xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zpl_file.c (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24  */
25 
26 
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <sys/file.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/zfs_znode.h>
33 #include <sys/zfs_vfsops.h>
34 #include <sys/zfs_vnops.h>
35 #include <sys/zfs_project.h>
36 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
37 #include <linux/pagemap.h>
38 #endif
39 
40 /*
41  * When using fallocate(2) to preallocate space, inflate the requested
42  * capacity check by 10% to account for the required metadata blocks.
43  */
44 unsigned int zfs_fallocate_reserve_percent = 110;
45 
46 static int
47 zpl_open(struct inode *ip, struct file *filp)
48 {
49 	cred_t *cr = CRED();
50 	int error;
51 	fstrans_cookie_t cookie;
52 
53 	error = generic_file_open(ip, filp);
54 	if (error)
55 		return (error);
56 
57 	crhold(cr);
58 	cookie = spl_fstrans_mark();
59 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
60 	spl_fstrans_unmark(cookie);
61 	crfree(cr);
62 	ASSERT3S(error, <=, 0);
63 
64 	return (error);
65 }
66 
67 static int
68 zpl_release(struct inode *ip, struct file *filp)
69 {
70 	cred_t *cr = CRED();
71 	int error;
72 	fstrans_cookie_t cookie;
73 
74 	cookie = spl_fstrans_mark();
75 	if (ITOZ(ip)->z_atime_dirty)
76 		zfs_mark_inode_dirty(ip);
77 
78 	crhold(cr);
79 	error = -zfs_close(ip, filp->f_flags, cr);
80 	spl_fstrans_unmark(cookie);
81 	crfree(cr);
82 	ASSERT3S(error, <=, 0);
83 
84 	return (error);
85 }
86 
87 static int
88 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
89 {
90 	cred_t *cr = CRED();
91 	int error;
92 	fstrans_cookie_t cookie;
93 
94 	crhold(cr);
95 	cookie = spl_fstrans_mark();
96 	error = -zfs_readdir(file_inode(filp), ctx, cr);
97 	spl_fstrans_unmark(cookie);
98 	crfree(cr);
99 	ASSERT3S(error, <=, 0);
100 
101 	return (error);
102 }
103 
104 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
105 static int
106 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
107 {
108 	zpl_dir_context_t ctx =
109 	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
110 	int error;
111 
112 	error = zpl_iterate(filp, &ctx);
113 	filp->f_pos = ctx.pos;
114 
115 	return (error);
116 }
117 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
118 
119 #if defined(HAVE_FSYNC_WITHOUT_DENTRY)
120 /*
121  * Linux 2.6.35 - 3.0 API,
122  * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
123  * redundant.  The dentry is still accessible via filp->f_path.dentry,
124  * and we are guaranteed that filp will never be NULL.
125  */
126 static int
127 zpl_fsync(struct file *filp, int datasync)
128 {
129 	struct inode *inode = filp->f_mapping->host;
130 	cred_t *cr = CRED();
131 	int error;
132 	fstrans_cookie_t cookie;
133 
134 	crhold(cr);
135 	cookie = spl_fstrans_mark();
136 	error = -zfs_fsync(ITOZ(inode), datasync, cr);
137 	spl_fstrans_unmark(cookie);
138 	crfree(cr);
139 	ASSERT3S(error, <=, 0);
140 
141 	return (error);
142 }
143 
144 #ifdef HAVE_FILE_AIO_FSYNC
145 static int
146 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
147 {
148 	return (zpl_fsync(kiocb->ki_filp, datasync));
149 }
150 #endif
151 
152 #elif defined(HAVE_FSYNC_RANGE)
153 /*
154  * Linux 3.1 API,
155  * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
156  * been pushed down in to the .fsync() vfs hook.  Additionally, the i_mutex
157  * lock is no longer held by the caller, for zfs we don't require the lock
158  * to be held so we don't acquire it.
