1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * This file and its contents are supplied under the terms of the 6 * Common Development and Distribution License ("CDDL"), version 1.0. 7 * You may only use this file in accordance with the terms of version 8 * 1.0 of the CDDL. 9 * 10 * A full copy of the text of the CDDL should have accompanied this 11 * source. A copy of the CDDL is also available via the Internet at 12 * http://www.illumos.org/license/CDDL. 13 * 14 * CDDL HEADER END 15 */ 16 17 /* 18 * Copyright (c) 2017, Datto, Inc. All rights reserved. 19 */ 20 21 #include <sys/zio_crypt.h> 22 #include <sys/dmu.h> 23 #include <sys/dmu_objset.h> 24 #include <sys/dnode.h> 25 #include <sys/fs/zfs.h> 26 #include <sys/zio.h> 27 #include <sys/zil.h> 28 #include <sys/sha2.h> 29 #include <sys/hkdf.h> 30 #include <sys/qat.h> 31 32 /* 33 * This file is responsible for handling all of the details of generating 34 * encryption parameters and performing encryption and authentication. 35 * 36 * BLOCK ENCRYPTION PARAMETERS: 37 * Encryption /Authentication Algorithm Suite (crypt): 38 * The encryption algorithm, mode, and key length we are going to use. We 39 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit 40 * keys. All authentication is currently done with SHA512-HMAC. 41 * 42 * Plaintext: 43 * The unencrypted data that we want to encrypt. 44 * 45 * Initialization Vector (IV): 46 * An initialization vector for the encryption algorithms. This is used to 47 * "tweak" the encryption algorithms so that two blocks of the same data are 48 * encrypted into different ciphertext outputs, thus obfuscating block patterns. 49 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is 50 * never reused with the same encryption key. This value is stored unencrypted 51 * and must simply be provided to the decryption function. We use a 96 bit IV 52 * (as recommended by NIST) for all block encryption. For non-dedup blocks we 53 * derive the IV randomly. The first 64 bits of the IV are stored in the second 54 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of 55 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits 56 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count 57 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of 58 * level 0 blocks is the number of allocated dnodes in that block. The on-disk 59 * format supports at most 2^15 slots per L0 dnode block, because the maximum 60 * block size is 16MB (2^24). In either case, for level 0 blocks this number 61 * will still be smaller than UINT32_MAX so it is safe to store the IV in the 62 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count 63 * for the dnode code. 64 * 65 * Master key: 66 * This is the most important secret data of an encrypted dataset. It is used 67 * along with the salt to generate that actual encryption keys via HKDF. We 68 * do not use the master key to directly encrypt any data because there are 69 * theoretical limits on how much data can actually be safely encrypted with 70 * any encryption mode. The master key is stored encrypted on disk with the 71 * user's wrapping key. Its length is determined by the encryption algorithm. 72 * For details on how this is stored see the block comment in dsl_crypt.c 73 * 74 * Salt: 75 * Used as an input to the HKDF function, along with the master key. We use a 76 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt 77 * can be used for encrypting many blocks, so we cache the current salt and the 78 * associated derived key in zio_crypt_t so we do not need to derive it again 79 * needlessly. 80 * 81 * Encryption Key: 82 * A secret binary key, generated from an HKDF function used to encrypt and 83 * decrypt data. 84 * 85 * Message Authentication Code (MAC) 86 * The MAC is an output of authenticated encryption modes such as AES-GCM and 87 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted 88 * data on disk and return garbage to the application. Effectively, it is a 89 * checksum that can not be reproduced by an attacker. We store the MAC in the 90 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated 91 * regular checksum of the ciphertext which can be used for scrubbing. 