1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2011, Lawrence Livermore National Security, LLC. 24 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 25 */ 26 27 28 #ifdef CONFIG_COMPAT 29 #include <linux/compat.h> 30 #endif 31 #include <linux/fs.h> 32 #include <linux/migrate.h> 33 #include <sys/file.h> 34 #include <sys/dmu_objset.h> 35 #include <sys/zfs_znode.h> 36 #include <sys/zfs_vfsops.h> 37 #include <sys/zfs_vnops.h> 38 #include <sys/zfs_project.h> 39 #include <linux/pagemap_compat.h> 40 #include <linux/fadvise.h> 41 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO 42 #include <linux/writeback.h> 43 #endif 44 45 /* 46 * When using fallocate(2) to preallocate space, inflate the requested 47 * capacity check by 10% to account for the required metadata blocks. 48 */ 49 static unsigned int zfs_fallocate_reserve_percent = 110; 50 51 static int 52 zpl_open(struct inode *ip, struct file *filp) 53 { 54 cred_t *cr = CRED(); 55 int error; 56 fstrans_cookie_t cookie; 57 58 error = generic_file_open(ip, filp); 59 if (error) 60 return (error); 61 62 crhold(cr); 63 cookie = spl_fstrans_mark(); 64 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr); 65 spl_fstrans_unmark(cookie); 66 crfree(cr); 67 ASSERT3S(error, <=, 0); 68 69 return (error); 70 } 71 72 static int 73 zpl_release(struct inode *ip, struct file *filp) 74 { 75 cred_t *cr = CRED(); 76 int error; 77 fstrans_cookie_t cookie; 78 79 cookie = spl_fstrans_mark(); 80 if (ITOZ(ip)->z_atime_dirty) 81 zfs_mark_inode_dirty(ip); 82 83 crhold(cr); 84 error = -zfs_close(ip, filp->f_flags, cr); 85 spl_fstrans_unmark(cookie); 86 crfree(cr); 87 ASSERT3S(error, <=, 0); 88 89 return (error); 90 } 91 92 static int 93 zpl_iterate(struct file *filp, struct dir_context *ctx) 94 { 95 cred_t *cr = CRED(); 96 int error; 97 fstrans_cookie_t cookie; 98 99 crhold(cr); 100 cookie = spl_fstrans_mark(); 101 error = -zfs_readdir(file_inode(filp), ctx, cr); 102 spl_fstrans_unmark(cookie); 103 crfree(cr); 104 ASSERT3S(error, <=, 0); 105 106 return (error); 107 } 108 109 static int 110 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 111 { 112 struct inode *inode = filp->f_mapping->host; 113 znode_t *zp = ITOZ(inode); 114 zfsvfs_t *zfsvfs = ITOZSB(inode); 115 cred_t *cr = CRED(); 116 int error; 117 fstrans_cookie_t cookie; 118 119 /* 120 * The variables z_sync_writes_cnt and z_async_writes_cnt work in 121 * tandem so that sync writes can detect if there are any non-sync 122 * writes going on and vice-versa. The "vice-versa" part to this logic 123 * is located in zfs_putpage() where non-sync writes check if there are 124 * any ongoing sync writes. If any sync and non-sync writes overlap, 125 * we do a commit to complete the non-sync writes since the latter can 126 * potentially take several seconds to complete and thus block sync 127 * writes in the upcoming call to filemap_write_and_wait_range(). 128 */ 129 atomic_inc_32(&zp->z_sync_writes_cnt); 130 /* 131 * If the following check does not detect an overlapping non-sync write 132 * (say because it's just about to start), then it is guaranteed that 133 * the non-sync write will detect this sync write. This is because we 134 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing 135 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in 136 * zfs_putpage() respectively. 137 */ 138 if (atomic_load_32(&zp->z_async_writes_cnt) > 0) { 139 if ((error = zpl_enter(zfsvfs, FTAG)) != 0) { 140 atomic_dec_32(&zp->z_sync_writes_cnt); 141 return (error); 142 } 143 zil_commit(zfsvfs->z_log, zp->z_id); 144 zpl_exit(zfsvfs, FTAG); 145 } 146 147 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 148 149 /* 150 * The sync write is not complete yet but we decrement 151 * z_sync_writes_cnt since zfs_fsync() increments and decrements 152 * it internally. If a non-sync write starts just after the decrement 153 * operation but before we call zfs_fsync(), it may not detect this 154 * overlapping sync write but it does not matter since we have already 155 * gone past filemap_write_and_wait_range() and we won't block due to 156 * the non-sync write. 