1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC. 23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 24 */ 25 26 27 #ifdef CONFIG_COMPAT 28 #include <linux/compat.h> 29 #endif 30 #include <sys/file.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/zfs_znode.h> 33 #include <sys/zfs_vfsops.h> 34 #include <sys/zfs_vnops.h> 35 #include <sys/zfs_project.h> 36 37 /* 38 * When using fallocate(2) to preallocate space, inflate the requested 39 * capacity check by 10% to account for the required metadata blocks. 40 */ 41 unsigned int zfs_fallocate_reserve_percent = 110; 42 43 static int 44 zpl_open(struct inode *ip, struct file *filp) 45 { 46 cred_t *cr = CRED(); 47 int error; 48 fstrans_cookie_t cookie; 49 50 error = generic_file_open(ip, filp); 51 if (error) 52 return (error); 53 54 crhold(cr); 55 cookie = spl_fstrans_mark(); 56 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr); 57 spl_fstrans_unmark(cookie); 58 crfree(cr); 59 ASSERT3S(error, <=, 0); 60 61 return (error); 62 } 63 64 static int 65 zpl_release(struct inode *ip, struct file *filp) 66 { 67 cred_t *cr = CRED(); 68 int error; 69 fstrans_cookie_t cookie; 70 71 cookie = spl_fstrans_mark(); 72 if (ITOZ(ip)->z_atime_dirty) 73 zfs_mark_inode_dirty(ip); 74 75 crhold(cr); 76 error = -zfs_close(ip, filp->f_flags, cr); 77 spl_fstrans_unmark(cookie); 78 crfree(cr); 79 ASSERT3S(error, <=, 0); 80 81 return (error); 82 } 83 84 static int 85 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx) 86 { 87 cred_t *cr = CRED(); 88 int error; 89 fstrans_cookie_t cookie; 90 91 crhold(cr); 92 cookie = spl_fstrans_mark(); 93 error = -zfs_readdir(file_inode(filp), ctx, cr); 94 spl_fstrans_unmark(cookie); 95 crfree(cr); 96 ASSERT3S(error, <=, 0); 97 98 return (error); 99 } 100 101 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED) 102 static int 103 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir) 104 { 105 zpl_dir_context_t ctx = 106 ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos); 107 int error; 108 109 error = zpl_iterate(filp, &ctx); 110 filp->f_pos = ctx.pos; 111 112 return (error); 113 } 114 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */ 115 116 #if defined(HAVE_FSYNC_WITHOUT_DENTRY) 117 /* 118 * Linux 2.6.35 - 3.0 API, 119 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed 120 * redundant. The dentry is still accessible via filp->f_path.dentry, 121 * and we are guaranteed that filp will never be NULL. 122 */ 123 static int 124 zpl_fsync(struct file *filp, int datasync) 125 { 126 struct inode *inode = filp->f_mapping->host; 127 cred_t *cr = CRED(); 128 int error; 129 fstrans_cookie_t cookie; 130 131 crhold(cr); 132 cookie = spl_fstrans_mark(); 133 error = -zfs_fsync(ITOZ(inode), datasync, cr); 134 spl_fstrans_unmark(cookie); 135 crfree(cr); 136 ASSERT3S(error, <=, 0); 137 138 return (error); 139 } 140 141 #ifdef HAVE_FILE_AIO_FSYNC 142 static int 143 zpl_aio_fsync(struct kiocb *kiocb, int datasync) 144 { 145 return (zpl_fsync(kiocb->ki_filp, datasync)); 146 } 147 #endif 148 149 #elif defined(HAVE_FSYNC_RANGE) 150 /* 151 * Linux 3.1 API, 152 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has 153 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex 154 * lock is no longer held by the caller, for zfs we don't require the lock 155 * to be held so we don't acquire it. 156 */ 157 static int 158 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 159 { 160 struct inode *inode = filp->f_mapping->host; 161 cred_t *cr = CRED(); 162 int error; 163 fstrans_cookie_t cookie; 164 165 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 166 if (error) 167 return (error); 168 169 crhold(cr); 170 cookie = spl_fstrans_mark(); 171 error = -zfs_fsync(ITOZ(inode), datasync, cr); 172 spl_fstrans_unmark(cookie); 173 crfree(cr); 174 ASSERT3S(error, <=, 0); 175 176 return (error); 177 } 178 179 #ifdef HAVE_FILE_AIO_FSYNC 180 static int 181 zpl_aio_fsync(struct kiocb *kiocb, int datasync) 182 { 183 return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync)); 184 } 185 #endif 186 187 #else 188 #error "Unsupported fops->fsync() implementation" 189 #endif 190 191 static inline int 192 zfs_io_flags(struct kiocb *kiocb) 193 { 194 int flags = 0; 195 196 #if defined(IOCB_DSYNC) 197 if (kiocb->ki_flags & IOCB_DSYNC) 198 flags |= O_DSYNC; 199 #endif 200 #if defined(IOCB_SYNC) 201 if (kiocb->ki_flags & IOCB_SYNC) 202 flags |= O_SYNC; 203 #endif 204 #if defined(IOCB_APPEND) 205 if (kiocb->ki_flags & IOCB_APPEND) 206 flags |= O_APPEND; 207 #endif 208 #if defined(IOCB_DIRECT) 209 if (kiocb->ki_flags & IOCB_DIRECT) 210 flags |= O_DIRECT; 211 #endif 212 return (flags); 213 } 214 215 /* 216 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update() 217 * is true. This is needed since datasets with inherited "relatime" property 218 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after 219 * `zfs set relatime=...`), which is what relatime test in VFS by 220 * relatime_need_update() is based on. 221 */ 222 static inline void 223 zpl_file_accessed(struct file *filp) 224 { 225 struct inode *ip = filp->f_mapping->host; 226 227 if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) { 228 if (zfs_relatime_need_update(ip)) 229 file_accessed(filp); 230 } else { 231 file_accessed(filp); 232 } 233 } 234 235 #if defined(HAVE_VFS_RW_ITERATE) 236 237 /* 238 * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports 239 * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to 240 * manipulate the iov_iter are available. In which case the full iov_iter 241 * can be attached to the uio and correctly handled in the lower layers. 242 * Otherwise, for older kernels extract the iovec and pass it instead. 243 */ 244 static void 245 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to, 246 loff_t pos, ssize_t count, size_t skip) 247 { 248 #if defined(HAVE_VFS_IOV_ITER) 249 zfs_uio_iov_iter_init(uio, to, pos, count, skip); 250 #else 251 zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos, 252 to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE, 253 count, skip); 254 #endif 255 } 256 257 static ssize_t 258 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to) 259 { 260 cred_t *cr = CRED(); 261 fstrans_cookie_t cookie; 262 struct file *filp = kiocb->ki_filp; 263 ssize_t count = iov_iter_count(to); 264 zfs_uio_t uio; 265 266 zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0); 267 268 crhold(cr); 269 cookie = spl_fstrans_mark(); 270 271 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio, 272 filp->f_flags | zfs_io_flags(kiocb), cr); 273 274 spl_fstrans_unmark(cookie); 275 crfree(cr); 276 277 if (error < 0) 278 return (error); 279 280 ssize_t read = count - uio.uio_resid; 281 kiocb->ki_pos += read; 282 283 zpl_file_accessed(filp); 284 285 return (read); 286 } 287 288 static inline ssize_t 289 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from, 290 size_t *countp) 291 { 292 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB 293 ssize_t ret = generic_write_checks(kiocb, from); 294 if (ret <= 0) 295 return (ret); 296 297 *countp = ret; 298 #else 299 struct file *file = kiocb->ki_filp; 300 struct address_space *mapping = file->f_mapping; 301 struct inode *ip = mapping->host; 302 int isblk = S_ISBLK(ip->i_mode); 303 304 *countp = iov_iter_count(from); 305 ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk); 