159  */
160 static int
161 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
162 {
163 	struct inode *inode = filp->f_mapping->host;
164 	cred_t *cr = CRED();
165 	int error;
166 	fstrans_cookie_t cookie;
167 
168 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
169 	if (error)
170 		return (error);
171 
172 	crhold(cr);
173 	cookie = spl_fstrans_mark();
174 	error = -zfs_fsync(ITOZ(inode), datasync, cr);
175 	spl_fstrans_unmark(cookie);
176 	crfree(cr);
177 	ASSERT3S(error, <=, 0);
178 
179 	return (error);
180 }
181 
182 #ifdef HAVE_FILE_AIO_FSYNC
183 static int
184 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
185 {
186 	return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
187 }
188 #endif
189 
190 #else
191 #error "Unsupported fops->fsync() implementation"
192 #endif
193 
194 static inline int
195 zfs_io_flags(struct kiocb *kiocb)
196 {
197 	int flags = 0;
198 
199 #if defined(IOCB_DSYNC)
200 	if (kiocb->ki_flags & IOCB_DSYNC)
201 		flags |= O_DSYNC;
202 #endif
203 #if defined(IOCB_SYNC)
204 	if (kiocb->ki_flags & IOCB_SYNC)
205 		flags |= O_SYNC;
206 #endif
207 #if defined(IOCB_APPEND)
208 	if (kiocb->ki_flags & IOCB_APPEND)
209 		flags |= O_APPEND;
210 #endif
211 #if defined(IOCB_DIRECT)
212 	if (kiocb->ki_flags & IOCB_DIRECT)
213 		flags |= O_DIRECT;
214 #endif
215 	return (flags);
216 }
217 
218 /*
219  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
220  * is true.  This is needed since datasets with inherited "relatime" property
221  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
222  * `zfs set relatime=...`), which is what relatime test in VFS by
223  * relatime_need_update() is based on.
224  */
225 static inline void
226 zpl_file_accessed(struct file *filp)
227 {
228 	struct inode *ip = filp->f_mapping->host;
229 
230 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
231 		if (zfs_relatime_need_update(ip))
232 			file_accessed(filp);
233 	} else {
234 		file_accessed(filp);
235 	}
236 }
237 
238 #if defined(HAVE_VFS_RW_ITERATE)
239 
240 /*
241  * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
242  * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
243  * manipulate the iov_iter are available.  In which case the full iov_iter
244  * can be attached to the uio and correctly handled in the lower layers.
245  * Otherwise, for older kernels extract the iovec and pass it instead.
246  */
247 static void
248 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
249     loff_t pos, ssize_t count, size_t skip)
250 {
251 #if defined(HAVE_VFS_IOV_ITER)
252 	zfs_uio_iov_iter_init(uio, to, pos, count, skip);
253 #else
254 	zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
255 	    to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
256 	    count, skip);
257 #endif
258 }
259 
260 static ssize_t
261 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
262 {
263 	cred_t *cr = CRED();
264 	fstrans_cookie_t cookie;
265 	struct file *filp = kiocb->ki_filp;
266 	ssize_t count = iov_iter_count(to);
267 	zfs_uio_t uio;
268 
269 	zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
270 
271 	crhold(cr);
272 	cookie = spl_fstrans_mark();
273 
274 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
275 	    filp->f_flags | zfs_io_flags(kiocb), cr);
276 
277 	spl_fstrans_unmark(cookie);
278 	crfree(cr);
279 
280 	if (error < 0)
281 		return (error);
282 
283 	ssize_t read = count - uio.uio_resid;
284 	kiocb->ki_pos += read;
285 
286 	zpl_file_accessed(filp);
287 
288 	return (read);
289 }
290 
291 static inline ssize_t
292 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
293     size_t *countp)
294 {
295 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
296 	ssize_t ret = generic_write_checks(kiocb, from);
297 	if (ret <= 0)
298 		return (ret);
299 
300 	*countp = ret;
301 #else
302 	struct file *file = kiocb->ki_filp;
303 	struct address_space *mapping = file->f_mapping;
304 	struct inode *ip = mapping->host;
305 	int isblk = S_ISBLK(ip->i_mode);
306 
307 	*countp = iov_iter_count(from);
