xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zpl_file.c (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24  */
25 
26 
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <sys/file.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/zfs_znode.h>
33 #include <sys/zfs_vfsops.h>
34 #include <sys/zfs_vnops.h>
35 #include <sys/zfs_project.h>
36 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
37     defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
38 #include <linux/pagemap.h>
39 #endif
40 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
41 #include <linux/writeback.h>
42 #endif
43 
44 /*
45  * When using fallocate(2) to preallocate space, inflate the requested
46  * capacity check by 10% to account for the required metadata blocks.
47  */
48 static unsigned int zfs_fallocate_reserve_percent = 110;
49 
50 static int
51 zpl_open(struct inode *ip, struct file *filp)
52 {
53 	cred_t *cr = CRED();
54 	int error;
55 	fstrans_cookie_t cookie;
56 
57 	error = generic_file_open(ip, filp);
58 	if (error)
59 		return (error);
60 
61 	crhold(cr);
62 	cookie = spl_fstrans_mark();
63 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
64 	spl_fstrans_unmark(cookie);
65 	crfree(cr);
66 	ASSERT3S(error, <=, 0);
67 
68 	return (error);
69 }
70 
71 static int
72 zpl_release(struct inode *ip, struct file *filp)
73 {
74 	cred_t *cr = CRED();
75 	int error;
76 	fstrans_cookie_t cookie;
77 
78 	cookie = spl_fstrans_mark();
79 	if (ITOZ(ip)->z_atime_dirty)
80 		zfs_mark_inode_dirty(ip);
81 
82 	crhold(cr);
83 	error = -zfs_close(ip, filp->f_flags, cr);
84 	spl_fstrans_unmark(cookie);
85 	crfree(cr);
86 	ASSERT3S(error, <=, 0);
87 
88 	return (error);
89 }
90 
91 static int
92 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
93 {
94 	cred_t *cr = CRED();
95 	int error;
96 	fstrans_cookie_t cookie;
97 
98 	crhold(cr);
99 	cookie = spl_fstrans_mark();
100 	error = -zfs_readdir(file_inode(filp), ctx, cr);
101 	spl_fstrans_unmark(cookie);
102 	crfree(cr);
103 	ASSERT3S(error, <=, 0);
104 
105 	return (error);
106 }
107 
108 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
109 static int
110 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
111 {
112 	zpl_dir_context_t ctx =
113 	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
114 	int error;
115 
116 	error = zpl_iterate(filp, &ctx);
117 	filp->f_pos = ctx.pos;
118 
119 	return (error);
120 }
121 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
122 
123 #if defined(HAVE_FSYNC_WITHOUT_DENTRY)
124 /*
125  * Linux 2.6.35 - 3.0 API,
126  * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
127  * redundant.  The dentry is still accessible via filp->f_path.dentry,
128  * and we are guaranteed that filp will never be NULL.
129  */
130 static int
131 zpl_fsync(struct file *filp, int datasync)
132 {
133 	struct inode *inode = filp->f_mapping->host;
134 	cred_t *cr = CRED();
135 	int error;
136 	fstrans_cookie_t cookie;
137 
138 	crhold(cr);
139 	cookie = spl_fstrans_mark();
140 	error = -zfs_fsync(ITOZ(inode), datasync, cr);
141 	spl_fstrans_unmark(cookie);
142 	crfree(cr);
143 	ASSERT3S(error, <=, 0);
144 
145 	return (error);
146 }
147 
148 #ifdef HAVE_FILE_AIO_FSYNC
149 static int
150 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
151 {
152 	return (zpl_fsync(kiocb->ki_filp, datasync));
153 }
154 #endif
155 
156 #elif defined(HAVE_FSYNC_RANGE)
157 /*
158  * Linux 3.1 API,
159  * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
160  * been pushed down in to the .fsync() vfs hook.  Additionally, the i_mutex
161  * lock is no longer held by the caller, for zfs we don't require the lock
162  * to be held so we don't acquire it.
163  */
164 static int
165 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
166 {
167 	struct inode *inode = filp->f_mapping->host;
168 	znode_t *zp = ITOZ(inode);
169 	zfsvfs_t *zfsvfs = ITOZSB(inode);
170 	cred_t *cr = CRED();
171 	int error;
172 	fstrans_cookie_t cookie;
173 
174 	/*
175 	 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
176 	 * tandem so that sync writes can detect if there are any non-sync
177 	 * writes going on and vice-versa. The "vice-versa" part to this logic
178 	 * is located in zfs_putpage() where non-sync writes check if there are
179 	 * any ongoing sync writes. If any sync and non-sync writes overlap,
180 	 * we do a commit to complete the non-sync writes since the latter can
181 	 * potentially take several seconds to complete and thus block sync
182 	 * writes in the upcoming call to filemap_write_and_wait_range().