306 if (ret) 307 return (ret); 308 #endif 309 310 return (0); 311 } 312 313 static ssize_t 314 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from) 315 { 316 cred_t *cr = CRED(); 317 fstrans_cookie_t cookie; 318 struct file *filp = kiocb->ki_filp; 319 struct inode *ip = filp->f_mapping->host; 320 zfs_uio_t uio; 321 size_t count = 0; 322 ssize_t ret; 323 324 ret = zpl_generic_write_checks(kiocb, from, &count); 325 if (ret) 326 return (ret); 327 328 zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset); 329 330 crhold(cr); 331 cookie = spl_fstrans_mark(); 332 333 int error = -zfs_write(ITOZ(ip), &uio, 334 filp->f_flags | zfs_io_flags(kiocb), cr); 335 336 spl_fstrans_unmark(cookie); 337 crfree(cr); 338 339 if (error < 0) 340 return (error); 341 342 ssize_t wrote = count - uio.uio_resid; 343 kiocb->ki_pos += wrote; 344 345 return (wrote); 346 } 347 348 #else /* !HAVE_VFS_RW_ITERATE */ 349 350 static ssize_t 351 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov, 352 unsigned long nr_segs, loff_t pos) 353 { 354 cred_t *cr = CRED(); 355 fstrans_cookie_t cookie; 356 struct file *filp = kiocb->ki_filp; 357 size_t count; 358 ssize_t ret; 359 360 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 361 if (ret) 362 return (ret); 363 364 zfs_uio_t uio; 365 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE, 366 count, 0); 367 368 crhold(cr); 369 cookie = spl_fstrans_mark(); 370 371 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio, 372 filp->f_flags | zfs_io_flags(kiocb), cr); 373 374 spl_fstrans_unmark(cookie); 375 crfree(cr); 376 377 if (error < 0) 378 return (error); 379 380 ssize_t read = count - uio.uio_resid; 381 kiocb->ki_pos += read; 382 383 zpl_file_accessed(filp); 384 385 return (read); 386 } 387 388 static ssize_t 389 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov, 390 unsigned long nr_segs, loff_t pos) 391 { 392 cred_t *cr = CRED(); 393 fstrans_cookie_t cookie; 394 struct file *filp = kiocb->ki_filp; 395 struct inode *ip = filp->f_mapping->host; 396 size_t count; 397 ssize_t ret; 398 399 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ); 400 if (ret) 401 return (ret); 402 403 ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode)); 404 if (ret) 405 return (ret); 406 407 zfs_uio_t uio; 408 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE, 409 count, 0); 410 411 crhold(cr); 412 cookie = spl_fstrans_mark(); 413 414 int error = -zfs_write(ITOZ(ip), &uio, 415 filp->f_flags | zfs_io_flags(kiocb), cr); 416 417 spl_fstrans_unmark(cookie); 418 crfree(cr); 419 420 if (error < 0) 421 return (error); 422 423 ssize_t wrote = count - uio.uio_resid; 424 kiocb->ki_pos += wrote; 425 426 return (wrote); 427 } 428 #endif /* HAVE_VFS_RW_ITERATE */ 429 430 #if defined(HAVE_VFS_RW_ITERATE) 431 static ssize_t 432 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter) 433 { 434 if (rw == WRITE) 435 return (zpl_iter_write(kiocb, iter)); 436 else 437 return (zpl_iter_read(kiocb, iter)); 438 } 439 #if defined(HAVE_VFS_DIRECT_IO_ITER) 440 static ssize_t 441 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter) 442 { 443 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter)); 444 } 445 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET) 446 static ssize_t 447 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 448 { 449 ASSERT3S(pos, ==, kiocb->ki_pos); 450 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter)); 451 } 452 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET) 453 static ssize_t 454 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 455 { 456 ASSERT3S(pos, ==, kiocb->ki_pos); 457 return (zpl_direct_IO_impl(rw, kiocb, iter)); 458 } 459 #else 460 #error "Unknown direct IO interface" 461 #endif 462 463 #else /* HAVE_VFS_RW_ITERATE */ 464 465 #if defined(HAVE_VFS_DIRECT_IO_IOVEC) 466 static ssize_t 467 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov, 468 loff_t pos, unsigned long nr_segs) 469 { 470 if (rw == WRITE) 471 return (zpl_aio_write(kiocb, iov, nr_segs, pos)); 472 else 473 return (zpl_aio_read(kiocb, iov, nr_segs, pos)); 474 } 475 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET) 476 static ssize_t 477 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos) 478 { 479 const struct iovec *iovp = iov_iter_iovec(iter); 480 unsigned long nr_segs = iter->nr_segs; 481 482 ASSERT3S(pos, ==, kiocb->ki_pos); 483 if (rw == WRITE) 484 return (zpl_aio_write(kiocb, iovp, nr_segs, pos)); 485 else 486 return (zpl_aio_read(kiocb, iovp, nr_segs, pos)); 487 } 488 #else 489 #error "Unknown direct IO interface" 490 #endif 491 492 #endif /* HAVE_VFS_RW_ITERATE */ 493 494 static loff_t 495 zpl_llseek(struct file *filp, loff_t offset, int whence) 496 { 497 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 498 fstrans_cookie_t cookie; 499 500 if (whence == SEEK_DATA || whence == SEEK_HOLE) { 501 struct inode *ip = filp->f_mapping->host; 502 loff_t maxbytes = ip->i_sb->s_maxbytes; 503 loff_t error; 504 505 spl_inode_lock_shared(ip); 506 cookie = spl_fstrans_mark(); 507 error = -zfs_holey(ITOZ(ip), whence, &offset); 508 spl_fstrans_unmark(cookie); 509 if (error == 0) 510 error = lseek_execute(filp, ip, offset, maxbytes); 511 spl_inode_unlock_shared(ip); 512 513 return (error); 514 } 515 #endif /* SEEK_HOLE && SEEK_DATA */ 516 517 return (generic_file_llseek(filp, offset, whence)); 518 } 519 520 /* 521 * It's worth taking a moment to describe how mmap is implemented 522 * for zfs because it differs considerably from other Linux filesystems. 523 * However, this issue is handled the same way under OpenSolaris. 524 * 525 * The issue is that by design zfs bypasses the Linux page cache and 526 * leaves all caching up to the ARC. This has been shown to work 527 * well for the common read(2)/write(2) case. However, mmap(2) 528 * is problem because it relies on being tightly integrated with the 529 * page cache. To handle this we cache mmap'ed files twice, once in 530 * the ARC and a second time in the page cache. The code is careful 531 * to keep both copies synchronized. 532 * 533 * When a file with an mmap'ed region is written to using write(2) 534 * both the data in the ARC and existing pages in the page cache 535 * are updated. For a read(2) data will be read first from the page 536 * cache then the ARC if needed. Neither a write(2) or read(2) will 537 * will ever result in new pages being added to the page cache. 538 * 539 * New pages are added to the page cache only via .readpage() which 540 * is called when the vfs needs to read a page off disk to back the 541 * virtual memory region. These pages may be modified without 542 * notifying the ARC and will be written out periodically via 543 * .writepage(). This will occur due to either a sync or the usual 544 * page aging behavior. Note because a read(2) of a mmap'ed file 545 * will always check the page cache first even when the ARC is out 546 * of date correct data will still be returned. 547 * 548 * While this implementation ensures correct behavior it does have 549 * have some drawbacks. The most obvious of which is that it 550 * increases the required memory footprint when access mmap'ed 551 * files. It also adds additional complexity to the code keeping 552 * both caches synchronized. 