } 151 152 #ifdef HAVE_FILE_AIO_FSYNC 153 static int 154 zpl_aio_fsync(struct kiocb *kiocb, int datasync) 155 { 156 return (zpl_fsync(kiocb->ki_filp, datasync)); 157 } 158 #endif 159 160 #elif defined(HAVE_FSYNC_RANGE) 161 /* 162 * Linux 3.1 API, 163 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has 164 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex 165 * lock is no longer held by the caller, for zfs we don't require the lock 166 * to be held so we don't acquire it. 167 */ 168 static int 169 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 170 { 171 struct inode *inode = filp->f_mapping->host; 172 znode_t *zp = ITOZ(inode); 173 zfsvfs_t *zfsvfs = ITOZSB(inode); 174 cred_t *cr = CRED(); 175 int error; 176 fstrans_cookie_t cookie; 177 178 /* 179 * The variables z_sync_writes_cnt and z_async_writes_cnt work in 180 * tandem so that sync writes can detect if there are any non-sync 181 * writes going on and vice-versa. The "vice-versa" part to this logic 182 * is located in zfs_putpage() where non-sync writes check if there are 183 * any ongoing sync writes. If any sync and non-sync writes overlap, 184 * we do a commit to complete the non-sync writes since the latter can 185 * potentially take several seconds to complete and thus block sync 186 * writes in the upcoming call to filemap_write_and_wait_range(). 187 */ 188 atomic_inc_32(&zp->z_sync_writes_cnt); 189 /* 190 * If the following check does not detect an overlapping non-sync write 191 * (say because it's just about to start), then it is guaranteed that 192 * the non-sync write will detect this sync write. This is because we 193 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing 194 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in 195 * zfs_putpage() respectively. 196 */ 197 if (atomic_load_32(&zp->z_async_writes_cnt) > 0) { 198 if ((error = zpl_enter(zfsvfs, FTAG)) != 0) { 199 atomic_dec_32(&zp->z_sync_writes_cnt); 200 return (error); 201 } 202 zil_commit(zfsvfs->z_log, zp->z_id); 203 zpl_exit(zfsvfs, FTAG); 204 } 205 206 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 207 208 /* 209 * The sync write is not complete yet but we decrement 210 * z_sync_writes_cnt since zfs_fsync() increments and decrements 211 * it internally. If a non-sync write starts just after the decrement 212 * operation but before we call zfs_fsync(), it may not detect this 213 * overlapping sync write but it does not matter since we have already 214 * gone past filemap_write_and_wait_range() and we won't block due to 215 * the non-sync write. 216 */ 217 atomic_dec_32(&zp->z_sync_writes_cnt); 218 219 if (error) 220 return (error); 221 222 crhold(cr); 223 cookie = spl_fstrans_mark(); 224 error = -zfs_fsync(zp, datasync, cr); 225 spl_fstrans_unmark(cookie); 226 crfree(cr); 227 ASSERT3S(error, <=, 0); 228 229 return (error); 230 } 231 232 #ifdef HAVE_FILE_AIO_FSYNC 233 static int 234 zpl_aio_fsync(struct kiocb *kiocb, int datasync) 235 { 236 return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync)); 237 } 238 #endif 239 240 #else 241 #error "Unsupported fops->fsync() implementation" 242 #endif 243 244 static inline int 245 zfs_io_flags(struct kiocb *kiocb) 246 { 247 int flags = 0; 248 249 #if defined(IOCB_DSYNC) 250 if (kiocb->ki_flags & IOCB_DSYNC) 251 flags |= O_DSYNC; 252 #endif 253 #if defined(IOCB_SYNC) 254 if (kiocb->ki_flags & IOCB_SYNC) 255 flags |= O_SYNC; 256 #endif 257 #if defined(IOCB_APPEND) 258 if (kiocb->ki_flags & IOCB_APPEND) 259 flags |= O_APPEND; 260 #endif 261 #if defined(IOCB_DIRECT) 262 if (kiocb->ki_flags & IOCB_DIRECT) 263 flags |= O_DIRECT; 264 #endif 265 return (flags); 266 } 267 268 /* 269 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update() 270 * is true. This is needed since datasets with inherited "relatime" property 271 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after 272 * `zfs set relatime=...`), which is what relatime test in VFS by 273 * relatime_need_update() is based on. 274 */ 275 static inline void 276 zpl_file_accessed(struct file *filp) 277 { 278 struct inode *ip = filp->f_mapping->host; 279 280 if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) { 281 if (zfs_relatime_need_update(ip)) 282 file_accessed(filp); 283 } else { 284 file_accessed(filp); 285 } 286 } 287 288 #if defined(HAVE_VFS_RW_ITERATE) 289 290 /* 291 * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports 292 * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to 293 * manipulate the iov_iter are available. In which case the full iov_iter 294 * can be attached to the uio and correctly handled in the lower layers. 