157 */ 158 atomic_dec_32(&zp->z_sync_writes_cnt); 159 160 if (error) 161 return (error); 162 163 crhold(cr); 164 cookie = spl_fstrans_mark(); 165 error = -zfs_fsync(zp, datasync, cr); 166 spl_fstrans_unmark(cookie); 167 crfree(cr); 168 ASSERT3S(error, <=, 0); 169 170 return (error); 171 } 172 173 static inline int 174 zfs_io_flags(struct kiocb *kiocb) 175 { 176 int flags = 0; 177 178 #if defined(IOCB_DSYNC) 179 if (kiocb->ki_flags & IOCB_DSYNC) 180 flags |= O_DSYNC; 181 #endif 182 #if defined(IOCB_SYNC) 183 if (kiocb->ki_flags & IOCB_SYNC) 184 flags |= O_SYNC; 185 #endif 186 #if defined(IOCB_APPEND) 187 if (kiocb->ki_flags & IOCB_APPEND) 188 flags |= O_APPEND; 189 #endif 190 #if defined(IOCB_DIRECT) 191 if (kiocb->ki_flags & IOCB_DIRECT) 192 flags |= O_DIRECT; 193 #endif 194 return (flags); 195 } 196 197 /* 198 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update() 199 * is true. This is needed since datasets with inherited "relatime" property 200 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after 201 * `zfs set relatime=...`), which is what relatime test in VFS by 202 * relatime_need_update() is based on. 203 */ 204 static inline void 205 zpl_file_accessed(struct file *filp) 206 { 207 struct inode *ip = filp->f_mapping->host; 208 209 if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) { 210 if (zfs_relatime_need_update(ip)) 211 file_accessed(filp); 212 } else { 213 file_accessed(filp); 214 } 215 } 216 217 static ssize_t 218 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to) 219 { 220 cred_t *cr = CRED(); 221 fstrans_cookie_t cookie; 222 struct file *filp = kiocb->ki_filp; 223 ssize_t count = iov_iter_count(to); 224 zfs_uio_t uio; 225 226 zfs_uio_iov_iter_init(&uio, to, kiocb->ki_pos, count); 227 228 crhold(cr); 229 cookie = spl_fstrans_mark(); 230 231 ssize_t ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio, 232 filp->f_flags | zfs_io_flags(kiocb), cr); 233 234 spl_fstrans_unmark(cookie); 235 crfree(cr); 236 237 if (ret < 0) 238 return (ret); 239 240 ssize_t read = count - uio.uio_resid; 241 kiocb->ki_pos += read; 242 243 zpl_file_accessed(filp); 244 245 return (read); 246 } 247 248 static inline ssize_t 249 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from, 250 size_t *countp) 251 { 252 ssize_t ret = generic_write_checks(kiocb, from); 253 if (ret <= 0) 254 return (ret); 255 256 *countp = ret; 257 258 return (0); 259 } 260 261 static ssize_t 262 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from) 263 { 264 cred_t *cr = CRED(); 265 fstrans_cookie_t cookie; 266 struct file *filp = kiocb->ki_filp; 267 struct inode *ip = filp->f_mapping->host; 268 zfs_uio_t uio; 269 size_t count = 0; 270 ssize_t ret; 271 272 ret = zpl_generic_write_checks(kiocb, from, &count); 273 if (ret) 274 return (ret); 275 276 zfs_uio_iov_iter_init(&uio, from, kiocb->ki_pos, count); 277 278 crhold(cr); 279 cookie = spl_fstrans_mark(); 280 281 ret = -zfs_write(ITOZ(ip), &uio, 282 filp->f_flags | zfs_io_flags(kiocb), cr); 283 284 spl_fstrans_unmark(cookie); 285 crfree(cr); 286 287 if (ret < 0) 288 return (ret); 289 290 ssize_t wrote = count - uio.uio_resid; 291 kiocb->ki_pos += wrote; 292 293 return (wrote); 294 } 295 296 static ssize_t 297 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter) 298 { 299 /* 300 * All O_DIRECT requests should be handled by 301 * zpl_iter_write/read}(). There is no way kernel generic code should 302 * call the direct_IO address_space_operations function. We set this 303 * code path to be fatal if it is executed. 