308 	ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
309 	if (ret)
310 		return (ret);
311 #endif
312 
313 	return (0);
314 }
315 
316 static ssize_t
317 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
318 {
319 	cred_t *cr = CRED();
320 	fstrans_cookie_t cookie;
321 	struct file *filp = kiocb->ki_filp;
322 	struct inode *ip = filp->f_mapping->host;
323 	zfs_uio_t uio;
324 	size_t count = 0;
325 	ssize_t ret;
326 
327 	ret = zpl_generic_write_checks(kiocb, from, &count);
328 	if (ret)
329 		return (ret);
330 
331 	zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
332 
333 	crhold(cr);
334 	cookie = spl_fstrans_mark();
335 
336 	int error = -zfs_write(ITOZ(ip), &uio,
337 	    filp->f_flags | zfs_io_flags(kiocb), cr);
338 
339 	spl_fstrans_unmark(cookie);
340 	crfree(cr);
341 
342 	if (error < 0)
343 		return (error);
344 
345 	ssize_t wrote = count - uio.uio_resid;
346 	kiocb->ki_pos += wrote;
347 
348 	return (wrote);
349 }
350 
351 #else /* !HAVE_VFS_RW_ITERATE */
352 
353 static ssize_t
354 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
355     unsigned long nr_segs, loff_t pos)
356 {
357 	cred_t *cr = CRED();
358 	fstrans_cookie_t cookie;
359 	struct file *filp = kiocb->ki_filp;
360 	size_t count;
361 	ssize_t ret;
362 
363 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
364 	if (ret)
365 		return (ret);
366 
367 	zfs_uio_t uio;
368 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
369 	    count, 0);
370 
371 	crhold(cr);
372 	cookie = spl_fstrans_mark();
373 
374 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
375 	    filp->f_flags | zfs_io_flags(kiocb), cr);
376 
377 	spl_fstrans_unmark(cookie);
378 	crfree(cr);
379 
380 	if (error < 0)
381 		return (error);
382 
383 	ssize_t read = count - uio.uio_resid;
384 	kiocb->ki_pos += read;
385 
386 	zpl_file_accessed(filp);
387 
388 	return (read);
389 }
390 
391 static ssize_t
392 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
393     unsigned long nr_segs, loff_t pos)
394 {
395 	cred_t *cr = CRED();
396 	fstrans_cookie_t cookie;
397 	struct file *filp = kiocb->ki_filp;
398 	struct inode *ip = filp->f_mapping->host;
399 	size_t count;
400 	ssize_t ret;
401 
402 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
403 	if (ret)
404 		return (ret);
405 
406 	ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
407 	if (ret)
408 		return (ret);
409 
410 	zfs_uio_t uio;
411 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
412 	    count, 0);
413 
414 	crhold(cr);
415 	cookie = spl_fstrans_mark();
416 
417 	int error = -zfs_write(ITOZ(ip), &uio,
418 	    filp->f_flags | zfs_io_flags(kiocb), cr);
419 
420 	spl_fstrans_unmark(cookie);
421 	crfree(cr);
422 
423 	if (error < 0)
424 		return (error);
425 
426 	ssize_t wrote = count - uio.uio_resid;
427 	kiocb->ki_pos += wrote;
428 
429 	return (wrote);
430 }
431 #endif /* HAVE_VFS_RW_ITERATE */
432 
433 #if defined(HAVE_VFS_RW_ITERATE)
434 static ssize_t
435 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
436 {
437 	if (rw == WRITE)
438 		return (zpl_iter_write(kiocb, iter));
439 	else
440 		return (zpl_iter_read(kiocb, iter));
441 }
442 #if defined(HAVE_VFS_DIRECT_IO_ITER)
443 static ssize_t
444 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
445 {
446 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
447 }
448 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
449 static ssize_t
450 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
451 {
452 	ASSERT3S(pos, ==, kiocb->ki_pos);
453 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
454 }
455 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
456 static ssize_t
457 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
458 {
459 	ASSERT3S(pos, ==, kiocb->ki_pos);
460 	return (zpl_direct_IO_impl(rw, kiocb, iter));
461 }
462 #else
463 #error "Unknown direct IO interface"
464 #endif
465 
466 #else /* HAVE_VFS_RW_ITERATE */
467 
468 #if defined(HAVE_VFS_DIRECT_IO_IOVEC)
469 static ssize_t