183 	 */
184 	atomic_inc_32(&zp->z_sync_writes_cnt);
185 	/*
186 	 * If the following check does not detect an overlapping non-sync write
187 	 * (say because it's just about to start), then it is guaranteed that
188 	 * the non-sync write will detect this sync write. This is because we
189 	 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
190 	 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
191 	 * zfs_putpage() respectively.
192 	 */
193 	if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
194 		ZPL_ENTER(zfsvfs);
195 		zil_commit(zfsvfs->z_log, zp->z_id);
196 		ZPL_EXIT(zfsvfs);
197 	}
198 
199 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
200 
201 	/*
202 	 * The sync write is not complete yet but we decrement
203 	 * z_sync_writes_cnt since zfs_fsync() increments and decrements
204 	 * it internally. If a non-sync write starts just after the decrement
205 	 * operation but before we call zfs_fsync(), it may not detect this
206 	 * overlapping sync write but it does not matter since we have already
207 	 * gone past filemap_write_and_wait_range() and we won't block due to
208 	 * the non-sync write.
209 	 */
210 	atomic_dec_32(&zp->z_sync_writes_cnt);
211 
212 	if (error)
213 		return (error);
214 
215 	crhold(cr);
216 	cookie = spl_fstrans_mark();
217 	error = -zfs_fsync(zp, datasync, cr);
218 	spl_fstrans_unmark(cookie);
219 	crfree(cr);
220 	ASSERT3S(error, <=, 0);
221 
222 	return (error);
223 }
224 
225 #ifdef HAVE_FILE_AIO_FSYNC
226 static int
227 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
228 {
229 	return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
230 }
231 #endif
232 
233 #else
234 #error "Unsupported fops->fsync() implementation"
235 #endif
236 
237 static inline int
238 zfs_io_flags(struct kiocb *kiocb)
239 {
240 	int flags = 0;
241 
242 #if defined(IOCB_DSYNC)
243 	if (kiocb->ki_flags & IOCB_DSYNC)
244 		flags |= O_DSYNC;
245 #endif
246 #if defined(IOCB_SYNC)
247 	if (kiocb->ki_flags & IOCB_SYNC)
248 		flags |= O_SYNC;
249 #endif
250 #if defined(IOCB_APPEND)
251 	if (kiocb->ki_flags & IOCB_APPEND)
252 		flags |= O_APPEND;
253 #endif
254 #if defined(IOCB_DIRECT)
255 	if (kiocb->ki_flags & IOCB_DIRECT)
256 		flags |= O_DIRECT;
257 #endif
258 	return (flags);
259 }
260 
261 /*
262  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
263  * is true.  This is needed since datasets with inherited "relatime" property
264  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
265  * `zfs set relatime=...`), which is what relatime test in VFS by
266  * relatime_need_update() is based on.
267  */
268 static inline void
269 zpl_file_accessed(struct file *filp)
270 {
271 	struct inode *ip = filp->f_mapping->host;
272 
273 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
274 		if (zfs_relatime_need_update(ip))
275 			file_accessed(filp);
276 	} else {
277 		file_accessed(filp);
278 	}
279 }
280 
281 #if defined(HAVE_VFS_RW_ITERATE)
282 
283 /*
284  * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
285  * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
286  * manipulate the iov_iter are available.  In which case the full iov_iter
287  * can be attached to the uio and correctly handled in the lower layers.
288  * Otherwise, for older kernels extract the iovec and pass it instead.
289  */
290 static void
291 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
292     loff_t pos, ssize_t count, size_t skip)
293 {
294 #if defined(HAVE_VFS_IOV_ITER)
295 	zfs_uio_iov_iter_init(uio, to, pos, count, skip);
296 #else
297 #ifdef HAVE_IOV_ITER_TYPE
298 	zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
299 	    iov_iter_type(to) & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
300 	    count, skip);
301 #else
302 	zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
303 	    to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
304 	    count, skip);
305 #endif
306 #endif
307 }
308 
309 static ssize_t
310 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
311 {
312 	cred_t *cr = CRED();
313 	fstrans_cookie_t cookie;
314 	struct file *filp = kiocb->ki_filp;
315 	ssize_t count = iov_iter_count(to);
316 	zfs_uio_t uio;
317 
318 	zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
319 
320 	crhold(cr);
321 	cookie = spl_fstrans_mark();
322 
323 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
324 	    filp->f_flags | zfs_io_flags(kiocb), cr);
325 
326 	spl_fstrans_unmark(cookie);
327 	crfree(cr);
328 
329 	if (error < 0)
330 		return (error);
331 
332 	ssize_t read = count - uio.uio_resid;
333 	kiocb->ki_pos += read;
334 
335 	zpl_file_accessed(filp);
336 
337 	return (read);
338 }
339 
340 static inline ssize_t
341 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