304 */ 305 PANIC(0); 306 return (0); 307 } 308 309 static loff_t 310 zpl_llseek(struct file *filp, loff_t offset, int whence) 311 { 312 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 313 fstrans_cookie_t cookie; 314 315 if (whence == SEEK_DATA || whence == SEEK_HOLE) { 316 struct inode *ip = filp->f_mapping->host; 317 loff_t maxbytes = ip->i_sb->s_maxbytes; 318 loff_t error; 319 320 spl_inode_lock_shared(ip); 321 cookie = spl_fstrans_mark(); 322 error = -zfs_holey(ITOZ(ip), whence, &offset); 323 spl_fstrans_unmark(cookie); 324 if (error == 0) 325 error = lseek_execute(filp, ip, offset, maxbytes); 326 spl_inode_unlock_shared(ip); 327 328 return (error); 329 } 330 #endif /* SEEK_HOLE && SEEK_DATA */ 331 332 return (generic_file_llseek(filp, offset, whence)); 333 } 334 335 /* 336 * It's worth taking a moment to describe how mmap is implemented 337 * for zfs because it differs considerably from other Linux filesystems. 338 * However, this issue is handled the same way under OpenSolaris. 339 * 340 * The issue is that by design zfs bypasses the Linux page cache and 341 * leaves all caching up to the ARC. This has been shown to work 342 * well for the common read(2)/write(2) case. However, mmap(2) 343 * is problem because it relies on being tightly integrated with the 344 * page cache. To handle this we cache mmap'ed files twice, once in 345 * the ARC and a second time in the page cache. The code is careful 346 * to keep both copies synchronized. 347 * 348 * When a file with an mmap'ed region is written to using write(2) 349 * both the data in the ARC and existing pages in the page cache 350 * are updated. For a read(2) data will be read first from the page 351 * cache then the ARC if needed. Neither a write(2) or read(2) will 352 * will ever result in new pages being added to the page cache. 353 * 354 * New pages are added to the page cache only via .readpage() which 355 * is called when the vfs needs to read a page off disk to back the 356 * virtual memory region. These pages may be modified without 357 * notifying the ARC and will be written out periodically via 358 * .writepage(). This will occur due to either a sync or the usual 359 * page aging behavior. Note because a read(2) of a mmap'ed file 360 * will always check the page cache first even when the ARC is out 361 * of date correct data will still be returned. 362 * 363 * While this implementation ensures correct behavior it does have 364 * have some drawbacks. The most obvious of which is that it 365 * increases the required memory footprint when access mmap'ed 366 * files. It also adds additional complexity to the code keeping 367 * both caches synchronized. 368 * 369 * Longer term it may be possible to cleanly resolve this wart by 370 * mapping page cache pages directly on to the ARC buffers. The 371 * Linux address space operations are flexible enough to allow 372 * selection of which pages back a particular index. The trick 373 * would be working out the details of which subsystem is in 374 * charge, the ARC, the page cache, or both. It may also prove 375 * helpful to move the ARC buffers to a scatter-gather lists 376 * rather than a vmalloc'ed region. 377 */ 378 static int 379 zpl_mmap(struct file *filp, struct vm_area_struct *vma) 380 { 381 struct inode *ip = filp->f_mapping->host; 382 int error; 383 fstrans_cookie_t cookie; 384 385 cookie = spl_fstrans_mark(); 386 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start, 387 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags); 388 spl_fstrans_unmark(cookie); 389 390 if (error) 391 return (error); 392 393 error = generic_file_mmap(filp, vma); 394 if (error) 395 return (error); 396 397 return (error); 398 } 399 400 /* 401 * Populate a page with data for the Linux page cache. This function is 402 * only used to support mmap(2). There will be an identical copy of the 403 * data in the ARC which is kept up to date via .write() and .writepage(). 