553 * 554 * Longer term it may be possible to cleanly resolve this wart by 555 * mapping page cache pages directly on to the ARC buffers. The 556 * Linux address space operations are flexible enough to allow 557 * selection of which pages back a particular index. The trick 558 * would be working out the details of which subsystem is in 559 * charge, the ARC, the page cache, or both. It may also prove 560 * helpful to move the ARC buffers to a scatter-gather lists 561 * rather than a vmalloc'ed region. 562 */ 563 static int 564 zpl_mmap(struct file *filp, struct vm_area_struct *vma) 565 { 566 struct inode *ip = filp->f_mapping->host; 567 znode_t *zp = ITOZ(ip); 568 int error; 569 fstrans_cookie_t cookie; 570 571 cookie = spl_fstrans_mark(); 572 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start, 573 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags); 574 spl_fstrans_unmark(cookie); 575 if (error) 576 return (error); 577 578 error = generic_file_mmap(filp, vma); 579 if (error) 580 return (error); 581 582 mutex_enter(&zp->z_lock); 583 zp->z_is_mapped = B_TRUE; 584 mutex_exit(&zp->z_lock); 585 586 return (error); 587 } 588 589 /* 590 * Populate a page with data for the Linux page cache. This function is 591 * only used to support mmap(2). There will be an identical copy of the 592 * data in the ARC which is kept up to date via .write() and .writepage(). 593 */ 594 static inline int 595 zpl_readpage_common(struct page *pp) 596 { 597 struct inode *ip; 598 struct page *pl[1]; 599 int error = 0; 600 fstrans_cookie_t cookie; 601 602 ASSERT(PageLocked(pp)); 603 ip = pp->mapping->host; 604 pl[0] = pp; 605 606 cookie = spl_fstrans_mark(); 607 error = -zfs_getpage(ip, pl, 1); 608 spl_fstrans_unmark(cookie); 609 610 if (error) { 611 SetPageError(pp); 612 ClearPageUptodate(pp); 613 } else { 614 ClearPageError(pp); 615 SetPageUptodate(pp); 616 flush_dcache_page(pp); 617 } 618 619 unlock_page(pp); 620 return (error); 621 } 622 623 static int 624 zpl_readpage(struct file *filp, struct page *pp) 625 { 626 return (zpl_readpage_common(pp)); 627 } 628 629 static int 630 zpl_readpage_filler(void *data, struct page *pp) 631 { 632 return (zpl_readpage_common(pp)); 633 } 634 635 /* 636 * Populate a set of pages with data for the Linux page cache. This 637 * function will only be called for read ahead and never for demand 638 * paging. For simplicity, the code relies on read_cache_pages() to 639 * correctly lock each page for IO and call zpl_readpage(). 640 */ 641 static int 642 zpl_readpages(struct file *filp, struct address_space *mapping, 643 struct list_head *pages, unsigned nr_pages) 644 { 645 return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL)); 646 } 647 648 static int 649 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data) 650 { 651 struct address_space *mapping = data; 652 fstrans_cookie_t cookie; 653 654 ASSERT(PageLocked(pp)); 655 ASSERT(!PageWriteback(pp)); 656 657 cookie = spl_fstrans_mark(); 658 (void) zfs_putpage(mapping->host, pp, wbc); 659 spl_fstrans_unmark(cookie); 660 661 return (0); 662 } 663 664 static int 665 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc) 666 { 667 znode_t *zp = ITOZ(mapping->host); 668 zfsvfs_t *zfsvfs = ITOZSB(mapping->host); 669 enum writeback_sync_modes sync_mode; 670 int result; 671 672 ZPL_ENTER(zfsvfs); 673 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 674 wbc->sync_mode = WB_SYNC_ALL; 675 ZPL_EXIT(zfsvfs); 676 sync_mode = wbc->sync_mode; 677 678 /* 679 * We don't want to run write_cache_pages() in SYNC mode here, because 680 * that would make putpage() wait for a single page to be committed to 681 * disk every single time, resulting in atrocious performance. Instead 682 * we run it once in non-SYNC mode so that the ZIL gets all