342     size_t *countp)
343 {
344 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
345 	ssize_t ret = generic_write_checks(kiocb, from);
346 	if (ret <= 0)
347 		return (ret);
348 
349 	*countp = ret;
350 #else
351 	struct file *file = kiocb->ki_filp;
352 	struct address_space *mapping = file->f_mapping;
353 	struct inode *ip = mapping->host;
354 	int isblk = S_ISBLK(ip->i_mode);
355 
356 	*countp = iov_iter_count(from);
357 	ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
358 	if (ret)
359 		return (ret);
360 #endif
361 
362 	return (0);
363 }
364 
365 static ssize_t
366 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
367 {
368 	cred_t *cr = CRED();
369 	fstrans_cookie_t cookie;
370 	struct file *filp = kiocb->ki_filp;
371 	struct inode *ip = filp->f_mapping->host;
372 	zfs_uio_t uio;
373 	size_t count = 0;
374 	ssize_t ret;
375 
376 	ret = zpl_generic_write_checks(kiocb, from, &count);
377 	if (ret)
378 		return (ret);
379 
380 	zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
381 
382 	crhold(cr);
383 	cookie = spl_fstrans_mark();
384 
385 	int error = -zfs_write(ITOZ(ip), &uio,
386 	    filp->f_flags | zfs_io_flags(kiocb), cr);
387 
388 	spl_fstrans_unmark(cookie);
389 	crfree(cr);
390 
391 	if (error < 0)
392 		return (error);
393 
394 	ssize_t wrote = count - uio.uio_resid;
395 	kiocb->ki_pos += wrote;
396 
397 	return (wrote);
398 }
399 
400 #else /* !HAVE_VFS_RW_ITERATE */
401 
402 static ssize_t
403 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
404     unsigned long nr_segs, loff_t pos)
405 {
406 	cred_t *cr = CRED();
407 	fstrans_cookie_t cookie;
408 	struct file *filp = kiocb->ki_filp;
409 	size_t count;
410 	ssize_t ret;
411 
412 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
413 	if (ret)
414 		return (ret);
415 
416 	zfs_uio_t uio;
417 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
418 	    count, 0);
419 
420 	crhold(cr);
421 	cookie = spl_fstrans_mark();
422 
423 	int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
424 	    filp->f_flags | zfs_io_flags(kiocb), cr);
425 
426 	spl_fstrans_unmark(cookie);
427 	crfree(cr);
428 
429 	if (error < 0)
430 		return (error);
431 
432 	ssize_t read = count - uio.uio_resid;
433 	kiocb->ki_pos += read;
434 
435 	zpl_file_accessed(filp);
436 
437 	return (read);
438 }
439 
440 static ssize_t
441 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
442     unsigned long nr_segs, loff_t pos)
443 {
444 	cred_t *cr = CRED();
445 	fstrans_cookie_t cookie;
446 	struct file *filp = kiocb->ki_filp;
447 	struct inode *ip = filp->f_mapping->host;
448 	size_t count;
449 	ssize_t ret;
450 
451 	ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
452 	if (ret)
453 		return (ret);
454 
455 	ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
456 	if (ret)
457 		return (ret);
458 
459 	kiocb->ki_pos = pos;
460 
461 	zfs_uio_t uio;
462 	zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
463 	    count, 0);
464 
465 	crhold(cr);
466 	cookie = spl_fstrans_mark();
467 
468 	int error = -zfs_write(ITOZ(ip), &uio,
469 	    filp->f_flags | zfs_io_flags(kiocb), cr);
470 
471 	spl_fstrans_unmark(cookie);
472 	crfree(cr);
473 
474 	if (error < 0)
475 		return (error);
476 
477 	ssize_t wrote = count - uio.uio_resid;
478 	kiocb->ki_pos += wrote;
479 
480 	return (wrote);
481 }
482 #endif /* HAVE_VFS_RW_ITERATE */
483 
484 #if defined(HAVE_VFS_RW_ITERATE)
485 static ssize_t
486 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
487 {
488 	if (rw == WRITE)
489 		return (zpl_iter_write(kiocb, iter));
490 	else
491 		return (zpl_iter_read(kiocb, iter));
492 }
493 #if defined(HAVE_VFS_DIRECT_IO_ITER)
494 static ssize_t
495 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
496 {
497 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
498 }
499 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
500 static ssize_t
501 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
502 {
503 	ASSERT3S(pos, ==, kiocb->ki_pos);
504 	return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
505 }
506 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
507 static ssize_t
508 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
509 {
510 	ASSERT3S(pos, ==, kiocb->ki_pos);
511 	return (zpl_direct_IO_impl(rw, kiocb, iter));
512 }
513 #else
514 #error "Unknown direct IO interface"
515 #endif
516 
517 #else /* HAVE_VFS_RW_ITERATE */
518 
519 #if defined(HAVE_VFS_DIRECT_IO_IOVEC)
520 static ssize_t
521 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
522     loff_t pos, unsigned long nr_segs)
523 {
524 	if (rw == WRITE)
525 		return (zpl_aio_write(kiocb, iov, nr_segs, pos));
526 	else
527 		return (zpl_aio_read(kiocb, iov, nr_segs, pos));