470 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
471     loff_t pos, unsigned long nr_segs)
472 {
473 	if (rw == WRITE)
474 		return (zpl_aio_write(kiocb, iov, nr_segs, pos));
475 	else
476 		return (zpl_aio_read(kiocb, iov, nr_segs, pos));
477 }
478 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
479 static ssize_t
480 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
481 {
482 	const struct iovec *iovp = iov_iter_iovec(iter);
483 	unsigned long nr_segs = iter->nr_segs;
484 
485 	ASSERT3S(pos, ==, kiocb->ki_pos);
486 	if (rw == WRITE)
487 		return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
488 	else
489 		return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
490 }
491 #else
492 #error "Unknown direct IO interface"
493 #endif
494 
495 #endif /* HAVE_VFS_RW_ITERATE */
496 
497 static loff_t
498 zpl_llseek(struct file *filp, loff_t offset, int whence)
499 {
500 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
501 	fstrans_cookie_t cookie;
502 
503 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
504 		struct inode *ip = filp->f_mapping->host;
505 		loff_t maxbytes = ip->i_sb->s_maxbytes;
506 		loff_t error;
507 
508 		spl_inode_lock_shared(ip);
509 		cookie = spl_fstrans_mark();
510 		error = -zfs_holey(ITOZ(ip), whence, &offset);
511 		spl_fstrans_unmark(cookie);
512 		if (error == 0)
513 			error = lseek_execute(filp, ip, offset, maxbytes);
514 		spl_inode_unlock_shared(ip);
515 
516 		return (error);
517 	}
518 #endif /* SEEK_HOLE && SEEK_DATA */
519 
520 	return (generic_file_llseek(filp, offset, whence));
521 }
522 
523 /*
524  * It's worth taking a moment to describe how mmap is implemented
525  * for zfs because it differs considerably from other Linux filesystems.
526  * However, this issue is handled the same way under OpenSolaris.
527  *
528  * The issue is that by design zfs bypasses the Linux page cache and
529  * leaves all caching up to the ARC.  This has been shown to work
530  * well for the common read(2)/write(2) case.  However, mmap(2)
531  * is problem because it relies on being tightly integrated with the
532  * page cache.  To handle this we cache mmap'ed files twice, once in
533  * the ARC and a second time in the page cache.  The code is careful
534  * to keep both copies synchronized.
535  *
536  * When a file with an mmap'ed region is written to using write(2)
537  * both the data in the ARC and existing pages in the page cache
538  * are updated.  For a read(2) data will be read first from the page
539  * cache then the ARC if needed.  Neither a write(2) or read(2) will
540  * will ever result in new pages being added to the page cache.
541  *
542  * New pages are added to the page cache only via .readpage() which
543  * is called when the vfs needs to read a page off disk to back the
544  * virtual memory region.  These pages may be modified without
545  * notifying the ARC and will be written out periodically via
546  * .writepage().  This will occur due to either a sync or the usual
547  * page aging behavior.  Note because a read(2) of a mmap'ed file
548  * will always check the page cache first even when the ARC is out
549  * of date correct data will still be returned.
550  *
551  * While this implementation ensures correct behavior it does have
552  * have some drawbacks.  The most obvious of which is that it
553  * increases the required memory footprint when access mmap'ed
554  * files.  It also adds additional complexity to the code keeping
555  * both caches synchronized.
556  *
557  * Longer term it may be possible to cleanly resolve this wart by
558  * mapping page cache pages directly on to the ARC buffers.  The
559  * Linux address space operations are flexible enough to allow
560  * selection of which pages back a particular index.  The trick
561  * would be working out the details of which subsystem is in
562  * charge, the ARC, the page cache, or both.  It may also prove
563  * helpful to move the ARC buffers to a scatter-gather lists
564  * rather than a vmalloc'ed region.