92 * 93 * OBJECT AUTHENTICATION: 94 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because 95 * they contain some info that always needs to be readable. To prevent this 96 * data from being altered, we authenticate this data using SHA512-HMAC. This 97 * will produce a MAC (similar to the one produced via encryption) which can 98 * be used to verify the object was not modified. HMACs do not require key 99 * rotation or IVs, so we can keep up to the full 3 copies of authenticated 100 * data. 101 * 102 * ZIL ENCRYPTION: 103 * ZIL blocks have their bp written to disk ahead of the associated data, so we 104 * cannot store the MAC there as we normally do. For these blocks the MAC is 105 * stored in the embedded checksum within the zil_chain_t header. The salt and 106 * IV are generated for the block on bp allocation instead of at encryption 107 * time. In addition, ZIL blocks have some pieces that must be left in plaintext 108 * for claiming even though all of the sensitive user data still needs to be 109 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which 110 * pieces of the block need to be encrypted. All data that is not encrypted is 111 * authenticated using the AAD mechanisms that the supported encryption modes 112 * provide for. In order to preserve the semantics of the ZIL for encrypted 113 * datasets, the ZIL is not protected at the objset level as described below. 114 * 115 * DNODE ENCRYPTION: 116 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left 117 * in plaintext for scrubbing and claiming, but the bonus buffers might contain 118 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing 119 * which pieces of the block need to be encrypted. For more details about 120 * dnode authentication and encryption, see zio_crypt_init_uios_dnode(). 121 * 122 * OBJECT SET AUTHENTICATION: 123 * Up to this point, everything we have encrypted and authenticated has been 124 * at level 0 (or -2 for the ZIL). If we did not do any further work the 125 * on-disk format would be susceptible to attacks that deleted or rearranged 126 * the order of level 0 blocks. Ideally, the cleanest solution would be to 127 * maintain a tree of authentication MACs going up the bp tree. However, this 128 * presents a problem for raw sends. Send files do not send information about 129 * indirect blocks so there would be no convenient way to transfer the MACs and 130 * they cannot be recalculated on the receive side without the master key which 131 * would defeat one of the purposes of raw sends in the first place. Instead, 132 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs 133 * from the level below. We also include some portable fields from blk_prop such 134 * as the lsize and compression algorithm to prevent the data from being 135 * misinterpreted. 136 * 137 * At the objset level, we maintain 2 separate 256 bit MACs in the 138 * objset_phys_t. The first one is "portable" and is the logical root of the 139 * MAC tree maintained in the metadnode's bps. The second, is "local" and is 140 * used as the root MAC for the user accounting objects, which are also not 141 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload 142 * of the send file. The useraccounting code ensures that the useraccounting 143 * info is not present upon a receive, so the local MAC can simply be cleared 144 * out at that time. For more info about objset_phys_t authentication, see 145 * zio_crypt_do_objset_hmacs(). 146 * 147 * CONSIDERATIONS FOR DEDUP: 148 * In order for dedup to work, blocks that we want to dedup with one another 149 * need to use the same IV and encryption key, so that they will have the same 150 * ciphertext. Normally, one should never reuse an IV with the same encryption 151 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both 152 * blocks. In this case, however, since we are using the same plaintext as 153 * well all that we end up with is a duplicate of the original ciphertext we 154 * already had. As a result, an attacker with read access to the raw disk will 155 * be able to tell which blocks are the same but this information is given away 156 * by dedup anyway. In order to get the same IVs and encryption keys for 157 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC 158 * here so that a reproducible checksum of the plaintext is never available to 159 * the attacker. The HMAC key is kept alongside the master key, encrypted on 160 * disk. The first 64 bits of the HMAC are used in place of the random salt, and 161 * the next 96 bits are used as the IV. As a result of this mechanism, dedup 162 * will only work within a clone family since encrypted dedup requires use of 163 * the same master and HMAC keys. 164 */ 165 166 /* 167 * After encrypting many blocks with the same key we may start to run up 168 * against the theoretical limits of how much data can securely be encrypted 169 * with a single key using the supported encryption modes. The most obvious 170 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases 171 * the more IVs we generate (which both GCM and CCM modes strictly forbid). 