the data, 683 * and then we commit it all in one go. 684 */ 685 wbc->sync_mode = WB_SYNC_NONE; 686 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping); 687 if (sync_mode != wbc->sync_mode) { 688 ZPL_ENTER(zfsvfs); 689 ZPL_VERIFY_ZP(zp); 690 if (zfsvfs->z_log != NULL) 691 zil_commit(zfsvfs->z_log, zp->z_id); 692 ZPL_EXIT(zfsvfs); 693 694 /* 695 * We need to call write_cache_pages() again (we can't just 696 * return after the commit) because the previous call in 697 * non-SYNC mode does not guarantee that we got all the dirty 698 * pages (see the implementation of write_cache_pages() for 699 * details). That being said, this is a no-op in most cases. 700 */ 701 wbc->sync_mode = sync_mode; 702 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping); 703 } 704 return (result); 705 } 706 707 /* 708 * Write out dirty pages to the ARC, this function is only required to 709 * support mmap(2). Mapped pages may be dirtied by memory operations 710 * which never call .write(). These dirty pages are kept in sync with 711 * the ARC buffers via this hook. 712 */ 713 static int 714 zpl_writepage(struct page *pp, struct writeback_control *wbc) 715 { 716 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS) 717 wbc->sync_mode = WB_SYNC_ALL; 718 719 return (zpl_putpage(pp, wbc, pp->mapping)); 720 } 721 722 /* 723 * The flag combination which matches the behavior of zfs_space() is 724 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE 725 * flag was introduced in the 2.6.38 kernel. 726 * 727 * The original mode=0 (allocate space) behavior can be reasonably emulated 728 * by checking if enough space exists and creating a sparse file, as real 729 * persistent space reservation is not possible due to COW, snapshots, etc. 730 */ 731 static long 732 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len) 733 { 734 cred_t *cr = CRED(); 735 loff_t olen; 736 fstrans_cookie_t cookie; 737 int error = 0; 738 739 if ((mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) != 0) 740 return (-EOPNOTSUPP); 741 742 if (offset < 0 || len <= 0) 743 return (-EINVAL); 744 745 spl_inode_lock(ip); 746 olen = i_size_read(ip); 747 748 crhold(cr); 749 cookie = spl_fstrans_mark(); 750 if (mode & FALLOC_FL_PUNCH_HOLE) { 751 flock64_t bf; 752 753 if (offset > olen) 754 goto out_unmark; 755 756 if (offset + len > olen) 757 len = olen - offset; 758 bf.l_type = F_WRLCK; 759 bf.l_whence = SEEK_SET; 760 bf.l_start = offset; 761 bf.l_len = len; 762 bf.l_pid = 0; 763 764 error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr); 765 } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) { 766 unsigned int percent = zfs_fallocate_reserve_percent; 767 struct kstatfs statfs; 768 769 /* Legacy mode, disable fallocate compatibility. */ 770 if (percent == 0) { 771 error = -EOPNOTSUPP; 772 goto out_unmark; 773 } 774 775 /* 776 * Use zfs_statvfs() instead of dmu_objset_space() since it 777 * also checks project quota limits, which are relevant here. 778 */ 779 error = zfs_statvfs(ip, &statfs); 780 if (error) 781 goto out_unmark; 782 783 /* 784 * Shrink available space a bit to account for overhead/races. 