565  */
566 static int
567 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
568 {
569 	struct inode *ip = filp->f_mapping->host;
570 	znode_t *zp = ITOZ(ip);
571 	int error;
572 	fstrans_cookie_t cookie;
573 
574 	cookie = spl_fstrans_mark();
575 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
576 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
577 	spl_fstrans_unmark(cookie);
578 	if (error)
579 		return (error);
580 
581 	error = generic_file_mmap(filp, vma);
582 	if (error)
583 		return (error);
584 
585 	mutex_enter(&zp->z_lock);
586 	zp->z_is_mapped = B_TRUE;
587 	mutex_exit(&zp->z_lock);
588 
589 	return (error);
590 }
591 
592 /*
593  * Populate a page with data for the Linux page cache.  This function is
594  * only used to support mmap(2).  There will be an identical copy of the
595  * data in the ARC which is kept up to date via .write() and .writepage().
596  */
597 static inline int
598 zpl_readpage_common(struct page *pp)
599 {
600 	struct inode *ip;
601 	struct page *pl[1];
602 	int error = 0;
603 	fstrans_cookie_t cookie;
604 
605 	ASSERT(PageLocked(pp));
606 	ip = pp->mapping->host;
607 	pl[0] = pp;
608 
609 	cookie = spl_fstrans_mark();
610 	error = -zfs_getpage(ip, pl, 1);
611 	spl_fstrans_unmark(cookie);
612 
613 	if (error) {
614 		SetPageError(pp);
615 		ClearPageUptodate(pp);
616 	} else {
617 		ClearPageError(pp);
618 		SetPageUptodate(pp);
619 		flush_dcache_page(pp);
620 	}
621 
622 	unlock_page(pp);
623 	return (error);
624 }
625 
626 static int
627 zpl_readpage(struct file *filp, struct page *pp)
628 {
629 	return (zpl_readpage_common(pp));
630 }
631 
632 static int
633 zpl_readpage_filler(void *data, struct page *pp)
634 {
635 	return (zpl_readpage_common(pp));
636 }
637 
638 /*
639  * Populate a set of pages with data for the Linux page cache.  This
640  * function will only be called for read ahead and never for demand
641  * paging.  For simplicity, the code relies on read_cache_pages() to
642  * correctly lock each page for IO and call zpl_readpage().
643  */
644 static int
645 zpl_readpages(struct file *filp, struct address_space *mapping,
646     struct list_head *pages, unsigned nr_pages)
647 {
648 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
649 }
650 
651 static int
652 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
653 {
654 	struct address_space *mapping = data;
655 	fstrans_cookie_t cookie;
656 
657 	ASSERT(PageLocked(pp));
658 	ASSERT(!PageWriteback(pp));
659 
660 	cookie = spl_fstrans_mark();
661 	(void) zfs_putpage(mapping->host, pp, wbc);
662 	spl_fstrans_unmark(cookie);
663 
664 	return (0);
665 }
666 
667 static int
668 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
669 {
670 	znode_t		*zp = ITOZ(mapping->host);
671 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
672 	enum writeback_sync_modes sync_mode;
673 	int result;
674 
675 	ZPL_ENTER(zfsvfs);
676 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
677 		wbc->sync_mode = WB_SYNC_ALL;
678 	ZPL_EXIT(zfsvfs);
679 	sync_mode = wbc->sync_mode;
680 
681 	/*
682 	 * We don't want to run write_cache_pages() in SYNC mode here, because
683 	 * that would make putpage() wait for a single page to be committed to
684 	 * disk every single time, resulting in atrocious performance. Instead
685 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
686 	 * and then we commit it all in one go.
687 	 */
688 	wbc->sync_mode = WB_SYNC_NONE;
689 	result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
690 	if (sync_mode != wbc->sync_mode) {
691 		ZPL_ENTER(zfsvfs);
692 		ZPL_VERIFY_ZP(zp);
693 		if (zfsvfs->z_log != NULL)
694 			zil_commit(zfsvfs->z_log, zp->z_id);
695 		ZPL_EXIT(zfsvfs);
696 
697 		/*
698 		 * We need to call write_cache_pages() again (we can't just
699 		 * return after the commit) because the previous call in
700 		 * non-SYNC mode does not guarantee that we got all the dirty
701 		 * pages (see the implementation of write_cache_pages() for
702 		 * details). That being said, this is a no-op in most cases.