172 * This risk actually grows surprisingly quickly over time according to the 173 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have 174 * generated n IVs with a cryptographically secure RNG, the approximate 175 * probability p(n) of a collision is given as: 176 * 177 * p(n) ~= e^(-n*(n-1)/(2*(2^96))) 178 * 179 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html] 180 * 181 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion 182 * we must not write more than 398,065,730 blocks with the same encryption key. 183 * Therefore, we rotate our keys after 400,000,000 blocks have been written by 184 * generating a new random 64 bit salt for our HKDF encryption key generation 185 * function. 186 */ 187 #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000 188 #define ZFS_CURRENT_MAX_SALT_USES \ 189 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT)) 190 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT; 191 192 typedef struct blkptr_auth_buf { 193 uint64_t bab_prop; /* blk_prop - portable mask */ 194 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */ 195 uint64_t bab_pad; /* reserved for future use */ 196 } blkptr_auth_buf_t; 197 198 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = { 199 {"", ZC_TYPE_NONE, 0, "inherit"}, 200 {"", ZC_TYPE_NONE, 0, "on"}, 201 {"", ZC_TYPE_NONE, 0, "off"}, 202 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"}, 203 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"}, 204 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"}, 205 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"}, 206 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"}, 207 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"} 208 }; 209 210 void 211 zio_crypt_key_destroy(zio_crypt_key_t *key) 212 { 213 rw_destroy(&key->zk_salt_lock); 214 215 /* free crypto templates */ 216 crypto_destroy_ctx_template(key->zk_current_tmpl); 217 crypto_destroy_ctx_template(key->zk_hmac_tmpl); 218 219 /* zero out sensitive data */ 220 memset(key, 0, sizeof (zio_crypt_key_t)); 221 } 222 223 int 224 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key) 225 { 226 int ret; 227 crypto_mechanism_t mech = {0}; 228 uint_t keydata_len; 229 230 ASSERT(key != NULL); 231 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 232 233 /* 234 * Workaround for GCC 12+ with UBSan enabled deficencies. 235 * 236 * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code 237 * below as violating -Warray-bounds 238 */ 239 #if defined(__GNUC__) && !defined(__clang__) && \ 240 ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \ 241 defined(CONFIG_UBSAN)) 242 #pragma GCC diagnostic push 243 #pragma GCC diagnostic ignored "-Warray-bounds" 244 #endif 245 keydata_len = zio_crypt_table[crypt].ci_keylen; 246 #if defined(__GNUC__) && !defined(__clang__) && \ 247 ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \ 248 defined(CONFIG_UBSAN)) 249 #pragma GCC diagnostic pop 250 #endif 251 memset(key, 0, sizeof (zio_crypt_key_t)); 252 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL); 253 254 /* fill keydata buffers and salt with random data */ 255 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t)); 256 if (ret != 0) 257 goto error; 258 259 ret = random_get_bytes(key->zk_master_keydata, keydata_len); 260 if (ret != 0) 261 goto error; 262 263 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN); 264 if (ret != 0) 265 goto error; 266 267 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN); 268 if (ret != 0) 269 goto error; 270 271 /* derive the current key from the master key */ 272 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 273 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, 274 keydata_len); 275 if (ret != 0) 276 goto error; 277 278 /* initialize keys for the ICP */ 279 key->zk_current_key.ck_data = key->zk_current_keydata; 280 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len); 281 282 key->zk_hmac_key.ck_data = &key->zk_hmac_key; 283 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN); 284 285 /* 286 * Initialize the crypto templates. It's ok if this fails because 287 * this is just an optimization. 288 */ 289 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname); 290 ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 291 &key->zk_current_tmpl); 292 if (ret != CRYPTO_SUCCESS) 293 key->zk_current_tmpl = NULL; 294 295 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 296 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key, 297 &key->zk_hmac_tmpl); 298 if (ret != CRYPTO_SUCCESS) 299 key->zk_hmac_tmpl = NULL; 300 301 key->zk_crypt = crypt; 302 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION; 303 key->zk_salt_count = 0; 304 305 return (0); 306 307 error: 308 zio_crypt_key_destroy(key); 309 return (ret); 310 } 311 312 static int 313 zio_crypt_key_change_salt(zio_crypt_key_t *key) 314 { 315 int ret = 0; 316 uint8_t salt[ZIO_DATA_SALT_LEN]; 317 crypto_mechanism_t