528 }
529 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
530 static ssize_t
531 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
532 {
533 	const struct iovec *iovp = iov_iter_iovec(iter);
534 	unsigned long nr_segs = iter->nr_segs;
535 
536 	ASSERT3S(pos, ==, kiocb->ki_pos);
537 	if (rw == WRITE)
538 		return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
539 	else
540 		return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
541 }
542 #else
543 #error "Unknown direct IO interface"
544 #endif
545 
546 #endif /* HAVE_VFS_RW_ITERATE */
547 
548 static loff_t
549 zpl_llseek(struct file *filp, loff_t offset, int whence)
550 {
551 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
552 	fstrans_cookie_t cookie;
553 
554 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
555 		struct inode *ip = filp->f_mapping->host;
556 		loff_t maxbytes = ip->i_sb->s_maxbytes;
557 		loff_t error;
558 
559 		spl_inode_lock_shared(ip);
560 		cookie = spl_fstrans_mark();
561 		error = -zfs_holey(ITOZ(ip), whence, &offset);
562 		spl_fstrans_unmark(cookie);
563 		if (error == 0)
564 			error = lseek_execute(filp, ip, offset, maxbytes);
565 		spl_inode_unlock_shared(ip);
566 
567 		return (error);
568 	}
569 #endif /* SEEK_HOLE && SEEK_DATA */
570 
571 	return (generic_file_llseek(filp, offset, whence));
572 }
573 
574 /*
575  * It's worth taking a moment to describe how mmap is implemented
576  * for zfs because it differs considerably from other Linux filesystems.
577  * However, this issue is handled the same way under OpenSolaris.
578  *
579  * The issue is that by design zfs bypasses the Linux page cache and
580  * leaves all caching up to the ARC.  This has been shown to work
581  * well for the common read(2)/write(2) case.  However, mmap(2)
582  * is problem because it relies on being tightly integrated with the
583  * page cache.  To handle this we cache mmap'ed files twice, once in
584  * the ARC and a second time in the page cache.  The code is careful
585  * to keep both copies synchronized.
586  *
587  * When a file with an mmap'ed region is written to using write(2)
588  * both the data in the ARC and existing pages in the page cache
589  * are updated.  For a read(2) data will be read first from the page
590  * cache then the ARC if needed.  Neither a write(2) or read(2) will
591  * will ever result in new pages being added to the page cache.
592  *
593  * New pages are added to the page cache only via .readpage() which
594  * is called when the vfs needs to read a page off disk to back the
595  * virtual memory region.  These pages may be modified without
596  * notifying the ARC and will be written out periodically via
597  * .writepage().  This will occur due to either a sync or the usual
598  * page aging behavior.  Note because a read(2) of a mmap'ed file
599  * will always check the page cache first even when the ARC is out
600  * of date correct data will still be returned.
601  *
602  * While this implementation ensures correct behavior it does have
603  * have some drawbacks.  The most obvious of which is that it
604  * increases the required memory footprint when access mmap'ed
605  * files.  It also adds additional complexity to the code keeping
606  * both caches synchronized.
607  *
608  * Longer term it may be possible to cleanly resolve this wart by
609  * mapping page cache pages directly on to the ARC buffers.  The
610  * Linux address space operations are flexible enough to allow
611  * selection of which pages back a particular index.  The trick
612  * would be working out the details of which subsystem is in
613  * charge, the ARC, the page cache, or both.  It may also prove
614  * helpful to move the ARC buffers to a scatter-gather lists
615  * rather than a vmalloc'ed region.
616  */
617 static int
618 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
619 {
620 	struct inode *ip = filp->f_mapping->host;
621 	znode_t *zp = ITOZ(ip);
622 	int error;
623 	fstrans_cookie_t cookie;
624 
625 	cookie = spl_fstrans_mark();
626 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
627 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
628 	spl_fstrans_unmark(cookie);
629 	if (error)
630 		return (error);
631 
632 	error = generic_file_mmap(filp, vma);
633 	if (error)
634 		return (error);
635 
636 	mutex_enter(&zp->z_lock);
637 	zp->z_is_mapped = B_TRUE;
638 	mutex_exit(&zp->z_lock);
639 
640 	return (error);
641 }
642 
643 /*
644  * Populate a page with data for the Linux page cache.  This function is
645  * only used to support mmap(2).  There will be an identical copy of the
646  * data in the ARC which is kept up to date via .write() and .writepage().