703 		 */
704 		wbc->sync_mode = sync_mode;
705 		result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
706 	}
707 	return (result);
708 }
709 
710 /*
711  * Write out dirty pages to the ARC, this function is only required to
712  * support mmap(2).  Mapped pages may be dirtied by memory operations
713  * which never call .write().  These dirty pages are kept in sync with
714  * the ARC buffers via this hook.
715  */
716 static int
717 zpl_writepage(struct page *pp, struct writeback_control *wbc)
718 {
719 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
720 		wbc->sync_mode = WB_SYNC_ALL;
721 
722 	return (zpl_putpage(pp, wbc, pp->mapping));
723 }
724 
725 /*
726  * The flag combination which matches the behavior of zfs_space() is
727  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
728  * flag was introduced in the 2.6.38 kernel.
729  *
730  * The original mode=0 (allocate space) behavior can be reasonably emulated
731  * by checking if enough space exists and creating a sparse file, as real
732  * persistent space reservation is not possible due to COW, snapshots, etc.
733  */
734 static long
735 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
736 {
737 	cred_t *cr = CRED();
738 	loff_t olen;
739 	fstrans_cookie_t cookie;
740 	int error = 0;
741 
742 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) != 0)
743 		return (-EOPNOTSUPP);
744 
745 	if (offset < 0 || len <= 0)
746 		return (-EINVAL);
747 
748 	spl_inode_lock(ip);
749 	olen = i_size_read(ip);
750 
751 	crhold(cr);
752 	cookie = spl_fstrans_mark();
753 	if (mode & FALLOC_FL_PUNCH_HOLE) {
754 		flock64_t bf;
755 
756 		if (offset > olen)
757 			goto out_unmark;
758 
759 		if (offset + len > olen)
760 			len = olen - offset;
761 		bf.l_type = F_WRLCK;
762 		bf.l_whence = SEEK_SET;
763 		bf.l_start = offset;
764 		bf.l_len = len;
765 		bf.l_pid = 0;
766 
767 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
768 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
769 		unsigned int percent = zfs_fallocate_reserve_percent;
770 		struct kstatfs statfs;
771 
772 		/* Legacy mode, disable fallocate compatibility. */
773 		if (percent == 0) {
774 			error = -EOPNOTSUPP;
775 			goto out_unmark;
776 		}
777 
778 		/*
779 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
780 		 * also checks project quota limits, which are relevant here.
781 		 */
782 		error = zfs_statvfs(ip, &statfs);
783 		if (error)
784 			goto out_unmark;
785 
786 		/*
787 		 * Shrink available space a bit to account for overhead/races.
788 		 * We know the product previously fit into availbytes from
789 		 * dmu_objset_space(), so the smaller product will also fit.
790 		 */
791 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
792 			error = -ENOSPC;
793 			goto out_unmark;
794 		}
795 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
796 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
797 	}
798 out_unmark:
799 	spl_fstrans_unmark(cookie);
800 	spl_inode_unlock(ip);
801 
802 	crfree(cr);
803 
804 	return (error);
805 }
806 
807 static long
808 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
809 {
810 	return zpl_fallocate_common(file_inode(filp),
811 	    mode, offset, len);
812 }
813 
814 #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
815 #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
816 
817 static uint32_t
818 __zpl_ioctl_getflags(struct inode *ip)
819 {
820 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
821 	uint32_t ioctl_flags = 0;
822 
823 	if (zfs_flags & ZFS_IMMUTABLE)
824 		ioctl_flags |= FS_IMMUTABLE_FL;
825 
826 	if (zfs_flags & ZFS_APPENDONLY)
827 		ioctl_flags |= FS_APPEND_FL;
828 
829 	if (zfs_flags & ZFS_NODUMP)
830 		ioctl_flags |= FS_NODUMP_FL;
831 
832 	if (zfs_flags & ZFS_PROJINHERIT)
833 		ioctl_flags |= ZFS_PROJINHERIT_FL;
834 
835 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
836 }
837 
838 /*
839  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
840  * attributes common to both Linux and Solaris are mapped.