404 */ 405 static inline int 406 zpl_readpage_common(struct page *pp) 407 { 408 fstrans_cookie_t cookie; 409 410 ASSERT(PageLocked(pp)); 411 412 cookie = spl_fstrans_mark(); 413 int error = -zfs_getpage(pp->mapping->host, pp); 414 spl_fstrans_unmark(cookie); 415 416 unlock_page(pp); 417 418 return (error); 419 } 420 421 #ifdef HAVE_VFS_READ_FOLIO 422 static int 423 zpl_read_folio(struct file *filp, struct folio *folio) 424 { 425 return (zpl_readpage_common(&folio->page)); 426 } 427 #else 428 static int 429 zpl_readpage(struct file *filp, struct page *pp) 430 { 431 return (zpl_readpage_common(pp)); 432 } 433 #endif 434 435 static int 436 zpl_readpage_filler(void *data, struct page *pp) 437 { 438 return (zpl_readpage_common(pp)); 439 } 440 441 /* 442 * Populate a set of pages with data for the Linux page cache. This 443 * function will only be called for read ahead and never for demand 444 * paging. For simplicity, the code relies on read_cache_pages() to 445 * correctly lock each page for IO and call zpl_readpage(). 446 */ 447 #ifdef HAVE_VFS_READPAGES 448 static int 449 zpl_readpages(struct file *filp, struct address_space *mapping, 450 struct list_head *pages, unsigned nr_pages) 451 { 452 return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL)); 453 } 454 #else 455 static void 456 zpl_readahead(struct readahead_control *ractl) 457 { 458 struct page *page; 459 460 while ((page = readahead_page(ractl)) != NULL) { 461 int ret; 462 463 ret = zpl_readpage_filler(NULL, page); 464 put_page(page); 465 if (ret) 466 break; 467 } 468 } 469 #endif 470 471 static int 472 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data) 473 { 474 boolean_t *for_sync = data; 475 fstrans_cookie_t cookie; 476 int ret; 477 478 ASSERT(PageLocked(pp)); 479 ASSERT(!PageWriteback(pp)); 480 481 cookie = spl_fstrans_mark(); 482 ret = zfs_putpage(pp->mapping->host, pp, wbc, *for_sync); 483 spl_fstrans_unmark(cookie); 484 485 return (ret); 486 } 487 488 #ifdef HAVE_WRITEPAGE_T_FOLIO 489 static int 490 zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data) 491 { 492 return (zpl_putpage(&pp->page, wbc, data)); 493 } 494 #endif 495 496 static inline int 497 zpl_write_cache_pages(struct address_space *mapping, 498 struct writeback_control *wbc, void *data) 499 { 500 int result; 501 502 #ifdef HAVE_WRITEPAGE_T_FOLIO 503 result = write_cache_pages(mapping, wbc, zpl_putfolio, data); 504 #else 505 result = write_cache_pages(mapping, wbc, zpl_putpage, data); 506 #endif 507 return (result); 508 } 509 510 static int 511 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc) 512 { 513 znode_t *zp = ITOZ(mapping->host); 514 zfsvfs_t *zfsvfs = ITOZSB(mapping->host); 515 enum writeback_sync_modes sync_mode; 516 int result; 517 518 if ((result = zpl_enter(zfsvfs, FTAG)) != 0) 519 return (result); 520 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 521 wbc->sync_mode = WB_SYNC_ALL; 522 zpl_exit(zfsvfs, FTAG); 523 sync_mode = wbc->sync_mode; 524 525 /* 526 * We don't want to run write_cache_pages() in SYNC mode here, because 527 * that would make putpage() wait for a single page to be committed to 528 * disk every single time, resulting in atrocious performance. Instead 529 * we run it once in non-SYNC mode so that the ZIL gets all the data, 530 * and then we commit it all in one go. 531 */ 532 boolean_t for_sync = (sync_mode == WB_SYNC_ALL); 533 wbc->sync_mode = WB_SYNC_NONE; 534 result = zpl_write_cache_pages(mapping, wbc, &for_sync); 535 if (sync_mode != wbc->sync_mode) { 536 if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 537 return (result); 538 if (zfsvfs->z_log != NULL) 539 zil_commit(zfsvfs->z_log, zp->z_id); 540 zpl_exit(zfsvfs, FTAG); 541 542 /* 543 * We need to call write_cache_pages() again (we can't just 544 * return after the commit) because the previous call in 545 * non-SYNC mode does not guarantee that we got all the dirty 546 * pages (see the implementation of write_cache_pages() for 547 * details). That being said, this is a no-op in most cases. 