647  */
648 static inline int
649 zpl_readpage_common(struct page *pp)
650 {
651 	struct inode *ip;
652 	struct page *pl[1];
653 	int error = 0;
654 	fstrans_cookie_t cookie;
655 
656 	ASSERT(PageLocked(pp));
657 	ip = pp->mapping->host;
658 	pl[0] = pp;
659 
660 	cookie = spl_fstrans_mark();
661 	error = -zfs_getpage(ip, pl, 1);
662 	spl_fstrans_unmark(cookie);
663 
664 	if (error) {
665 		SetPageError(pp);
666 		ClearPageUptodate(pp);
667 	} else {
668 		ClearPageError(pp);
669 		SetPageUptodate(pp);
670 		flush_dcache_page(pp);
671 	}
672 
673 	unlock_page(pp);
674 	return (error);
675 }
676 
677 #ifdef HAVE_VFS_READ_FOLIO
678 static int
679 zpl_read_folio(struct file *filp, struct folio *folio)
680 {
681 	return (zpl_readpage_common(&folio->page));
682 }
683 #else
684 static int
685 zpl_readpage(struct file *filp, struct page *pp)
686 {
687 	return (zpl_readpage_common(pp));
688 }
689 #endif
690 
691 static int
692 zpl_readpage_filler(void *data, struct page *pp)
693 {
694 	return (zpl_readpage_common(pp));
695 }
696 
697 /*
698  * Populate a set of pages with data for the Linux page cache.  This
699  * function will only be called for read ahead and never for demand
700  * paging.  For simplicity, the code relies on read_cache_pages() to
701  * correctly lock each page for IO and call zpl_readpage().
702  */
703 #ifdef HAVE_VFS_READPAGES
704 static int
705 zpl_readpages(struct file *filp, struct address_space *mapping,
706     struct list_head *pages, unsigned nr_pages)
707 {
708 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
709 }
710 #else
711 static void
712 zpl_readahead(struct readahead_control *ractl)
713 {
714 	struct page *page;
715 
716 	while ((page = readahead_page(ractl)) != NULL) {
717 		int ret;
718 
719 		ret = zpl_readpage_filler(NULL, page);
720 		put_page(page);
721 		if (ret)
722 			break;
723 	}
724 }
725 #endif
726 
727 static int
728 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
729 {
730 	boolean_t *for_sync = data;
731 	fstrans_cookie_t cookie;
732 
733 	ASSERT(PageLocked(pp));
734 	ASSERT(!PageWriteback(pp));
735 
736 	cookie = spl_fstrans_mark();
737 	(void) zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
738 	spl_fstrans_unmark(cookie);
739 
740 	return (0);
741 }
742 
743 static int
744 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
745 {
746 	znode_t		*zp = ITOZ(mapping->host);
747 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
748 	enum writeback_sync_modes sync_mode;
749 	int result;
750 
751 	ZPL_ENTER(zfsvfs);
752 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
753 		wbc->sync_mode = WB_SYNC_ALL;
754 	ZPL_EXIT(zfsvfs);
755 	sync_mode = wbc->sync_mode;
756 
757 	/*
758 	 * We don't want to run write_cache_pages() in SYNC mode here, because
759 	 * that would make putpage() wait for a single page to be committed to
760 	 * disk every single time, resulting in atrocious performance. Instead
761 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
762 	 * and then we commit it all in one go.
763 	 */
764 	boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
765 	wbc->sync_mode = WB_SYNC_NONE;
766 	result = write_cache_pages(mapping, wbc, zpl_putpage, &for_sync);
767 	if (sync_mode != wbc->sync_mode) {
768 		ZPL_ENTER(zfsvfs);
769 		ZPL_VERIFY_ZP(zp);
770 		if (zfsvfs->z_log != NULL)
771 			zil_commit(zfsvfs->z_log, zp->z_id);
772 		ZPL_EXIT(zfsvfs);
773 
774 		/*
775 		 * We need to call write_cache_pages() again (we can't just
776 		 * return after the commit) because the previous call in
777 		 * non-SYNC mode does not guarantee that we got all the dirty
778 		 * pages (see the implementation of write_cache_pages() for
779 		 * details). That being said, this is a no-op in most cases.
780 		 */
781 		wbc->sync_mode = sync_mode;
782 		result = write_cache_pages(mapping, wbc, zpl_putpage,
783 		    &for_sync);
784 	}
785 	return (result);
786 }
787 
788 /*
789  * Write out dirty pages to the ARC, this function is only required to
790  * support mmap(2).  Mapped pages may be dirtied by memory operations
791  * which never call .write().  These dirty pages are kept in sync with
792  * the ARC buffers via this hook.
793  */
794 static int
795 zpl_writepage(struct page *pp, struct writeback_control *wbc)
796 {
797 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
798 		wbc->sync_mode = WB_SYNC_ALL;
799 
800 	boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
801 
802 	return (zpl_putpage(pp, wbc, &for_sync));
803 }
804 
805 /*
806  * The flag combination which matches the behavior of zfs_space() is
807  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
808  * flag was introduced in the 2.6.38 kernel.
809  *
810  * The original mode=0 (allocate space) behavior can be reasonably emulated
811  * by checking if enough space exists and creating a sparse file, as real
812  * persistent space reservation is not possible due to COW, snapshots, etc.