841  */
842 static int
843 zpl_ioctl_getflags(struct file *filp, void __user *arg)
844 {
845 	uint32_t flags;
846 	int err;
847 
848 	flags = __zpl_ioctl_getflags(file_inode(filp));
849 	err = copy_to_user(arg, &flags, sizeof (flags));
850 
851 	return (err);
852 }
853 
854 /*
855  * fchange() is a helper macro to detect if we have been asked to change a
856  * flag. This is ugly, but the requirement that we do this is a consequence of
857  * how the Linux file attribute interface was designed. Another consequence is
858  * that concurrent modification of files suffers from a TOCTOU race. Neither
859  * are things we can fix without modifying the kernel-userland interface, which
860  * is outside of our jurisdiction.
861  */
862 
863 #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
864 
865 static int
866 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
867 {
868 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
869 	xoptattr_t *xoap;
870 
871 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
872 	    ZFS_PROJINHERIT_FL))
873 		return (-EOPNOTSUPP);
874 
875 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
876 		return (-EACCES);
877 
878 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
879 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
880 	    !capable(CAP_LINUX_IMMUTABLE))
881 		return (-EPERM);
882 
883 	if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
884 		return (-EACCES);
885 
886 	xva_init(xva);
887 	xoap = xva_getxoptattr(xva);
888 
889 	XVA_SET_REQ(xva, XAT_IMMUTABLE);
890 	if (ioctl_flags & FS_IMMUTABLE_FL)
891 		xoap->xoa_immutable = B_TRUE;
892 
893 	XVA_SET_REQ(xva, XAT_APPENDONLY);
894 	if (ioctl_flags & FS_APPEND_FL)
895 		xoap->xoa_appendonly = B_TRUE;
896 
897 	XVA_SET_REQ(xva, XAT_NODUMP);
898 	if (ioctl_flags & FS_NODUMP_FL)
899 		xoap->xoa_nodump = B_TRUE;
900 
901 	XVA_SET_REQ(xva, XAT_PROJINHERIT);
902 	if (ioctl_flags & ZFS_PROJINHERIT_FL)
903 		xoap->xoa_projinherit = B_TRUE;
904 
905 	return (0);
906 }
907 
908 static int
909 zpl_ioctl_setflags(struct file *filp, void __user *arg)
910 {
911 	struct inode *ip = file_inode(filp);
912 	uint32_t flags;
913 	cred_t *cr = CRED();
914 	xvattr_t xva;
915 	int err;
916 	fstrans_cookie_t cookie;
917 
918 	if (copy_from_user(&flags, arg, sizeof (flags)))
919 		return (-EFAULT);
920 
921 	err = __zpl_ioctl_setflags(ip, flags, &xva);
922 	if (err)
923 		return (err);
924 
925 	crhold(cr);
926 	cookie = spl_fstrans_mark();
927 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
928 	spl_fstrans_unmark(cookie);
929 	crfree(cr);
930 
931 	return (err);
932 }
933 
934 static int
935 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
936 {
937 	zfsxattr_t fsx = { 0 };
938 	struct inode *ip = file_inode(filp);
939 	int err;
940 
941 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
942 	fsx.fsx_projid = ITOZ(ip)->z_projid;
943 	err = copy_to_user(arg, &fsx, sizeof (fsx));
944 
945 	return (err);
946 }
947 
948 static int
949 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
950 {
951 	struct inode *ip = file_inode(filp);
952 	zfsxattr_t fsx;
953 	cred_t *cr = CRED();
954 	xvattr_t xva;
955 	xoptattr_t *xoap;
956 	int err;
957 	fstrans_cookie_t cookie;
958 
959 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
960 		return (-EFAULT);
961 
962 	if (!zpl_is_valid_projid(fsx.fsx_projid))
963 		return (-EINVAL);