295 * Otherwise, for older kernels extract the iovec and pass it instead. 296 */ 297 static void 298 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to, 299 loff_t pos, ssize_t count, size_t skip) 300 { 301 #if defined(HAVE_VFS_IOV_ITER) 302 zfs_uio_iov_iter_init(uio, to, pos, count, skip); 303 #else 304 #ifdef HAVE_IOV_ITER_TYPE 305 zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos, 306 iov_iter_type(to) & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE, 307 count, skip); 308 #else 309 zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos, 310 to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE, 311 count, skip); 312 #endif 313 #endif 314 } 315 316 static ssize_t 317 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to) 318 { 319 cred_t *cr = CRED(); 320 fstrans_cookie_t cookie; 321 struct file *filp = kiocb->ki_filp; 322 ssize_t count = iov_iter_count(to); 323 zfs_uio_t uio; 324 325 zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0); 326 327 crhold(cr); 328 cookie = spl_fstrans_mark(); 329 330 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio, 331 filp->f_flags | zfs_io_flags(kiocb), cr); 332 333 spl_fstrans_unmark(cookie); 334 crfree(cr); 335 336 if (error < 0) 337 return (error); 338 339 ssize_t read = count - uio.uio_resid; 340 kiocb->ki_pos += read; 341 342 zpl_file_accessed(filp); 343 344 return (read); 345 } 346 347 static inline ssize_t 348 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from, 349 size_t *countp) 350 { 351 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB 352 ssize_t ret = generic_write_checks(kiocb, from); 353 if (ret <= 0) 354 return (ret); 355 356 *countp = ret; 357 #else 358 struct file *file = kiocb->ki_filp; 359 struct address_space *mapping = file->f_mapping; 360 struct inode *ip = mapping->host; 361 int isblk = S_ISBLK(ip->i_mode); 362 363 *countp = iov_iter_count(from); 364 ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk); 365 if (ret) 366 return (ret); 367 #endif 368 369 return (0); 370 } 371 372 static ssize_t 373 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from) 374 { 375 cred_t *cr = CRED(); 376 fstrans_cookie_t cookie; 377 struct file *filp = kiocb->ki_filp; 378 struct inode *ip = filp->f_mapping->host; 379 zfs_uio_t uio; 380 size_t count = 0; 381 ssize_t ret; 382 383 ret = zpl_generic_write_checks(kiocb, from, &count); 384 if (ret) 385 return (ret); 386 387 zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset); 388 389 crhold(cr); 390 cookie = spl_fstrans_mark(); 391 392 int error = -zfs_write(ITOZ(ip), &uio, 393 filp->f_flags | zfs_io_flags(kiocb), cr); 394 395 spl_fstrans_unmark(cookie); 396 crfree(cr); 397 398 if (error < 0) 399 return (error); 400 401 ssize_t wrote = count - uio.uio_resid; 402 kiocb->ki_pos += wrote; 403 404 return (wrote); 405 } 406 407 #else /* !HAVE_VFS_RW_ITERATE */ 408 409 static ssize_t 410 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov, 411 unsigned long nr_segs, loff_t pos) 412 { 413 cred_t *cr = CRED(); 414 fstrans_cookie_t cookie; 415 struct file *filp = kiocb->ki_filp; 416 size_t count; 417 ssize_t ret; 418 419 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 420 if (ret) 421 return (ret); 422 423 zfs_uio_t uio; 424 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE, 425 count, 0); 426 427 crhold(cr); 428 cookie = spl_fstrans_mark(); 429 430 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio, 431 filp->f_flags | zfs_io_flags(kiocb), cr); 432 433 spl_fstrans_unmark(cookie); 434 crfree(cr); 435 436 if (error < 0) 437 return (error); 438 439 ssize_t read = count - uio.uio_resid; 440 kiocb->ki_pos += read; 441 442 zpl_file_accessed(filp); 443 444 return (read); 445 } 446 447 static ssize_t 448 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov, 449 unsigned long nr_segs, loff_t pos) 450 { 451 cred_t *cr = CRED(); 452 fstrans_cookie_t cookie; 453 struct file *filp = kiocb->ki_filp; 454 struct inode *ip = filp->f_mapping->host; 455 size_t count; 456 ssize_t ret; 457 458 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ); 459 if (ret) 460 return (ret); 461 462 ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode)); 463 if (ret) 464 return (ret); 465 466 kiocb->ki_pos = pos; 467 468 zfs_uio_t uio; 469 