mech; 318 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen; 319 320 /* generate a new salt */ 321 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN); 322 if (ret != 0) 323 goto error; 324 325 rw_enter(&key->zk_salt_lock, RW_WRITER); 326 327 /* someone beat us to the salt rotation, just unlock and return */ 328 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES) 329 goto out_unlock; 330 331 /* derive the current key from the master key and the new salt */ 332 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 333 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len); 334 if (ret != 0) 335 goto out_unlock; 336 337 /* assign the salt and reset the usage count */ 338 memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN); 339 key->zk_salt_count = 0; 340 341 /* destroy the old context template and create the new one */ 342 crypto_destroy_ctx_template(key->zk_current_tmpl); 343 ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 344 &key->zk_current_tmpl); 345 if (ret != CRYPTO_SUCCESS) 346 key->zk_current_tmpl = NULL; 347 348 rw_exit(&key->zk_salt_lock); 349 350 return (0); 351 352 out_unlock: 353 rw_exit(&key->zk_salt_lock); 354 error: 355 return (ret); 356 } 357 358 /* See comment above zfs_key_max_salt_uses definition for details */ 359 int 360 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt) 361 { 362 int ret; 363 boolean_t salt_change; 364 365 rw_enter(&key->zk_salt_lock, RW_READER); 366 367 memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN); 368 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >= 369 ZFS_CURRENT_MAX_SALT_USES); 370 371 rw_exit(&key->zk_salt_lock); 372 373 if (salt_change) { 374 ret = zio_crypt_key_change_salt(key); 375 if (ret != 0) 376 goto error; 377 } 378 379 return (0); 380 381 error: 382 return (ret); 383 } 384 385 /* 386 * This function handles all encryption and decryption in zfs. When 387 * encrypting it expects puio to reference the plaintext and cuio to 388 * reference the ciphertext. cuio must have enough space for the 389 * ciphertext + room for a MAC. datalen should be the length of the 390 * plaintext / ciphertext alone. 391 */ 392 static int 393 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key, 394 crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen, 395 zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len) 396 { 397 int ret; 398 crypto_data_t plaindata, cipherdata; 399 CK_AES_CCM_PARAMS ccmp; 400 CK_AES_GCM_PARAMS gcmp; 401 crypto_mechanism_t mech; 402 zio_crypt_info_t crypt_info; 403 uint_t plain_full_len, maclen; 404 405 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 406 407 /* lookup the encryption info */ 408 crypt_info = zio_crypt_table[crypt]; 409 410 /* the mac will always be the last iovec_t in the cipher uio */ 411 maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len; 412 413 ASSERT(maclen <= ZIO_DATA_MAC_LEN); 414 415 /* setup encryption mechanism (same as crypt) */ 416 mech.cm_type = crypto_mech2id(crypt_info.ci_mechname); 417 418 /* 419 * Strangely, the ICP requires that plain_full_len must include 420 * the MAC length when decrypting, even though the UIO does not 421 * need to have the extra space allocated. 422 */ 423 if (encrypt) { 424 plain_full_len = datalen; 425 } else { 426 plain_full_len = datalen + maclen; 427 } 428 429 /* 430 * setup encryption params (currently only AES CCM and AES GCM 431 * are supported) 432 */ 433 if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) { 434 ccmp.ulNonceSize = ZIO_DATA_IV_LEN; 435 ccmp.ulAuthDataSize = auth_len; 436 ccmp.authData = authbuf; 437 ccmp.ulMACSize = maclen; 438 ccmp.nonce = ivbuf; 439 ccmp.ulDataSize = plain_full_len; 440 441 mech.cm_param = (char *)(&ccmp); 442 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS); 443 } else { 444 gcmp.ulIvLen = ZIO_DATA_IV_LEN; 445 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN); 446 gcmp.ulAADLen = auth_len; 447 gcmp.pAAD = authbuf; 448 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen); 449 gcmp.pIv = ivbuf; 450 451 mech.cm_param = (char *)(&gcmp); 452 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS); 453 } 454 455 /* populate the cipher and plain data structs. */ 456 plaindata.cd_format = CRYPTO_DATA_UIO; 457 plaindata.cd_offset = 0; 458 plaindata.cd_uio = puio; 459 plaindata.cd_length = plain_full_len; 460 461 cipherdata.cd_format = CRYPTO_DATA_UIO; 462 cipherdata.cd_offset = 0; 463 cipherdata.cd_uio = cuio; 464 cipherdata.cd_length = datalen + maclen; 465 466 /* perform the actual encryption */ 467 if (encrypt) { 468 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata); 469 if (ret != CRYPTO_SUCCESS) { 470 ret = SET_ERROR(EIO); 471 goto error; 472 } 473 } else { 474 ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata); 475 if (ret != CRYPTO_SUCCESS) { 476 ASSERT3U(ret, ==, CRYPTO_INVALID_MAC); 477 ret = SET_ERROR(ECKSUM); 478 goto error; 479 } 480 } 481 482 return (0); 483 484 error: 485 return (ret); 486 } 487 488 int 489 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv, 490 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out) 491 { 492 int ret; 493 zfs_uio_t puio, cuio; 494 uint64_t aad[3]; 495 iovec_t plain_iovecs[2], cipher_iovecs[3]; 496 uint64_t crypt = key->zk_crypt; 497 uint_t enc_len, keydata_len, aad_len; 498 499 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 500 501 keydata_len = zio_crypt_table[crypt].ci_keylen; 502 503 /* generate iv for wrapping the master and hmac key */ 504 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN); 505 if (ret != 0) 506 goto error; 507 508 /* initialize zfs_uio_ts */ 509 plain_iovecs[0].iov_base = key->zk_master_keydata; 510 plain_iovecs[0].iov_len = keydata_len; 511 plain_iovecs[1].iov_base = key->zk_hmac_keydata; 512 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 513 514 cipher_iovecs[0].iov_base = keydata_out; 515 cipher_iovecs[0].iov_len = keydata_len; 516 cipher_iovecs[1].iov_base = hmac_keydata_out; 517 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 518 cipher_iovecs[2].iov_base = mac; 519 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN; 520 521 /* 522 * Although we don't support writing to the old format, we do 523 * support rewrapping the key so that the user can move and 524 * quarantine datasets on the old format. 525 */ 526 if (key->zk_version == 0) { 527 aad_len = sizeof (uint64_t); 528 aad[0] = LE_64(key->zk_guid); 529 } else { 530 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 531 aad_len = sizeof (uint64_t) * 3; 532 aad[0] = LE_64(key->zk_guid); 533 aad[1] = LE_64(crypt); 534 aad[2] = LE_64(key->zk_version); 535 } 536 537 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN; 538 puio.uio_iov = plain_iovecs; 539 puio.uio_iovcnt = 2; 540 puio.uio_segflg = UIO_SYSSPACE; 541 cuio.uio_iov = cipher_iovecs; 542 cuio.uio_iovcnt = 3; 543 cuio.uio_segflg = UIO_SYSSPACE; 544 545 /* encrypt the keys and store the resulting ciphertext and mac */ 546 ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len, 547 &puio, &cuio, (uint8_t *)aad, aad_len); 548 if (ret != 0) 549 goto error; 550 551 return (0); 552 553 error: 554 return (ret); 555 } 556 557 int 558 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version, 559 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv, 560 uint8_t *mac, zio_crypt_key_t *key) 561 { 562 crypto_mechanism_t mech; 563 zfs_uio_t puio, cuio; 564 uint64_t aad[3]; 565 iovec_t plain_iovecs[2], cipher_iovecs[3]; 566 uint_t enc_len, keydata_len, aad_len; 567 int ret; 568 569 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 570 571 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL); 572 573 keydata_len = zio_crypt_table[crypt].ci_keylen; 574 575 /* initialize zfs_uio_ts */ 576 plain_iovecs[0].iov_base = key->zk_master_keydata; 577 plain_iovecs[0].iov_len = keydata_len; 578 plain_iovecs[1].iov_base = key->zk_hmac_keydata; 579 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 580 581 cipher_iovecs[0].iov_base = keydata; 582 cipher_iovecs[0].iov_len = keydata_len; 583 cipher_iovecs[1].iov_base = hmac_keydata; 584 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 585 cipher_iovecs[2].iov_base = mac; 586 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN; 587 588 if (version == 0) { 589 aad_len = sizeof (uint64_t); 590 aad[0] = LE_64(guid); 591 } else { 592 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 593 aad_len = sizeof (uint64_t) * 3; 594 aad[0] = LE_64(guid); 595 aad[1] = LE_64(crypt); 596 aad[2] = LE_64(version); 597 } 598 599 enc_len = keydata_len + SHA512_HMAC_KEYLEN; 600 puio.uio_iov = plain_iovecs; 601 puio.uio_segflg = UIO_SYSSPACE; 602 puio.uio_iovcnt = 2; 603 cuio.uio_iov = cipher_iovecs; 604 cuio.uio_iovcnt = 3; 605 cuio.uio_segflg = UIO_SYSSPACE; 606 607 /* decrypt the keys and store the result in the output buffers */ 608 ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len, 609 &puio, &cuio, (uint8_t *)aad, aad_len); 610 if (ret != 0) 611 goto error; 612 613 /* generate a fresh salt */ 614 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN); 615 if (ret != 0) 616 goto error; 617 618 /* derive the current key from the master key */ 619 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 620 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, 621 keydata_len); 622 if (ret != 0) 623 goto error; 624 625 /* initialize keys for ICP */ 626 key->zk_current_key.ck_data = key->zk_current_keydata; 627 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len); 628 629 key->zk_hmac_key.ck_data = key->zk_hmac_keydata; 630 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN); 631 632 /* 633 * Initialize the crypto templates. It's ok if this fails because 634 * this is just an optimization. 