548 */ 549 wbc->sync_mode = sync_mode; 550 result = zpl_write_cache_pages(mapping, wbc, &for_sync); 551 } 552 return (result); 553 } 554 555 #ifdef HAVE_VFS_WRITEPAGE 556 /* 557 * Write out dirty pages to the ARC, this function is only required to 558 * support mmap(2). Mapped pages may be dirtied by memory operations 559 * which never call .write(). These dirty pages are kept in sync with 560 * the ARC buffers via this hook. 561 */ 562 static int 563 zpl_writepage(struct page *pp, struct writeback_control *wbc) 564 { 565 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS) 566 wbc->sync_mode = WB_SYNC_ALL; 567 568 boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL); 569 570 return (zpl_putpage(pp, wbc, &for_sync)); 571 } 572 #endif 573 574 /* 575 * The flag combination which matches the behavior of zfs_space() is 576 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE 577 * flag was introduced in the 2.6.38 kernel. 578 * 579 * The original mode=0 (allocate space) behavior can be reasonably emulated 580 * by checking if enough space exists and creating a sparse file, as real 581 * persistent space reservation is not possible due to COW, snapshots, etc. 582 */ 583 static long 584 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len) 585 { 586 cred_t *cr = CRED(); 587 loff_t olen; 588 fstrans_cookie_t cookie; 589 int error = 0; 590 591 int test_mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE; 592 593 if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0) 594 return (-EOPNOTSUPP); 595 596 if (offset < 0 || len <= 0) 597 return (-EINVAL); 598 599 spl_inode_lock(ip); 600 olen = i_size_read(ip); 601 602 crhold(cr); 603 cookie = spl_fstrans_mark(); 604 if (mode & (test_mode)) { 605 flock64_t bf; 606 607 if (mode & FALLOC_FL_KEEP_SIZE) { 608 if (offset > olen) 609 goto out_unmark; 610 611 if (offset + len > olen) 612 len = olen - offset; 613 } 614 bf.l_type = F_WRLCK; 615 bf.l_whence = SEEK_SET; 616 bf.l_start = offset; 617 bf.l_len = len; 618 bf.l_pid = 0; 619 620 error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr); 621 } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) { 622 unsigned int percent = zfs_fallocate_reserve_percent; 623 struct kstatfs statfs; 624 625 /* Legacy mode, disable fallocate compatibility. */ 626 if (percent == 0) { 627 error = -EOPNOTSUPP; 628 goto out_unmark; 629 } 630 631 /* 632 * Use zfs_statvfs() instead of dmu_objset_space() since it 633 * also checks project quota limits, which are relevant here. 634 */ 635 error = zfs_statvfs(ip, &statfs); 636 if (error) 637 goto out_unmark; 638 639 /* 640 * Shrink available space a bit to account for overhead/races. 641 * We know the product previously fit into availbytes from 642 * dmu_objset_space(), so the smaller product will also fit. 643 */ 644 if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) { 645 error = -ENOSPC; 646 goto out_unmark; 647 } 648 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen) 649 error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE); 650 } 651 out_unmark: 652 spl_fstrans_unmark(cookie); 653 spl_inode_unlock(ip); 654 655 crfree(cr); 656 657 return (error); 658 } 659 660 static long 661 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len) 662 { 663 return zpl_fallocate_common(file_inode(filp), 664 mode, offset, len); 665 } 666 667 static int 668 zpl_ioctl_getversion(struct file *filp, void __user *arg) 669 { 670 uint32_t generation = file_inode(filp)->i_generation; 671 672 return (copy_to_user(arg, &generation, sizeof (generation))); 673 } 674 675 static int 676 zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice) 677 { 678 struct inode *ip = file_inode(filp); 679 znode_t *zp = ITOZ(ip); 680 zfsvfs_t *zfsvfs = ITOZSB(ip); 681 objset_t *os = zfsvfs->z_os; 682 int error = 0; 683 684 if (S_ISFIFO(ip->i_mode)) 685 return (-ESPIPE); 686 687 if (offset < 0 || len < 0) 688 return (-EINVAL); 689 690 if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 691 return (error); 692 693 switch (advice) { 694 case POSIX_FADV_SEQUENTIAL: 695 case POSIX_FADV_WILLNEED: 696 #ifdef HAVE_GENERIC_FADVISE 697 if (zn_has_cached_data(zp, offset, offset + len - 1)) 698 error = generic_fadvise(filp, offset, len, advice); 699 #endif 700 /* 701 * Pass on the caller's size directly, but note that 702 * dmu_prefetch_max will effectively cap it. If there 703 * really is a larger sequential access pattern, perhaps 