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE, 470 count, 0); 471 472 crhold(cr); 473 cookie = spl_fstrans_mark(); 474 475 int error = -zfs_write(ITOZ(ip), &uio, 476 filp->f_flags | zfs_io_flags(kiocb), cr); 477 478 spl_fstrans_unmark(cookie); 479 crfree(cr); 480 481 if (error < 0) 482 return (error); 483 484 ssize_t wrote = count - uio.uio_resid; 485 kiocb->ki_pos += wrote; 486 487 return (wrote); 488 } 489 #endif /* HAVE_VFS_RW_ITERATE */ 490 491 #if defined(HAVE_VFS_RW_ITERATE) 492 static ssize_t 493 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter) 494 { 495 if (rw == WRITE) 496 return (zpl_iter_write(kiocb, iter)); 497 else 498 return (zpl_iter_read(kiocb, iter)); 499 } 500 #if defined(HAVE_VFS_DIRECT_IO_ITER) 501 static ssize_t 502 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter) 503 { 504 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter)); 505 } 506 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET) 507 static ssize_t 508 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 509 { 510 ASSERT3S(pos, ==, kiocb->ki_pos); 511 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter)); 512 } 513 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET) 514 static ssize_t 515 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 516 { 517 ASSERT3S(pos, ==, kiocb->ki_pos); 518 return (zpl_direct_IO_impl(rw, kiocb, iter)); 519 } 520 #else 521 #error "Unknown direct IO interface" 522 #endif 523 524 #else /* HAVE_VFS_RW_ITERATE */ 525 526 #if defined(HAVE_VFS_DIRECT_IO_IOVEC) 527 static ssize_t 528 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov, 529 loff_t pos, unsigned long nr_segs) 530 { 531 if (rw == WRITE) 532 return (zpl_aio_write(kiocb, iov, nr_segs, pos)); 533 else 534 return (zpl_aio_read(kiocb, iov, nr_segs, pos)); 535 } 536 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET) 537 static ssize_t 538 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 539 { 540 const struct iovec *iovp = iov_iter_iovec(iter); 541 unsigned long nr_segs = iter->nr_segs; 542 543 ASSERT3S(pos, ==, kiocb->ki_pos); 544 if (rw == WRITE) 545 return (zpl_aio_write(kiocb, iovp, nr_segs, pos)); 546 else 547 return (zpl_aio_read(kiocb, iovp, nr_segs, pos)); 548 } 549 #else 550 #error "Unknown direct IO interface" 551 #endif 552 553 #endif /* HAVE_VFS_RW_ITERATE */ 554 555 static loff_t 556 zpl_llseek(struct file *filp, loff_t offset, int whence) 557 { 558 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 559 fstrans_cookie_t cookie; 560 561 if (whence == SEEK_DATA || whence == SEEK_HOLE) { 562 struct inode *ip = filp->f_mapping->host; 563 loff_t maxbytes = ip->i_sb->s_maxbytes; 564 loff_t error; 565 566 spl_inode_lock_shared(ip); 567 cookie = spl_fstrans_mark(); 568 error = -zfs_holey(ITOZ(ip), whence, &offset); 569 spl_fstrans_unmark(cookie); 570 if (error == 0) 571 error = lseek_execute(filp, ip, offset, maxbytes); 572 spl_inode_unlock_shared(ip); 573 574 return (error); 575 } 576 #endif /* SEEK_HOLE && SEEK_DATA */ 577 578 return (generic_file_llseek(filp, offset, whence)); 579 } 580 581 /* 582 * It's worth taking a moment to describe how mmap is implemented 583 * for zfs because it differs considerably from other Linux filesystems. 584 * However, this issue is handled the same way under OpenSolaris. 585 * 586 * The issue is that by design zfs bypasses the Linux page cache and 587 * leaves all caching up to the ARC. This has been shown to work 588 * well for the common read(2)/write(2) case. However, mmap(2) 589 * is problem because it relies on being tightly integrated with the 590 * page cache. To handle this we cache mmap'ed files twice, once in 591 * the ARC and a second time in the page cache. The code is careful 592 * to keep both copies synchronized. 593 * 594 * When a file with an mmap'ed region is written to using write(2) 595 * both the data in the ARC and existing pages in the page cache 596 * are updated. For a read(2) data will be read first from the page 597 * cache then the ARC if needed. Neither a write(2) or read(2) will 598 * will ever result in new pages being added to the page cache. 599 * 600 * New pages are added to the page cache only via .readpage() which 601 * is called when the vfs needs to read a page off disk to back the 602 * virtual memory region. These pages may be modified without 603 * notifying the ARC and will be written out periodically via 604 * .writepage(). This will occur due to either a sync or the usual 605 * page aging behavior. Note because a read(2) of a mmap'ed file 606 * will always check the page cache first even when the ARC is out 607 * of date correct data will still be returned. 