635 */ 636 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname); 637 ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 638 &key->zk_current_tmpl); 639 if (ret != CRYPTO_SUCCESS) 640 key->zk_current_tmpl = NULL; 641 642 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 643 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key, 644 &key->zk_hmac_tmpl); 645 if (ret != CRYPTO_SUCCESS) 646 key->zk_hmac_tmpl = NULL; 647 648 key->zk_crypt = crypt; 649 key->zk_version = version; 650 key->zk_guid = guid; 651 key->zk_salt_count = 0; 652 653 return (0); 654 655 error: 656 zio_crypt_key_destroy(key); 657 return (ret); 658 } 659 660 int 661 zio_crypt_generate_iv(uint8_t *ivbuf) 662 { 663 int ret; 664 665 /* randomly generate the IV */ 666 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN); 667 if (ret != 0) 668 goto error; 669 670 return (0); 671 672 error: 673 memset(ivbuf, 0, ZIO_DATA_IV_LEN); 674 return (ret); 675 } 676 677 int 678 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen, 679 uint8_t *digestbuf, uint_t digestlen) 680 { 681 int ret; 682 crypto_mechanism_t mech; 683 crypto_data_t in_data, digest_data; 684 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH]; 685 686 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH); 687 688 /* initialize sha512-hmac mechanism and crypto data */ 689 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 690 mech.cm_param = NULL; 691 mech.cm_param_len = 0; 692 693 /* initialize the crypto data */ 694 in_data.cd_format = CRYPTO_DATA_RAW; 695 in_data.cd_offset = 0; 696 in_data.cd_length = datalen; 697 in_data.cd_raw.iov_base = (char *)data; 698 in_data.cd_raw.iov_len = in_data.cd_length; 699 700 digest_data.cd_format = CRYPTO_DATA_RAW; 701 digest_data.cd_offset = 0; 702 digest_data.cd_length = SHA512_DIGEST_LENGTH; 703 digest_data.cd_raw.iov_base = (char *)raw_digestbuf; 704 digest_data.cd_raw.iov_len = digest_data.cd_length; 705 706 /* generate the hmac */ 707 ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl, 708 &digest_data); 709 if (ret != CRYPTO_SUCCESS) { 710 ret = SET_ERROR(EIO); 711 goto error; 712 } 713 714 memcpy(digestbuf, raw_digestbuf, digestlen); 715 716 return (0); 717 718 error: 719 memset(digestbuf, 0, digestlen); 720 return (ret); 721 } 722 723 int 724 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data, 725 uint_t datalen, uint8_t *ivbuf, uint8_t *salt) 726 { 727 int ret; 728 uint8_t digestbuf[SHA512_DIGEST_LENGTH]; 729 730 ret = zio_crypt_do_hmac(key, data, datalen, 731 digestbuf, SHA512_DIGEST_LENGTH); 732 if (ret != 0) 733 return (ret); 734 735 memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN); 736 memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN); 737 738 return (0); 739 } 740 741 /* 742 * The following functions are used to encode and decode encryption parameters 743 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as 744 * byte strings, which normally means that these strings would not need to deal 745 * with byteswapping at all. However, both blkptr_t and zil_header_t may be 746 * byteswapped by lower layers and so we must "undo" that byteswap here upon 747 * decoding and encoding in a non-native byteorder. These functions require 748 * that the byteorder bit is correct before being called. 749 */ 750 void 751 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv) 752 { 753 uint64_t val64; 754 uint32_t val32; 755 756 ASSERT(BP_IS_ENCRYPTED(bp)); 757 758 if (!BP_SHOULD_BYTESWAP(bp)) { 759 memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t)); 760 memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t)); 761 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t)); 762 BP_SET_IV2(bp, val32); 763 } else { 764 memcpy(&val64, salt, sizeof (uint64_t)); 765 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64); 766 767 memcpy(&val64, iv, sizeof (uint64_t)); 768 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64); 769 770 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t)); 771 BP_SET_IV2(bp, BSWAP_32(val32)); 772 } 773 } 774 775 void 776 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv) 777 { 778 uint64_t val64; 779 uint32_t val32; 780 781 ASSERT(BP_IS_PROTECTED(bp)); 782 783 /* for convenience, so callers don't need to check */ 784 if (BP_IS_AUTHENTICATED(bp)) { 785 memset(salt, 0, ZIO_DATA_SALT_LEN); 786 memset(iv, 0, ZIO_DATA_IV_LEN); 787 return; 788 } 789 790 if (!BP_SHOULD_BYTESWAP(bp)) { 791 memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t)); 792 memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t)); 793 794 val32 = (uint32_t)BP_GET_IV2(bp); 795 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t)); 796 } else { 797 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]); 798 memcpy(salt, &val64, sizeof (uint64_t)); 799 800 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]); 801 memcpy(iv, &val64, sizeof (uint64_t)); 802 803 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp)); 804 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t)); 805 } 806 } 807 808 void 809 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac) 810 { 811 uint64_t val64; 812 813 ASSERT(BP_USES_CRYPT(bp)); 814 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET); 815 816 if (!BP_SHOULD_BYTESWAP(bp)) { 817 memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t)); 818 memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t), 819 sizeof (uint64_t)); 820 } else { 821 memcpy(&val64, mac, sizeof (uint64_t)); 822 bp->blk_cksum.zc_word[2] = BSWAP_64(val64); 823 824 memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t)); 825 bp->blk_cksum.zc_word[3] = BSWAP_64(val64); 826 } 827 } 828 829 void 830 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac) 831 { 832 uint64_t val64; 833 834 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp)); 835 836 /* for convenience, so callers don't need to check */ 837 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 838 memset(mac, 0, ZIO_DATA_MAC_LEN); 839 return; 840 } 841 842 if (!BP_SHOULD_BYTESWAP(bp)) { 843 memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t)); 844 memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3], 845 sizeof (uint64_t)); 846 } else { 847 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]); 848 memcpy(mac, &val64, sizeof (uint64_t)); 849 850 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]); 851 memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t)); 852 } 853 } 854 855 void 856 zio_crypt_encode_mac_zil(void *data, uint8_t *mac) 857 { 858 zil_chain_t *zilc = data; 859 860 memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t)); 861 memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t), 862 sizeof (uint64_t)); 863 } 864 865 void 866 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac) 867 { 868 /* 869 * The ZIL MAC is embedded in the block it protects, which will 870 * not have been byteswapped by the time this function has been called. 871 * As a result, we don't need to worry about byteswapping the MAC. 872 */ 873 const zil_chain_t *zilc = data; 874 875 memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t)); 876 memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3], 877 sizeof (uint64_t)); 878 } 879 880 /* 881 * This routine takes a block of dnodes (src_abd) and copies only the bonus 882 * buffers to the same offsets in the dst buffer. datalen should be the size 883 * of both the src_abd and the dst buffer (not just the length of the bonus 884 * buffers). 885 */ 886 void 887 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen) 888 { 889 uint_t i, max_dnp = datalen >> DNODE_SHIFT; 890 uint8_t *src; 891 dnode_phys_t *dnp, *sdnp, *ddnp; 892 893 src = abd_borrow_buf_copy(src_abd, datalen); 894 895 sdnp = (dnode_phys_t *)src; 896 ddnp = (dnode_phys_t *)dst; 897 898 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 899 dnp = &sdnp[i]; 900 if (dnp->dn_type != DMU_OT_NONE && 901 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) && 902 dnp->dn_bonuslen != 0) { 903 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), 904 DN_MAX_BONUS_LEN(dnp)); 905 } 906 } 907 908 abd_return_buf(src_abd, src, datalen); 909 } 910 911 /* 912 * This function decides what fields from blk_prop are included in 913 * the on-disk various MAC algorithms. 914 */ 915 static void 916 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version) 917 { 918 /* 919 * Version 0 did not properly zero out all non-portable fields 920 * as it should have done. We maintain this code so that we can 921 * do read-only imports of pools on this version. 922 */ 923 if (version == 0) { 924 BP_SET_DEDUP(bp, 0); 925 BP_SET_CHECKSUM(bp, 0); 926 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE); 927 return; 928 } 929 930 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 931 932 /* 933 * The hole_birth feature might set these fields even if this bp 934 * is a hole. We zero them out here to guarantee that raw sends 935 * will function with or without the feature. 