704 * dmu_zfetch will detect it. 705 */ 706 if (len == 0) 707 len = i_size_read(ip) - offset; 708 709 dmu_prefetch(os, zp->z_id, 0, offset, len, 710 ZIO_PRIORITY_ASYNC_READ); 711 break; 712 case POSIX_FADV_NORMAL: 713 case POSIX_FADV_RANDOM: 714 case POSIX_FADV_DONTNEED: 715 case POSIX_FADV_NOREUSE: 716 /* ignored for now */ 717 break; 718 default: 719 error = -EINVAL; 720 break; 721 } 722 723 zfs_exit(zfsvfs, FTAG); 724 725 return (error); 726 } 727 728 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL) 729 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL) 730 731 static uint32_t 732 __zpl_ioctl_getflags(struct inode *ip) 733 { 734 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 735 uint32_t ioctl_flags = 0; 736 737 if (zfs_flags & ZFS_IMMUTABLE) 738 ioctl_flags |= FS_IMMUTABLE_FL; 739 740 if (zfs_flags & ZFS_APPENDONLY) 741 ioctl_flags |= FS_APPEND_FL; 742 743 if (zfs_flags & ZFS_NODUMP) 744 ioctl_flags |= FS_NODUMP_FL; 745 746 if (zfs_flags & ZFS_PROJINHERIT) 747 ioctl_flags |= ZFS_PROJINHERIT_FL; 748 749 return (ioctl_flags & ZFS_FL_USER_VISIBLE); 750 } 751 752 /* 753 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file 754 * attributes common to both Linux and Solaris are mapped. 755 */ 756 static int 757 zpl_ioctl_getflags(struct file *filp, void __user *arg) 758 { 759 uint32_t flags; 760 int err; 761 762 flags = __zpl_ioctl_getflags(file_inode(filp)); 763 err = copy_to_user(arg, &flags, sizeof (flags)); 764 765 return (err); 766 } 767 768 /* 769 * fchange() is a helper macro to detect if we have been asked to change a 770 * flag. This is ugly, but the requirement that we do this is a consequence of 771 * how the Linux file attribute interface was designed. Another consequence is 772 * that concurrent modification of files suffers from a TOCTOU race. Neither 773 * are things we can fix without modifying the kernel-userland interface, which 774 * is outside of our jurisdiction. 775 */ 776 777 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1))) 778 779 static int 780 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva) 781 { 782 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 783 xoptattr_t *xoap; 784 785 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL | 786 ZFS_PROJINHERIT_FL)) 787 return (-EOPNOTSUPP); 788 789 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE) 790 return (-EACCES); 791 792 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) || 793 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) && 794 !capable(CAP_LINUX_IMMUTABLE)) 795 return (-EPERM); 796 797 if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip)) 798 return (-EACCES); 799 800 xva_init(xva); 801 xoap = xva_getxoptattr(xva); 802 803 #define FLAG_CHANGE(iflag, zflag, xflag, xfield) do { \ 804 if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) || \ 805 ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) { \ 806 XVA_SET_REQ(xva, (xflag)); \ 807 (xfield) = ((ioctl_flags & (iflag)) != 0); \ 808 } \ 809 } while (0) 810 811 FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE, 812 xoap->xoa_immutable); 813 FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY, 814 xoap->xoa_appendonly); 815 FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP, 816 xoap->xoa_nodump); 817 FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT, 818 xoap->xoa_projinherit); 819 820 #undef FLAG_CHANGE 821 822 return (0); 823 } 824 825 static int 826 zpl_ioctl_setflags(struct file *filp, void __user *arg) 827 { 828 struct inode *ip = file_inode(filp); 829 uint32_t flags; 830 cred_t *cr = CRED(); 831 xvattr_t xva; 832 int err; 833 fstrans_cookie_t cookie; 834 835 if (copy_from_user(&flags, arg, sizeof (flags))) 836 return (-EFAULT); 837 838 err = __zpl_ioctl_setflags(ip, flags, &xva); 839 if (err) 840 return (err); 841 842 crhold(cr); 843 cookie = spl_fstrans_mark(); 844 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap); 845 spl_fstrans_unmark(cookie); 846 crfree(cr); 847 848 return (err); 849 } 850 851 static int 852 zpl_ioctl_getxattr(struct file *filp, void __user *arg) 853 { 854 zfsxattr_t fsx = { 0 }; 855 struct inode *ip = file_inode(filp); 856 int err; 857 858 fsx.fsx_xflags = __zpl_ioctl_getflags(ip); 859 fsx.fsx_projid = ITOZ(ip)->z_projid; 860 err = copy_to_user(arg, &fsx, sizeof (fsx)); 861 862 return (err); 863 } 864 865 static int 866 zpl_ioctl_setxattr(struct file *filp, void __user *arg) 867 { 868 struct inode *ip = file_inode(filp); 869 zfsxattr_t fsx; 870 cred_t *cr = CRED(); 871 xvattr_t xva; 872 xoptattr_t *xoap; 873 int err; 874 fstrans_cookie_t cookie; 875 876 if (copy_from_user(&fsx, arg, sizeof (fsx))) 877 return (-EFAULT); 878 879 if (!zpl_is_valid_projid(fsx.fsx_projid)) 880 return (-EINVAL); 881 882 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva); 883 if (err) 884 return (err); 885 886 xoap = xva_getxoptattr(&xva); 887 XVA_SET_REQ(&xva, XAT_PROJID); 888 xoap->xoa_projid = fsx.fsx_projid; 889 890 crhold(cr); 891 cookie = spl_fstrans_mark(); 892 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap); 893 spl_fstrans_unmark(cookie); 894 crfree(cr); 895 896 return (err); 897 } 898 899 /* 900 * Expose Additional File Level Attributes of ZFS. 901 */ 902 static int 903 zpl_ioctl_getdosflags(struct file *filp, void __user *arg) 904 { 905 struct inode *ip = file_inode(filp); 906 uint64_t dosflags = ITOZ(ip)->z_pflags; 907 dosflags &= ZFS_DOS_FL_USER_VISIBLE; 908 int err = copy_to_user(arg, &dosflags, sizeof (dosflags)); 909 910 return (err); 911 } 912 913 static int 914 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva) 915 { 916 uint64_t zfs_flags = ITOZ(ip)->z_pflags; 917 xoptattr_t *xoap; 918 919 if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE)) 920 return (-EOPNOTSUPP); 921 922 if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) || 923 fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) && 924 !capable(CAP_LINUX_IMMUTABLE)) 925 return (-EPERM); 926 927 if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip)) 928 return (-EACCES); 929 930 xva_init(xva); 931 xoap = xva_getxoptattr(xva); 932 933 #define FLAG_CHANGE(iflag, xflag, xfield) do { \ 934 if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) || \ 935 ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) { \ 936 XVA_SET_REQ(xva, (xflag)); \ 937 (xfield) = ((ioctl_flags & (iflag)) != 0); \ 938 } \ 939 } while (0) 940 941 FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable); 942 FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly); 943 FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump); 944 FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly); 945 FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden); 946 FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system); 947 FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive); 948 FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink); 949 FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse); 950 FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline); 951 FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse); 952 953 #undef FLAG_CHANGE 954 955 return (0); 956 } 957 958 /* 959 * Set Additional File Level Attributes of ZFS. 960 */ 961 static int 962 zpl_ioctl_setdosflags(struct file *filp, void __user *arg) 963 { 964 struct inode *ip = file_inode(filp); 965 uint64_t dosflags; 966 cred_t *cr = CRED(); 967 xvattr_t xva; 968 int err; 969 fstrans_cookie_t cookie; 970 971 if (copy_from_user(&dosflags, arg, sizeof (dosflags))) 972 return (-EFAULT); 973 974 err = __zpl_ioctl_setdosflags(ip, dosflags, &xva); 975 if (err) 976 return (err); 977 978 crhold(cr); 979 cookie = spl_fstrans_mark(); 980 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap); 981 spl_fstrans_unmark(cookie); 982 crfree(cr); 983 984 return (err); 985 } 986 987 static int 988 zpl_ioctl_rewrite(struct file *filp, void __user *arg) 989 { 990 struct inode *ip = file_inode(filp); 991 zfs_rewrite_args_t args; 992 fstrans_cookie_t cookie; 993 int err; 994 995 if (copy_from_user(&args, arg, sizeof (args))) 996 return (-EFAULT); 997 998 if (unlikely(!