608 * 609 * While this implementation ensures correct behavior it does have 610 * have some drawbacks. The most obvious of which is that it 611 * increases the required memory footprint when access mmap'ed 612 * files. It also adds additional complexity to the code keeping 613 * both caches synchronized. 614 * 615 * Longer term it may be possible to cleanly resolve this wart by 616 * mapping page cache pages directly on to the ARC buffers. The 617 * Linux address space operations are flexible enough to allow 618 * selection of which pages back a particular index. The trick 619 * would be working out the details of which subsystem is in 620 * charge, the ARC, the page cache, or both. It may also prove 621 * helpful to move the ARC buffers to a scatter-gather lists 622 * rather than a vmalloc'ed region. 623 */ 624 static int 625 zpl_mmap(struct file *filp, struct vm_area_struct *vma) 626 { 627 struct inode *ip = filp->f_mapping->host; 628 int error; 629 fstrans_cookie_t cookie; 630 631 cookie = spl_fstrans_mark(); 632 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start, 633 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags); 634 spl_fstrans_unmark(cookie); 635 if (error) 636 return (error); 637 638 error = generic_file_mmap(filp, vma); 639 if (error) 640 return (error); 641 642 #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE) 643 znode_t *zp = ITOZ(ip); 644 mutex_enter(&zp->z_lock); 645 zp->z_is_mapped = B_TRUE; 646 mutex_exit(&zp->z_lock); 647 #endif 648 649 return (error); 650 } 651 652 /* 653 * Populate a page with data for the Linux page cache. This function is 654 * only used to support mmap(2). There will be an identical copy of the 655 * data in the ARC which is kept up to date via .write() and .writepage(). 656 */ 657 static inline int 658 zpl_readpage_common(struct page *pp) 659 { 660 fstrans_cookie_t cookie; 661 662 ASSERT(PageLocked(pp)); 663 664 cookie = spl_fstrans_mark(); 665 int error = -zfs_getpage(pp->mapping->host, pp); 666 spl_fstrans_unmark(cookie); 667 668 unlock_page(pp); 669 670 return (error); 671 } 672 673 #ifdef HAVE_VFS_READ_FOLIO 674 static int 675 zpl_read_folio(struct file *filp, struct folio *folio) 676 { 677 return (zpl_readpage_common(&folio->page)); 678 } 679 #else 680 static int 681 zpl_readpage(struct file *filp, struct page *pp) 682 { 683 return (zpl_readpage_common(pp)); 684 } 685 #endif 686 687 static int 688 zpl_readpage_filler(void *data, struct page *pp) 689 { 690 return (zpl_readpage_common(pp)); 691 } 692 693 /* 694 * Populate a set of pages with data for the Linux page cache. This 695 * function will only be called for read ahead and never for demand 696 * paging. For simplicity, the code relies on read_cache_pages() to 697 * correctly lock each page for IO and call zpl_readpage(). 698 */ 699 #ifdef HAVE_VFS_READPAGES 700 static int 701 zpl_readpages(struct file *filp, struct address_space *mapping, 702 struct list_head *pages, unsigned nr_pages) 703 { 704 return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL)); 705 } 706 #else 707 static void 708 zpl_readahead(struct readahead_control *ractl) 709 { 710 struct page *page; 711 712 while ((page = readahead_page(ractl)) != NULL) { 713 int ret; 714 715 ret = zpl_readpage_filler(NULL, page); 716 put_page(page); 717 if (ret) 718 break; 719 } 720 } 721 #endif 722 723 static int 724 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data) 725 { 726 boolean_t *for_sync = data; 727 fstrans_cookie_t cookie; 728 729 ASSERT(PageLocked(pp)); 730 ASSERT(!PageWriteback(pp)); 731 732 cookie = spl_fstrans_mark(); 733 (void) zfs_putpage(pp->mapping->host, pp, wbc, *for_sync); 734 spl_fstrans_unmark(cookie); 735 736 return (0); 737 } 738 739 #ifdef HAVE_WRITEPAGE_T_FOLIO 740 static int 741 zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data) 742 { 743 (void) zpl_putpage(&pp->page, wbc, data); 744 return (0); 745 } 746 #endif 747 748 static inline int 749 zpl_write_cache_pages(struct address_space *mapping, 750 struct writeback_control *wbc, void *data) 751 { 752 int result; 753 754 #ifdef HAVE_WRITEPAGE_T_FOLIO 755 result = write_cache_pages(mapping, wbc, zpl_putfolio, data); 756 #else 757 result = write_cache_pages(mapping, wbc, zpl_putpage, data); 758 #endif 759 return (result); 760 } 761 762 static int 763 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc) 764 { 765 znode_t *zp = ITOZ(mapping->host); 766 zfsvfs_t *zfsvfs = ITOZSB(mapping->host); 767 enum writeback_sync_modes sync_mode; 768 int result; 769 770 if ((result = zpl_enter(zfsvfs, FTAG)) != 0) 771 return (result); 772 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 773 wbc->sync_mode = WB_SYNC_ALL; 774 zpl_exit(zfsvfs, FTAG); 775 sync_mode = wbc->sync_mode; 776 777 /* 778 * We don't want to run write_cache_pages() in SYNC mode here, because 779 * that would make putpage() wait for a single page to be committed to 780 * disk every single time, resulting in atrocious performance. Instead 781 * we run it once in non-SYNC mode so that the ZIL gets all the data, 782 * and then we commit it all in one go. 783 */ 784 boolean_t for_sync = (sync_mode == WB_SYNC_ALL); 785 wbc->sync_mode = WB_SYNC_NONE; 786 result = zpl_write_cache_pages(mapping, wbc, &for_sync); 787 if (sync_mode != wbc->sync_mode) { 788 if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 789 return (result); 790 if (zfsvfs->z_log != NULL) 791 zil_commit(zfsvfs->z_log, zp->z_id); 792 zpl_exit(zfsvfs, FTAG); 793 794 /* 795 * We need to call write_cache_pages() again (we can't just 796 * return after the commit) because the previous call in 797 * non-SYNC mode does not guarantee that we got all the dirty 798 * pages (see the implementation of write_cache_pages() for 799 * details). That being said, this is a no-op in most cases. 800 */ 801 wbc->sync_mode = sync_mode; 802 result = zpl_write_cache_pages(mapping, wbc, &for_sync); 803 } 804 return (result); 805 } 806 807 /* 808 * Write out dirty pages to the ARC, this function is only required to 809 * support mmap(2). Mapped pages may be dirtied by memory operations 810 * which never call .write(). These dirty pages are kept in sync with 811 * the ARC buffers via this hook. 812 */ 813 static int 814 zpl_writepage(struct page *pp, struct writeback_control *wbc) 815 { 816 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS) 817 wbc->sync_mode = WB_SYNC_ALL; 818 819 boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL); 820 821 return (zpl_putpage(pp, wbc, &for_sync)); 822 } 823 824 /* 825 * The flag combination which matches the behavior of zfs_space() is 826 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE 827 * flag was introduced in the 2.6.38 kernel. 828 * 829 * The original mode=0 (allocate space) behavior can be reasonably emulated 830 * by checking if enough space exists and creating a sparse file, as real 831 * persistent space reservation is not possible due to COW, snapshots, etc. 832 */ 833 static long 834 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len) 835 { 836 cred_t *cr = CRED(); 837 loff_t olen; 838 fstrans_cookie_t cookie; 839 int error = 0; 840 841 int test_mode = FALLOC_FL_PUNCH_HOLE; 842 #ifdef HAVE_FALLOC_FL_ZERO_RANGE 843 test_mode |= FALLOC_FL_ZERO_RANGE; 844 #endif 845 846 if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0) 847 return (-EOPNOTSUPP); 848 849 if (offset < 0 || len <= 0) 850 return (-EINVAL); 851 852 spl_inode_lock(ip); 853 olen = i_size_read(ip); 854 855 crhold(cr); 856 cookie = spl_fstrans_mark(); 857 if (mode & (test_mode)) { 858 flock64_t bf; 859 860 if (mode & FALLOC_FL_KEEP_SIZE) { 861 if (offset > olen) 862 goto out_unmark; 863 864 if (offset + len > olen) 865 len = olen - offset; 866 } 867 bf.l_type = F_WRLCK; 868 bf.l_whence = SEEK_SET; 869 bf.l_start = offset; 870 bf.l_len = len; 871 bf.l_pid = 0; 872 873 error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr); 874 } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) { 875 unsigned int percent = zfs_fallocate_reserve_percent; 876 struct kstatfs statfs; 877 878 /* Legacy mode, disable fallocate compatibility. */ 879 if (percent == 0) { 880 error = -EOPNOTSUPP; 881 goto out_unmark; 882 } 883 884 /* 885 * Use zfs_statvfs() instead of dmu_objset_space() since it 886 * also checks project quota limits, which are relevant here. 887 */ 888 error = zfs_statvfs(ip, &statfs); 889 if (error) 890 goto out_unmark; 891 892 /* 893 * Shrink available space a bit to account for overhead/races. 