813  */
814 static long
815 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
816 {
817 	cred_t *cr = CRED();
818 	loff_t olen;
819 	fstrans_cookie_t cookie;
820 	int error = 0;
821 
822 	int test_mode = FALLOC_FL_PUNCH_HOLE;
823 #ifdef HAVE_FALLOC_FL_ZERO_RANGE
824 	test_mode |= FALLOC_FL_ZERO_RANGE;
825 #endif
826 
827 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
828 		return (-EOPNOTSUPP);
829 
830 	if (offset < 0 || len <= 0)
831 		return (-EINVAL);
832 
833 	spl_inode_lock(ip);
834 	olen = i_size_read(ip);
835 
836 	crhold(cr);
837 	cookie = spl_fstrans_mark();
838 	if (mode & (test_mode)) {
839 		flock64_t bf;
840 
841 		if (mode & FALLOC_FL_KEEP_SIZE) {
842 			if (offset > olen)
843 				goto out_unmark;
844 
845 			if (offset + len > olen)
846 				len = olen - offset;
847 		}
848 		bf.l_type = F_WRLCK;
849 		bf.l_whence = SEEK_SET;
850 		bf.l_start = offset;
851 		bf.l_len = len;
852 		bf.l_pid = 0;
853 
854 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
855 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
856 		unsigned int percent = zfs_fallocate_reserve_percent;
857 		struct kstatfs statfs;
858 
859 		/* Legacy mode, disable fallocate compatibility. */
860 		if (percent == 0) {
861 			error = -EOPNOTSUPP;
862 			goto out_unmark;
863 		}
864 
865 		/*
866 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
867 		 * also checks project quota limits, which are relevant here.
868 		 */
869 		error = zfs_statvfs(ip, &statfs);
870 		if (error)
871 			goto out_unmark;
872 
873 		/*
874 		 * Shrink available space a bit to account for overhead/races.
875 		 * We know the product previously fit into availbytes from
876 		 * dmu_objset_space(), so the smaller product will also fit.
877 		 */
878 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
879 			error = -ENOSPC;
880 			goto out_unmark;
881 		}
882 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
883 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
884 	}
885 out_unmark:
886 	spl_fstrans_unmark(cookie);
887 	spl_inode_unlock(ip);
888 
889 	crfree(cr);
890 
891 	return (error);
892 }
893 
894 static long
895 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
896 {
897 	return zpl_fallocate_common(file_inode(filp),
898 	    mode, offset, len);
899 }
900 
901 static int
902 zpl_ioctl_getversion(struct file *filp, void __user *arg)
903 {
904 	uint32_t generation = file_inode(filp)->i_generation;
905 
906 	return (copy_to_user(arg, &generation, sizeof (generation)));
907 }
908 
909 #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
910 #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
911 
912 static uint32_t
913 __zpl_ioctl_getflags(struct inode *ip)
914 {
915 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
916 	uint32_t ioctl_flags = 0;
917 
918 	if (zfs_flags & ZFS_IMMUTABLE)
919 		ioctl_flags |= FS_IMMUTABLE_FL;
920 
921 	if (zfs_flags & ZFS_APPENDONLY)
922 		ioctl_flags |= FS_APPEND_FL;
923 
924 	if (zfs_flags & ZFS_NODUMP)
925 		ioctl_flags |= FS_NODUMP_FL;
926 
927 	if (zfs_flags & ZFS_PROJINHERIT)
928 		ioctl_flags |= ZFS_PROJINHERIT_FL;
929 
930 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
931 }
932 
933 /*
934  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
935  * attributes common to both Linux and Solaris are mapped.
936  */
937 static int
938 zpl_ioctl_getflags(struct file *filp, void __user *arg)
939 {
940 	uint32_t flags;
941 	int err;
942 
943 	flags = __zpl_ioctl_getflags(file_inode(filp));
944 	err = copy_to_user(arg, &flags, sizeof (flags));
945 
946 	return (err);
947 }
948 
949 /*
950  * fchange() is a helper macro to detect if we have been asked to change a
951  * flag. This is ugly, but the requirement that we do this is a consequence of
952  * how the Linux file attribute interface was designed. Another consequence is
953  * that concurrent modification of files suffers from a TOCTOU race. Neither
954  * are things we can fix without modifying the kernel-userland interface, which
955  * is outside of our jurisdiction.