964 
965 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
966 	if (err)
967 		return (err);
968 
969 	xoap = xva_getxoptattr(&xva);
970 	XVA_SET_REQ(&xva, XAT_PROJID);
971 	xoap->xoa_projid = fsx.fsx_projid;
972 
973 	crhold(cr);
974 	cookie = spl_fstrans_mark();
975 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
976 	spl_fstrans_unmark(cookie);
977 	crfree(cr);
978 
979 	return (err);
980 }
981 
982 static long
983 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
984 {
985 	switch (cmd) {
986 	case FS_IOC_GETFLAGS:
987 		return (zpl_ioctl_getflags(filp, (void *)arg));
988 	case FS_IOC_SETFLAGS:
989 		return (zpl_ioctl_setflags(filp, (void *)arg));
990 	case ZFS_IOC_FSGETXATTR:
991 		return (zpl_ioctl_getxattr(filp, (void *)arg));
992 	case ZFS_IOC_FSSETXATTR:
993 		return (zpl_ioctl_setxattr(filp, (void *)arg));
994 	default:
995 		return (-ENOTTY);
996 	}
997 }
998 
999 #ifdef CONFIG_COMPAT
1000 static long
1001 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1002 {
1003 	switch (cmd) {
1004 	case FS_IOC32_GETFLAGS:
1005 		cmd = FS_IOC_GETFLAGS;
1006 		break;
1007 	case FS_IOC32_SETFLAGS:
1008 		cmd = FS_IOC_SETFLAGS;
1009 		break;
1010 	default:
1011 		return (-ENOTTY);
1012 	}
1013 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1014 }
1015 #endif /* CONFIG_COMPAT */
1016 
1017 
1018 const struct address_space_operations zpl_address_space_operations = {
1019 	.readpages	= zpl_readpages,
1020 	.readpage	= zpl_readpage,
1021 	.writepage	= zpl_writepage,
1022 	.writepages	= zpl_writepages,
1023 	.direct_IO	= zpl_direct_IO,
1024 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1025 	.set_page_dirty = __set_page_dirty_nobuffers,
1026 #endif
1027 };
1028 
1029 const struct file_operations zpl_file_operations = {
1030 	.open		= zpl_open,
1031 	.release	= zpl_release,
1032 	.llseek		= zpl_llseek,
1033 #ifdef HAVE_VFS_RW_ITERATE
1034 #ifdef HAVE_NEW_SYNC_READ
1035 	.read		= new_sync_read,
1036 	.write		= new_sync_write,
1037 #endif
1038 	.read_iter	= zpl_iter_read,
1039 	.write_iter	= zpl_iter_write,
1040 #ifdef HAVE_VFS_IOV_ITER
1041 	.splice_read	= generic_file_splice_read,
1042 	.splice_write	= iter_file_splice_write,
1043 #endif
1044 #else
1045 	.read		= do_sync_read,
1046 	.write		= do_sync_write,
1047 	.aio_read	= zpl_aio_read,
1048 	.aio_write	= zpl_aio_write,
1049 #endif
1050 	.mmap		= zpl_mmap,
1051 	.fsync		= zpl_fsync,
1052 #ifdef HAVE_FILE_AIO_FSYNC
1053 	.aio_fsync	= zpl_aio_fsync,
1054 #endif
1055 	.fallocate	= zpl_fallocate,
1056 	.unlocked_ioctl	= zpl_ioctl,
1057 #ifdef CONFIG_COMPAT
1058 	.compat_ioctl	= zpl_compat_ioctl,
1059 #endif
1060 };
1061 
1062 const struct file_operations zpl_dir_file_operations = {
1063 	.llseek		= generic_file_llseek,
1064 	.read		= generic_read_dir,
1065 #if defined(HAVE_VFS_ITERATE_SHARED)
1066 	.iterate_shared	= zpl_iterate,
1067 #elif defined(HAVE_VFS_ITERATE)
1068 	.iterate	= zpl_iterate,
1069 #else
1070 	.readdir	= zpl_readdir,
1071 #endif
1072 	.fsync		= zpl_fsync,
1073 	.unlocked_ioctl = zpl_ioctl,
1074 #ifdef CONFIG_COMPAT
1075 	.compat_ioctl   = zpl_compat_ioctl,
1076 #endif
1077 };
1078 
1079 /* BEGIN CSTYLED */
1080 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1081 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1082     "Percentage of length to use for the available capacity check");
1083 /* END CSTYLED */
1084