785 * We know the product previously fit into availbytes from 786 * dmu_objset_space(), so the smaller product will also fit. 787 */ 788 if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) { 789 error = -ENOSPC; 790 goto out_unmark; 791 } 792 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen) 793 error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE); 794 } 795 out_unmark: 796 spl_fstrans_unmark(cookie); 797 spl_inode_unlock(ip); 798 799 crfree(cr); 800 801 return (error); 802 } 803 804 static long 805 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len) 806 { 807 return zpl_fallocate_common(file_inode(filp), 808 mode, offset, len); 809 } 810 811 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL) 812 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL) 813 814 static uint32_t 815 __zpl_ioctl_getflags(struct inode *ip) 816 { 817 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 818 uint32_t ioctl_flags = 0; 819 820 if (zfs_flags & ZFS_IMMUTABLE) 821 ioctl_flags |= FS_IMMUTABLE_FL; 822 823 if (zfs_flags & ZFS_APPENDONLY) 824 ioctl_flags |= FS_APPEND_FL; 825 826 if (zfs_flags & ZFS_NODUMP) 827 ioctl_flags |= FS_NODUMP_FL; 828 829 if (zfs_flags & ZFS_PROJINHERIT) 830 ioctl_flags |= ZFS_PROJINHERIT_FL; 831 832 return (ioctl_flags & ZFS_FL_USER_VISIBLE); 833 } 834 835 /* 836 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file 837 * attributes common to both Linux and Solaris are mapped. 838 */ 839 static int 840 zpl_ioctl_getflags(struct file *filp, void __user *arg) 841 { 842 uint32_t flags; 843 int err; 844 845 flags = __zpl_ioctl_getflags(file_inode(filp)); 846 err = copy_to_user(arg, &flags, sizeof (flags)); 847 848 return (err); 849 } 850 851 /* 852 * fchange() is a helper macro to detect if we have been asked to change a 853 * flag. This is ugly, but the requirement that we do this is a consequence of 854 * how the Linux file attribute interface was designed. Another consequence is 855 * that concurrent modification of files suffers from a TOCTOU race. Neither 856 * are things we can fix without modifying the kernel-userland interface, which 857 * is outside of our jurisdiction. 858 */ 859 860 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1))) 861 862 static int 863 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva) 864 { 865 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 866 xoptattr_t *xoap; 867 868 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL | 869 ZFS_PROJINHERIT_FL)) 870 return (-EOPNOTSUPP); 871 872 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE) 873 return (-EACCES); 874 875 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) || 876 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) && 877 !capable(CAP_LINUX_IMMUTABLE)) 878 return (-EPERM); 879 880 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip)) 881 return (-EACCES); 882 883 xva_init(xva); 884 xoap = xva_getxoptattr(xva); 885 886 XVA_SET_REQ(xva, XAT_IMMUTABLE); 887 if (ioctl_flags & FS_IMMUTABLE_FL) 888 xoap->xoa_immutable = B_TRUE; 889 890 XVA_SET_REQ(xva, XAT_APPENDONLY); 891 if (ioctl_flags & FS_APPEND_FL) 892 xoap->xoa_appendonly = B_TRUE; 893 894 XVA_SET_REQ(xva, XAT_NODUMP); 895 if (ioctl_flags & FS_NODUMP_FL) 896 xoap->xoa_nodump = B_TRUE; 897 898 XVA_SET_REQ(xva, XAT_PROJINHERIT); 899 if (ioctl_flags & ZFS_PROJINHERIT_FL) 900 xoap->xoa_projinherit = B_TRUE; 901 902 return (0); 903 } 904 905 static int 906 zpl_ioctl_setflags(struct file *filp, void __user *arg) 907 { 908 struct inode *ip = file_inode(filp); 909 uint32_t flags; 910 cred_t *cr = CRED(); 911 xvattr_t xva; 912 int err; 913 fstrans_cookie_t cookie; 914 915 if (copy_from_user(&flags, arg, sizeof (flags))) 916 return (-EFAULT); 917 918 err = __zpl_ioctl_setflags(ip, flags, &xva); 919 if (err) 920 return (err); 921 922 crhold(cr); 923 cookie = spl_fstrans_mark(); 924 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr); 925 spl_fstrans_unmark(cookie); 926 crfree(cr); 927 928 return (err); 929 } 930 931 static int 932 zpl_ioctl_getxattr(struct file *filp, void __user *arg) 933 { 934 zfsxattr_t fsx = { 0 }; 935 struct inode *ip = file_inode(filp); 936 int err; 937 938 fsx.fsx_xflags = __zpl_ioctl_getflags(ip); 939 