956  */
957 
958 #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
959 
960 static int
961 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
962 {
963 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
964 	xoptattr_t *xoap;
965 
966 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
967 	    ZFS_PROJINHERIT_FL))
968 		return (-EOPNOTSUPP);
969 
970 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
971 		return (-EACCES);
972 
973 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
974 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
975 	    !capable(CAP_LINUX_IMMUTABLE))
976 		return (-EPERM);
977 
978 	if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
979 		return (-EACCES);
980 
981 	xva_init(xva);
982 	xoap = xva_getxoptattr(xva);
983 
984 #define	FLAG_CHANGE(iflag, zflag, xflag, xfield)	do {	\
985 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) ||	\
986 	    ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) {	\
987 		XVA_SET_REQ(xva, (xflag));	\
988 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
989 	}	\
990 } while (0)
991 
992 	FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
993 	    xoap->xoa_immutable);
994 	FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
995 	    xoap->xoa_appendonly);
996 	FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
997 	    xoap->xoa_nodump);
998 	FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
999 	    xoap->xoa_projinherit);
1000 
1001 #undef	FLAG_CHANGE
1002 
1003 	return (0);
1004 }
1005 
1006 static int
1007 zpl_ioctl_setflags(struct file *filp, void __user *arg)
1008 {
1009 	struct inode *ip = file_inode(filp);
1010 	uint32_t flags;
1011 	cred_t *cr = CRED();
1012 	xvattr_t xva;
1013 	int err;
1014 	fstrans_cookie_t cookie;
1015 
1016 	if (copy_from_user(&flags, arg, sizeof (flags)))
1017 		return (-EFAULT);
1018 
1019 	err = __zpl_ioctl_setflags(ip, flags, &xva);
1020 	if (err)
1021 		return (err);
1022 
1023 	crhold(cr);
1024 	cookie = spl_fstrans_mark();
1025 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
1026 	spl_fstrans_unmark(cookie);
1027 	crfree(cr);
1028 
1029 	return (err);
1030 }
1031 
1032 static int
1033 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
1034 {
1035 	zfsxattr_t fsx = { 0 };
1036 	struct inode *ip = file_inode(filp);
1037 	int err;
1038 
1039 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
1040 	fsx.fsx_projid = ITOZ(ip)->z_projid;
1041 	err = copy_to_user(arg, &fsx, sizeof (fsx));
1042 
1043 	return (err);
1044 }
1045 
1046 static int
1047 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
1048 {
1049 	struct inode *ip = file_inode(filp);
1050 	zfsxattr_t fsx;
1051 	cred_t *cr = CRED();
1052 	xvattr_t xva;
1053 	xoptattr_t *xoap;
1054 	int err;
1055 	fstrans_cookie_t cookie;
1056 
1057 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
1058 		return (-EFAULT);
1059 
1060 	if (!zpl_is_valid_projid(fsx.fsx_projid))
1061 		return (-EINVAL);
1062 
1063 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
1064 	if (err)
1065 		return (err);
1066 
1067 	xoap = xva_getxoptattr(&xva);
1068 	XVA_SET_REQ(&xva, XAT_PROJID);
1069 	xoap->xoa_projid = fsx.fsx_projid;
1070 
1071 	crhold(cr);
1072 	cookie = spl_fstrans_mark();
1073 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
1074 	spl_fstrans_unmark(cookie);
1075 	crfree(cr);
1076 
1077 	return (err);
1078 }
1079 
1080 /*
1081  * Expose Additional File Level Attributes of ZFS.
1082  */
1083 static int
1084 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
1085 {
1086 	struct inode *ip = file_inode(filp);
1087 	uint64_t dosflags = ITOZ(ip)->z_pflags;
1088 	dosflags &= ZFS_DOS_FL_USER_VISIBLE;
1089 	int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
1090 
1091 	return (err);
1092 }
1093 
1094 static int
1095 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
1096 {
1097 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1098 	xoptattr_t *xoap;
1099 
1100 	if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
1101 		return (-EOPNOTSUPP);
1102 
1103 	if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
1104 	    fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
1105 	    !capable(CAP_LINUX_IMMUTABLE))
1106 		return (-EPERM);
1107 
1108 	if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
1109 		return (-EACCES);
1110 
1111 	xva_init(xva);
1112 	xoap = xva_getxoptattr(xva);
1113 
1114 #define	FLAG_CHANGE(iflag, xflag, xfield)	do {	\
1115 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) ||	\
1116 	    ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) {	\
1117 		XVA_SET_REQ(xva, (xflag));	\
1118 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
1119 	}	\
1120 } while (0)
1121 
1122 	FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
1123 	FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
1124 	FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
1125 	FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
1126 	FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
1127 	FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
1128 	FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
1129 	FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
1130 	FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
1131 	FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
1132 	FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
1133 
1134 #undef	FLAG_CHANGE
1135 
1136 	return (0);
1137 }
1138 
1139 /*
1140  * Set Additional File Level Attributes of ZFS.