(filp->f_mode & FMODE_WRITE))) 999 return (-EBADF); 1000 1001 cookie = spl_fstrans_mark(); 1002 err = -zfs_rewrite(ITOZ(ip), args.off, args.len, args.flags, args.arg); 1003 spl_fstrans_unmark(cookie); 1004 1005 return (err); 1006 } 1007 1008 static long 1009 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 1010 { 1011 switch (cmd) { 1012 case FS_IOC_GETVERSION: 1013 return (zpl_ioctl_getversion(filp, (void *)arg)); 1014 case FS_IOC_GETFLAGS: 1015 return (zpl_ioctl_getflags(filp, (void *)arg)); 1016 case FS_IOC_SETFLAGS: 1017 return (zpl_ioctl_setflags(filp, (void *)arg)); 1018 case ZFS_IOC_FSGETXATTR: 1019 return (zpl_ioctl_getxattr(filp, (void *)arg)); 1020 case ZFS_IOC_FSSETXATTR: 1021 return (zpl_ioctl_setxattr(filp, (void *)arg)); 1022 case ZFS_IOC_GETDOSFLAGS: 1023 return (zpl_ioctl_getdosflags(filp, (void *)arg)); 1024 case ZFS_IOC_SETDOSFLAGS: 1025 return (zpl_ioctl_setdosflags(filp, (void *)arg)); 1026 case ZFS_IOC_REWRITE: 1027 return (zpl_ioctl_rewrite(filp, (void *)arg)); 1028 default: 1029 return (-ENOTTY); 1030 } 1031 } 1032 1033 #ifdef CONFIG_COMPAT 1034 static long 1035 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 1036 { 1037 switch (cmd) { 1038 case FS_IOC32_GETVERSION: 1039 cmd = FS_IOC_GETVERSION; 1040 break; 1041 case FS_IOC32_GETFLAGS: 1042 cmd = FS_IOC_GETFLAGS; 1043 break; 1044 case FS_IOC32_SETFLAGS: 1045 cmd = FS_IOC_SETFLAGS; 1046 break; 1047 default: 1048 return (-ENOTTY); 1049 } 1050 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg))); 1051 } 1052 #endif /* CONFIG_COMPAT */ 1053 1054 const struct address_space_operations zpl_address_space_operations = { 1055 #ifdef HAVE_VFS_READPAGES 1056 .readpages = zpl_readpages, 1057 #else 1058 .readahead = zpl_readahead, 1059 #endif 1060 #ifdef HAVE_VFS_READ_FOLIO 1061 .read_folio = zpl_read_folio, 1062 #else 1063 .readpage = zpl_readpage, 1064 #endif 1065 #ifdef HAVE_VFS_WRITEPAGE 1066 .writepage = zpl_writepage, 1067 #endif 1068 .writepages = zpl_writepages, 1069 .direct_IO = zpl_direct_IO, 1070 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS 1071 .set_page_dirty = __set_page_dirty_nobuffers, 1072 #endif 1073 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO 1074 .dirty_folio = filemap_dirty_folio, 1075 #endif 1076 #ifdef HAVE_VFS_MIGRATE_FOLIO 1077 .migrate_folio = migrate_folio, 1078 #elif defined(HAVE_VFS_MIGRATEPAGE) 1079 .migratepage = migrate_page, 1080 #endif 1081 }; 1082 1083 const struct file_operations zpl_file_operations = { 1084 .open = zpl_open, 1085 .release = zpl_release, 1086 .llseek = zpl_llseek, 1087 .read_iter = zpl_iter_read, 1088 .write_iter = zpl_iter_write, 1089 #ifdef HAVE_COPY_SPLICE_READ 1090 .splice_read = copy_splice_read, 1091 #else 1092 .splice_read = generic_file_splice_read, 1093 #endif 1094 .splice_write = iter_file_splice_write, 1095 .mmap = zpl_mmap, 1096 .fsync = zpl_fsync, 1097 .fallocate = zpl_fallocate, 1098 .copy_file_range = zpl_copy_file_range, 1099 #ifdef HAVE_VFS_CLONE_FILE_RANGE 1100 .clone_file_range = zpl_clone_file_range, 1101 #endif 1102 #ifdef HAVE_VFS_REMAP_FILE_RANGE 1103 .remap_file_range = zpl_remap_file_range, 1104 #endif 1105 #ifdef HAVE_VFS_DEDUPE_FILE_RANGE 1106 .dedupe_file_range = zpl_dedupe_file_range, 1107 #endif 1108 .fadvise = zpl_fadvise, 1109 .unlocked_ioctl = zpl_ioctl, 1110 #ifdef CONFIG_COMPAT 1111 .compat_ioctl = zpl_compat_ioctl, 1112 #endif 1113 }; 1114 1115 const struct file_operations zpl_dir_file_operations = { 1116 .llseek = generic_file_llseek, 1117 .read = generic_read_dir, 1118 .iterate_shared = zpl_iterate, 1119 .fsync = zpl_fsync, 1120 .unlocked_ioctl = zpl_ioctl, 1121 #ifdef CONFIG_COMPAT 1122 .compat_ioctl = zpl_compat_ioctl, 1123 #endif 1124 }; 1125 1126 module_param(zfs_fallocate_reserve_percent, uint, 0644); 1127 MODULE_PARM_DESC(zfs_fallocate_reserve_percent, 1128 "Percentage of length to use for the available capacity check"); 1129