894 * We know the product previously fit into availbytes from 895 * dmu_objset_space(), so the smaller product will also fit. 896 */ 897 if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) { 898 error = -ENOSPC; 899 goto out_unmark; 900 } 901 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen) 902 error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE); 903 } 904 out_unmark: 905 spl_fstrans_unmark(cookie); 906 spl_inode_unlock(ip); 907 908 crfree(cr); 909 910 return (error); 911 } 912 913 static long 914 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len) 915 { 916 return zpl_fallocate_common(file_inode(filp), 917 mode, offset, len); 918 } 919 920 static int 921 zpl_ioctl_getversion(struct file *filp, void __user *arg) 922 { 923 uint32_t generation = file_inode(filp)->i_generation; 924 925 return (copy_to_user(arg, &generation, sizeof (generation))); 926 } 927 928 #ifdef HAVE_FILE_FADVISE 929 static int 930 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice) 931 { 932 struct inode *ip = file_inode(filp); 933 znode_t *zp = ITOZ(ip); 934 zfsvfs_t *zfsvfs = ITOZSB(ip); 935 objset_t *os = zfsvfs->z_os; 936 int error = 0; 937 938 if (S_ISFIFO(ip->i_mode)) 939 return (-ESPIPE); 940 941 if (offset < 0 || len < 0) 942 return (-EINVAL); 943 944 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 945 return (error); 946 947 switch (advice) { 948 case POSIX_FADV_SEQUENTIAL: 949 case POSIX_FADV_WILLNEED: 950 #ifdef HAVE_GENERIC_FADVISE 951 if (zn_has_cached_data(zp, offset, offset + len - 1)) 952 error = generic_fadvise(filp, offset, len, advice); 953 #endif 954 /* 955 * Pass on the caller's size directly, but note that 956 * dmu_prefetch_max will effectively cap it. If there 957 * really is a larger sequential access pattern, perhaps 958 * dmu_zfetch will detect it. 959 */ 960 if (len == 0) 961 len = i_size_read(ip) - offset; 962 963 dmu_prefetch(os, zp->z_id, 0, offset, len, 964 ZIO_PRIORITY_ASYNC_READ); 965 break; 966 case POSIX_FADV_NORMAL: 967 case POSIX_FADV_RANDOM: 968 case POSIX_FADV_DONTNEED: 969 case POSIX_FADV_NOREUSE: 970 /* ignored for now */ 971 break; 972 default: 973 error = -EINVAL; 974 break; 975 } 976 977 zfs_exit(zfsvfs, FTAG); 978 979 return (error); 980 } 981 #endif /* HAVE_FILE_FADVISE */ 982 983 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL) 984 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL) 985 986 static uint32_t 987 __zpl_ioctl_getflags(struct inode *ip) 988 { 989 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 990 uint32_t ioctl_flags = 0; 991 992 if (zfs_flags & ZFS_IMMUTABLE) 993 ioctl_flags |= FS_IMMUTABLE_FL; 994 995 if (zfs_flags & ZFS_APPENDONLY) 996 ioctl_flags |= FS_APPEND_FL; 997 998 if (zfs_flags & ZFS_NODUMP) 999 ioctl_flags |= FS_NODUMP_FL; 1000 1001 if (zfs_flags & ZFS_PROJINHERIT) 1002 ioctl_flags |= ZFS_PROJINHERIT_FL; 1003 1004 return (ioctl_flags & ZFS_FL_USER_VISIBLE); 1005 } 1006 1007 /* 1008 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file 1009 * attributes common to both Linux and Solaris are mapped. 1010 */ 1011 static int 1012 zpl_ioctl_getflags(struct file *filp, void __user *arg) 1013 { 1014 uint32_t flags; 1015 int err; 1016 1017 flags = __zpl_ioctl_getflags(file_inode(filp)); 1018 err = copy_to_user(arg, &flags, sizeof (flags)); 1019 1020 return (err); 1021 } 1022 1023 /* 1024 * fchange() is a helper macro to detect if we have been asked to change a 1025 * flag. This is ugly, but the requirement that we do this is a consequence of 1026 * how the Linux file attribute interface was designed. Another consequence is 1027 * that concurrent modification of files suffers from a TOCTOU race. Neither 1028 * are things we can fix without modifying the kernel-userland interface, which 1029 * is outside of our jurisdiction. 1030 */ 1031 1032 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1))) 1033 1034 static int 1035 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva) 1036 { 1037 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 1038 xoptattr_t *xoap; 1039 1040 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL | 1041 ZFS_PROJINHERIT_FL)) 1042 return (-EOPNOTSUPP); 1043 1044 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE) 1045 return (-EACCES); 1046 1047 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) || 1048 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) && 1049 !capable(CAP_LINUX_IMMUTABLE)) 1050 return (-EPERM); 1051 1052 if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip)) 1053 return (-EACCES); 1054 1055 xva_init(xva); 1056 xoap = xva_getxoptattr(xva); 1057 