1141  */
1142 static int
1143 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
1144 {
1145 	struct inode *ip = file_inode(filp);
1146 	uint64_t dosflags;
1147 	cred_t *cr = CRED();
1148 	xvattr_t xva;
1149 	int err;
1150 	fstrans_cookie_t cookie;
1151 
1152 	if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
1153 		return (-EFAULT);
1154 
1155 	err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
1156 	if (err)
1157 		return (err);
1158 
1159 	crhold(cr);
1160 	cookie = spl_fstrans_mark();
1161 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
1162 	spl_fstrans_unmark(cookie);
1163 	crfree(cr);
1164 
1165 	return (err);
1166 }
1167 
1168 static long
1169 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1170 {
1171 	switch (cmd) {
1172 	case FS_IOC_GETVERSION:
1173 		return (zpl_ioctl_getversion(filp, (void *)arg));
1174 	case FS_IOC_GETFLAGS:
1175 		return (zpl_ioctl_getflags(filp, (void *)arg));
1176 	case FS_IOC_SETFLAGS:
1177 		return (zpl_ioctl_setflags(filp, (void *)arg));
1178 	case ZFS_IOC_FSGETXATTR:
1179 		return (zpl_ioctl_getxattr(filp, (void *)arg));
1180 	case ZFS_IOC_FSSETXATTR:
1181 		return (zpl_ioctl_setxattr(filp, (void *)arg));
1182 	case ZFS_IOC_GETDOSFLAGS:
1183 		return (zpl_ioctl_getdosflags(filp, (void *)arg));
1184 	case ZFS_IOC_SETDOSFLAGS:
1185 		return (zpl_ioctl_setdosflags(filp, (void *)arg));
1186 	default:
1187 		return (-ENOTTY);
1188 	}
1189 }
1190 
1191 #ifdef CONFIG_COMPAT
1192 static long
1193 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1194 {
1195 	switch (cmd) {
1196 	case FS_IOC32_GETVERSION:
1197 		cmd = FS_IOC_GETVERSION;
1198 		break;
1199 	case FS_IOC32_GETFLAGS:
1200 		cmd = FS_IOC_GETFLAGS;
1201 		break;
1202 	case FS_IOC32_SETFLAGS:
1203 		cmd = FS_IOC_SETFLAGS;
1204 		break;
1205 	default:
1206 		return (-ENOTTY);
1207 	}
1208 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1209 }
1210 #endif /* CONFIG_COMPAT */
1211 
1212 
1213 const struct address_space_operations zpl_address_space_operations = {
1214 #ifdef HAVE_VFS_READPAGES
1215 	.readpages	= zpl_readpages,
1216 #else
1217 	.readahead	= zpl_readahead,
1218 #endif
1219 #ifdef HAVE_VFS_READ_FOLIO
1220 	.read_folio	= zpl_read_folio,
1221 #else
1222 	.readpage	= zpl_readpage,
1223 #endif
1224 	.writepage	= zpl_writepage,
1225 	.writepages	= zpl_writepages,
1226 	.direct_IO	= zpl_direct_IO,
1227 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1228 	.set_page_dirty = __set_page_dirty_nobuffers,
1229 #endif
1230 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1231 	.dirty_folio	= filemap_dirty_folio,
1232 #endif
1233 };
1234 
1235 const struct file_operations zpl_file_operations = {
1236 	.open		= zpl_open,
1237 	.release	= zpl_release,
1238 	.llseek		= zpl_llseek,
1239 #ifdef HAVE_VFS_RW_ITERATE
1240 #ifdef HAVE_NEW_SYNC_READ
1241 	.read		= new_sync_read,
1242 	.write		= new_sync_write,
1243 #endif
1244 	.read_iter	= zpl_iter_read,
1245 	.write_iter	= zpl_iter_write,
1246 #ifdef HAVE_VFS_IOV_ITER
1247 	.splice_read	= generic_file_splice_read,
1248 	.splice_write	= iter_file_splice_write,
1249 #endif
1250 #else
1251 	.read		= do_sync_read,
1252 	.write		= do_sync_write,
1253 	.aio_read	= zpl_aio_read,
1254 	.aio_write	= zpl_aio_write,
1255 #endif
1256 	.mmap		= zpl_mmap,
1257 	.fsync		= zpl_fsync,
1258 #ifdef HAVE_FILE_AIO_FSYNC
1259 	.aio_fsync	= zpl_aio_fsync,
1260 #endif
1261 	.fallocate	= zpl_fallocate,
1262 	.unlocked_ioctl	= zpl_ioctl,
1263 #ifdef CONFIG_COMPAT
1264 	.compat_ioctl	= zpl_compat_ioctl,
1265 #endif
1266 };
1267 
1268 const struct file_operations zpl_dir_file_operations = {
1269 	.llseek		= generic_file_llseek,
1270 	.read		= generic_read_dir,
1271 #if defined(HAVE_VFS_ITERATE_SHARED)
1272 	.iterate_shared	= zpl_iterate,
1273 #elif defined(HAVE_VFS_ITERATE)
1274 	.iterate	= zpl_iterate,
1275 #else
1276 	.readdir	= zpl_readdir,
1277 #endif
1278 	.fsync		= zpl_fsync,
1279 	.unlocked_ioctl = zpl_ioctl,
1280 #ifdef CONFIG_COMPAT
1281 	.compat_ioctl   = zpl_compat_ioctl,
1282 #endif
1283 };
1284 
1285 /* CSTYLED */
1286 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1287 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1288 	"Percentage of length to use for the available capacity check");
1289