fsx.fsx_projid = ITOZ(ip)->z_projid; 940 err = copy_to_user(arg, &fsx, sizeof (fsx)); 941 942 return (err); 943 } 944 945 static int 946 zpl_ioctl_setxattr(struct file *filp, void __user *arg) 947 { 948 struct inode *ip = file_inode(filp); 949 zfsxattr_t fsx; 950 cred_t *cr = CRED(); 951 xvattr_t xva; 952 xoptattr_t *xoap; 953 int err; 954 fstrans_cookie_t cookie; 955 956 if (copy_from_user(&fsx, arg, sizeof (fsx))) 957 return (-EFAULT); 958 959 if (!zpl_is_valid_projid(fsx.fsx_projid)) 960 return (-EINVAL); 961 962 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva); 963 if (err) 964 return (err); 965 966 xoap = xva_getxoptattr(&xva); 967 XVA_SET_REQ(&xva, XAT_PROJID); 968 xoap->xoa_projid = fsx.fsx_projid; 969 970 crhold(cr); 971 cookie = spl_fstrans_mark(); 972 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr); 973 spl_fstrans_unmark(cookie); 974 crfree(cr); 975 976 return (err); 977 } 978 979 static long 980 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 981 { 982 switch (cmd) { 983 case FS_IOC_GETFLAGS: 984 return (zpl_ioctl_getflags(filp, (void *)arg)); 985 case FS_IOC_SETFLAGS: 986 return (zpl_ioctl_setflags(filp, (void *)arg)); 987 case ZFS_IOC_FSGETXATTR: 988 return (zpl_ioctl_getxattr(filp, (void *)arg)); 989 case ZFS_IOC_FSSETXATTR: 990 return (zpl_ioctl_setxattr(filp, (void *)arg)); 991 default: 992 return (-ENOTTY); 993 } 994 } 995 996 #ifdef CONFIG_COMPAT 997 static long 998 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 999 { 1000 switch (cmd) { 1001 case FS_IOC32_GETFLAGS: 1002 cmd = FS_IOC_GETFLAGS; 1003 break; 1004 case FS_IOC32_SETFLAGS: 1005 cmd = FS_IOC_SETFLAGS; 1006 break; 1007 default: 1008 return (-ENOTTY); 1009 } 1010 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg))); 1011 } 1012 #endif /* CONFIG_COMPAT */ 1013 1014 1015 const struct address_space_operations zpl_address_space_operations = { 1016 .readpages = zpl_readpages, 1017 .readpage = zpl_readpage, 1018 .writepage = zpl_writepage, 1019 .writepages = zpl_writepages, 1020 .direct_IO = zpl_direct_IO, 1021 }; 1022 1023 const struct file_operations zpl_file_operations = { 1024 .open = zpl_open, 1025 .release = zpl_release, 1026 .llseek = zpl_llseek, 1027 #ifdef HAVE_VFS_RW_ITERATE 1028 #ifdef HAVE_NEW_SYNC_READ 1029 .read = new_sync_read, 1030 .write = new_sync_write, 1031 #endif 1032 .read_iter = zpl_iter_read, 1033 .write_iter = zpl_iter_write, 1034 #ifdef HAVE_VFS_IOV_ITER 1035 .splice_read = generic_file_splice_read, 1036 .splice_write = iter_file_splice_write, 1037 #endif 1038 #else 1039 .read = do_sync_read, 1040 .write = do_sync_write, 1041 .aio_read = zpl_aio_read, 1042 .aio_write = zpl_aio_write, 1043 #endif 1044 .mmap = zpl_mmap, 1045 .fsync = zpl_fsync, 1046 #ifdef HAVE_FILE_AIO_FSYNC 1047 .aio_fsync = zpl_aio_fsync, 1048 #endif 1049 .fallocate = zpl_fallocate, 1050 .unlocked_ioctl = zpl_ioctl, 1051 #ifdef CONFIG_COMPAT 1052 .compat_ioctl = zpl_compat_ioctl, 1053 #endif 1054 }; 1055 1056 const struct file_operations zpl_dir_file_operations = { 1057 .llseek = generic_file_llseek, 1058 .read = generic_read_dir, 1059 #if defined(HAVE_VFS_ITERATE_SHARED) 1060 .iterate_shared = zpl_iterate, 1061 #elif defined(HAVE_VFS_ITERATE) 1062 .iterate = zpl_iterate, 1063 #else 1064 .readdir = zpl_readdir, 1065 #endif 1066 .fsync = zpl_fsync, 1067 .unlocked_ioctl = zpl_ioctl, 1068 #ifdef CONFIG_COMPAT 1069 .compat_ioctl = zpl_compat_ioctl, 1070 #endif 1071 }; 1072 1073 /* BEGIN CSTYLED */ 1074 module_param(zfs_fallocate_reserve_percent, uint, 0644); 1075 MODULE_PARM_DESC(zfs_fallocate_reserve_percent, 1076 "Percentage of length to use for the available capacity check"); 1077 /* END CSTYLED */ 1078