1058 #define FLAG_CHANGE(iflag, zflag, xflag, xfield) do { \ 1059 if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) || \ 1060 ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) { \ 1061 XVA_SET_REQ(xva, (xflag)); \ 1062 (xfield) = ((ioctl_flags & (iflag)) != 0); \ 1063 } \ 1064 } while (0) 1065 1066 FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE, 1067 xoap->xoa_immutable); 1068 FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY, 1069 xoap->xoa_appendonly); 1070 FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP, 1071 xoap->xoa_nodump); 1072 FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT, 1073 xoap->xoa_projinherit); 1074 1075 #undef FLAG_CHANGE 1076 1077 return (0); 1078 } 1079 1080 static int 1081 zpl_ioctl_setflags(struct file *filp, void __user *arg) 1082 { 1083 struct inode *ip = file_inode(filp); 1084 uint32_t flags; 1085 cred_t *cr = CRED(); 1086 xvattr_t xva; 1087 int err; 1088 fstrans_cookie_t cookie; 1089 1090 if (copy_from_user(&flags, arg, sizeof (flags))) 1091 return (-EFAULT); 1092 1093 err = __zpl_ioctl_setflags(ip, flags, &xva); 1094 if (err) 1095 return (err); 1096 1097 crhold(cr); 1098 cookie = spl_fstrans_mark(); 1099 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap); 1100 spl_fstrans_unmark(cookie); 1101 crfree(cr); 1102 1103 return (err); 1104 } 1105 1106 static int 1107 zpl_ioctl_getxattr(struct file *filp, void __user *arg) 1108 { 1109 zfsxattr_t fsx = { 0 }; 1110 struct inode *ip = file_inode(filp); 1111 int err; 1112 1113 fsx.fsx_xflags = __zpl_ioctl_getflags(ip); 1114 fsx.fsx_projid = ITOZ(ip)->z_projid; 1115 err = copy_to_user(arg, &fsx, sizeof (fsx)); 1116 1117 return (err); 1118 } 1119 1120 static int 1121 zpl_ioctl_setxattr(struct file *filp, void __user *arg) 1122 { 1123 struct inode *ip = file_inode(filp); 1124 zfsxattr_t fsx; 1125 cred_t *cr = CRED(); 1126 xvattr_t xva; 1127 xoptattr_t *xoap; 1128 int err; 1129 fstrans_cookie_t cookie; 1130 1131 if (copy_from_user(&fsx, arg, sizeof (fsx))) 1132 return (-EFAULT); 1133 1134 if (!zpl_is_valid_projid(fsx.fsx_projid)) 1135 return (-EINVAL); 1136 1137 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva); 1138 if (err) 1139 return (err); 1140 1141 xoap = xva_getxoptattr(&xva); 1142 XVA_SET_REQ(&xva, XAT_PROJID); 1143 xoap->xoa_projid = fsx.fsx_projid; 1144 1145 crhold(cr); 1146 cookie = spl_fstrans_mark(); 1147 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap); 1148 spl_fstrans_unmark(cookie); 1149 crfree(cr); 1150 1151 return (err); 1152 } 1153 1154 /* 1155 * Expose Additional File Level Attributes of ZFS. 1156 */ 1157 static int 1158 zpl_ioctl_getdosflags(struct file *filp, void __user *arg) 1159 { 1160 struct inode *ip = file_inode(filp); 1161 uint64_t dosflags = ITOZ(ip)->z_pflags; 1162 dosflags &= ZFS_DOS_FL_USER_VISIBLE; 1163 int err = copy_to_user(arg, &dosflags, sizeof (dosflags)); 1164 1165 return (err); 1166 } 1167 1168 static int 1169 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva) 1170 { 1171 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 1172 xoptattr_t *xoap; 1173 1174 if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE)) 1175 return (-EOPNOTSUPP); 1176 1177 if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) || 1178 fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) && 1179 !capable(CAP_LINUX_IMMUTABLE)) 1180 return (-EPERM); 1181 1182 if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip)) 1183 return (-EACCES); 1184 1185 xva_init(xva); 1186 xoap = xva_getxoptattr(xva); 1187 1188 #define FLAG_CHANGE(iflag, xflag, xfield) do { \ 1189 if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) || \ 1190 ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) { \ 1191 XVA_SET_REQ(xva, (xflag)); \ 1192 (xfield) = ((ioctl_flags & (iflag)) != 0); \ 1193 } \ 1194 } while (0) 1195 1196 FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable); 1197 FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly); 1198 FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump); 1199 FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly); 1200 FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden); 1201 FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system); 1202 FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive); 1203 FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink); 1204 FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse); 1205 FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline); 1206 FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse); 1207 1208 #undef FLAG_CHANGE 1209 1210 return (0); 1211 } 1212 1213 /* 1214 * Set Additional File Level Attributes of ZFS. 1215 */ 1216 static int 1217 zpl_ioctl_setdosflags(struct file *filp, void __user *arg) 1218 { 1219 struct inode *ip = file_inode(filp); 1220 uint64_t dosflags; 1221 cred_t *cr = CRED(); 1222 xvattr_t xva; 1223 int err; 1224 fstrans_cookie_t cookie; 1225 1226 if (copy_from_user(&dosflags, arg, sizeof (dosflags))) 1227 return (-EFAULT); 1228 1229 err = __zpl_ioctl_setdosflags(ip, dosflags, &xva); 1230 if (err) 1231 return (err); 1232 1233 crhold(cr); 1234 cookie = spl_fstrans_mark(); 1235 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap); 1236 spl_fstrans_unmark(cookie); 1237 crfree(cr); 1238 1239 return (err); 1240 } 1241 1242 static long 1243 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 1244 { 1245 switch (cmd) { 1246 case FS_IOC_GETVERSION: 1247 return (zpl_ioctl_getversion(filp, (void *)arg)); 1248 case FS_IOC_GETFLAGS: 1249 return (zpl_ioctl_getflags(filp, (void *)arg)); 1250 case FS_IOC_SETFLAGS: 1251 return (zpl_ioctl_setflags(filp, (void *)arg)); 1252 case ZFS_IOC_FSGETXATTR: 1253 return (zpl_ioctl_getxattr(filp, (void *)arg)); 1254 case ZFS_IOC_FSSETXATTR: 1255 return (zpl_ioctl_setxattr(filp, (void *)arg)); 1256 case ZFS_IOC_GETDOSFLAGS: 1257 return (zpl_ioctl_getdosflags(filp, (void *)arg)); 1258 case ZFS_IOC_SETDOSFLAGS: 1259 return (zpl_ioctl_setdosflags(filp, (void *)arg)); 1260 default: 1261 return (-ENOTTY); 1262 } 1263 } 1264 1265 #ifdef CONFIG_COMPAT 1266 static long 1267 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 1268 { 1269 switch (cmd) { 1270 case FS_IOC32_GETVERSION: 1271 cmd = FS_IOC_GETVERSION; 1272 break; 1273 case FS_IOC32_GETFLAGS: 1274 cmd = FS_IOC_GETFLAGS; 1275 break; 1276 case FS_IOC32_SETFLAGS: 1277 cmd = FS_IOC_SETFLAGS; 1278 break; 1279 default: 1280 return (-ENOTTY); 1281 } 1282 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg))); 1283 } 1284 #endif /* CONFIG_COMPAT */ 1285 1286 1287 const struct address_space_operations zpl_address_space_operations = { 1288 #ifdef HAVE_VFS_READPAGES 1289 .readpages = zpl_readpages, 1290 #else 1291 .readahead = zpl_readahead, 1292 #endif 1293 #ifdef HAVE_VFS_READ_FOLIO 1294 .read_folio = zpl_read_folio, 1295 #else 1296 .readpage = zpl_readpage, 1297 #endif 1298 .writepage = zpl_writepage, 1299 .writepages = zpl_writepages, 1300 .direct_IO = zpl_direct_IO, 1301 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS 1302 .set_page_dirty = __set_page_dirty_nobuffers, 1303 #endif 1304 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO 1305 .dirty_folio = filemap_dirty_folio, 1306 #endif 1307 }; 1308 1309 const struct file_operations zpl_file_operations = { 1310 .open = zpl_open, 1311 .release = zpl_release, 1312 .llseek = zpl_llseek, 1313 #ifdef HAVE_VFS_RW_ITERATE 1314 #ifdef HAVE_NEW_SYNC_READ 1315 .read = new_sync_read, 1316 .write = new_sync_write, 1317 #endif 1318 .read_iter = zpl_iter_read, 1319 .write_iter = zpl_iter_write, 1320 #ifdef HAVE_VFS_IOV_ITER 1321 .splice_read = generic_file_splice_read, 1322 .splice_write = iter_file_splice_write, 1323 #endif 1324 #else 1325 .read = do_sync_read, 1326 .write = do_sync_write, 1327 .aio_read = zpl_aio_read, 1328 .aio_write = zpl_aio_write, 1329 #endif 1330 .mmap = zpl_mmap, 1331 .fsync = zpl_fsync, 1332 #ifdef HAVE_FILE_AIO_FSYNC 1333 .aio_fsync = zpl_aio_fsync, 1334 #endif 1335 .fallocate = zpl_fallocate, 1336 #ifdef HAVE_FILE_FADVISE 1337 .fadvise = zpl_fadvise, 1338 #endif 1339 .unlocked_ioctl = zpl_ioctl, 1340 #ifdef CONFIG_COMPAT 1341 .compat_ioctl = zpl_compat_ioctl, 1342 #endif 1343 }; 1344 1345 const struct file_operations zpl_dir_file_operations = { 1346 .llseek = generic_file_llseek, 1347 .read = generic_read_dir, 1348 #if defined(HAVE_VFS_ITERATE_SHARED) 1349 .iterate_shared = zpl_iterate, 1350 #elif defined(HAVE_VFS_ITERATE) 1351 .iterate = zpl_iterate, 1352 #else 1353 .readdir = zpl_readdir, 1354 #endif 1355 .fsync = zpl_fsync, 1356 .unlocked_ioctl = zpl_ioctl, 1357 #ifdef CONFIG_COMPAT 1358 .compat_ioctl = zpl_compat_ioctl, 1359 #endif 1360 }; 1361 1362 /* CSTYLED */ 1363 module_param(zfs_fallocate_reserve_percent, uint, 0644); 1364 MODULE_PARM_DESC(zfs_fallocate_reserve_percent, 1365 "Percentage of length to use for the available capacity check"); 1366