936 */ 937 if (BP_IS_HOLE(bp)) { 938 bp->blk_prop = 0ULL; 939 return; 940 } 941 942 /* 943 * At L0 we want to verify these fields to ensure that data blocks 944 * can not be reinterpreted. For instance, we do not want an attacker 945 * to trick us into returning raw lz4 compressed data to the user 946 * by modifying the compression bits. At higher levels, we cannot 947 * enforce this policy since raw sends do not convey any information 948 * about indirect blocks, so these values might be different on the 949 * receive side. Fortunately, this does not open any new attack 950 * vectors, since any alterations that can be made to a higher level 951 * bp must still verify the correct order of the layer below it. 952 */ 953 if (BP_GET_LEVEL(bp) != 0) { 954 BP_SET_BYTEORDER(bp, 0); 955 BP_SET_COMPRESS(bp, 0); 956 957 /* 958 * psize cannot be set to zero or it will trigger 959 * asserts, but the value doesn't really matter as 960 * long as it is constant. 961 */ 962 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE); 963 } 964 965 BP_SET_DEDUP(bp, 0); 966 BP_SET_CHECKSUM(bp, 0); 967 } 968 969 static void 970 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp, 971 blkptr_auth_buf_t *bab, uint_t *bab_len) 972 { 973 blkptr_t tmpbp = *bp; 974 975 if (should_bswap) 976 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t)); 977 978 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp)); 979 ASSERT0(BP_IS_EMBEDDED(&tmpbp)); 980 981 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac); 982 983 /* 984 * We always MAC blk_prop in LE to ensure portability. This 985 * must be done after decoding the mac, since the endianness 986 * will get zero'd out here. 987 */ 988 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version); 989 bab->bab_prop = LE_64(tmpbp.blk_prop); 990 bab->bab_pad = 0ULL; 991 992 /* version 0 did not include the padding */ 993 *bab_len = sizeof (blkptr_auth_buf_t); 994 if (version == 0) 995 *bab_len -= sizeof (uint64_t); 996 } 997 998 static int 999 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version, 1000 boolean_t should_bswap, blkptr_t *bp) 1001 { 1002 int ret; 1003 uint_t bab_len; 1004 blkptr_auth_buf_t bab; 1005 crypto_data_t cd; 1006 1007 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1008 cd.cd_format = CRYPTO_DATA_RAW; 1009 cd.cd_offset = 0; 1010 cd.cd_length = bab_len; 1011 cd.cd_raw.iov_base = (char *)&bab; 1012 cd.cd_raw.iov_len = cd.cd_length; 1013 1014 ret = crypto_mac_update(ctx, &cd); 1015 if (ret != CRYPTO_SUCCESS) { 1016 ret = SET_ERROR(EIO); 1017 goto error; 1018 } 1019 1020 return (0); 1021 1022 error: 1023 return (ret); 1024 } 1025 1026 static void 1027 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version, 1028 boolean_t should_bswap, blkptr_t *bp) 1029 { 1030 uint_t bab_len; 1031 blkptr_auth_buf_t bab; 1032 1033 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1034 SHA2Update(ctx, &bab, bab_len); 1035 } 1036 1037 static void 1038 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version, 1039 boolean_t should_bswap, blkptr_t *bp) 1040 { 1041 uint_t bab_len; 1042 blkptr_auth_buf_t bab; 1043 1044 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1045 memcpy(*aadp, &bab, bab_len); 1046 *aadp += bab_len; 1047 *aad_len += bab_len; 1048 } 1049 1050 static int 1051 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version, 1052 boolean_t should_bswap, dnode_phys_t *dnp) 1053 { 1054 int ret, i; 1055 dnode_phys_t *adnp, tmp_dncore; 1056 size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr); 1057 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER); 1058 crypto_data_t cd; 1059 1060 cd.cd_format = CRYPTO_DATA_RAW; 1061 cd.cd_offset = 0; 1062 1063 /* 1064 * Authenticate the core dnode (masking out non-portable bits). 1065 * We only copy the first 64 bytes we operate on to avoid the overhead 1066 * of copying 512-64 unneeded bytes. The compiler seems to be fine 1067 * with that. 1068 */ 1069 memcpy(&tmp_dncore, dnp, dn_core_size); 1070 adnp = &tmp_dncore; 1071 1072 if (le_bswap) { 1073 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec); 1074 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen); 1075 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid); 1076 adnp->dn_used = BSWAP_64(adnp->dn_used); 1077 } 1078 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK; 1079 adnp->dn_used = 0; 1080 1081 cd.cd_length = dn_core_size; 1082 cd.cd_raw.iov_base = (char *)adnp; 1083 cd.cd_raw.iov_len = cd.cd_length; 1084 1085 ret = crypto_mac_update(ctx, &cd); 1086 if (ret != CRYPTO_SUCCESS) { 1087 ret = SET_ERROR(EIO); 1088 goto error; 1089 } 1090 1091 for (i = 0; i < dnp->dn_nblkptr; i++) { 1092 ret = zio_crypt_bp_do_hmac_updates(ctx, version, 1093 should_bswap, &dnp->dn_blkptr[i]); 1094 if (ret != 0) 1095 goto error; 1096 } 1097 1098 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1099 ret = zio_crypt_bp_do_hmac_updates(ctx, version, 1100 should_bswap, DN_SPILL_BLKPTR(dnp)); 1101 if (ret != 0) 1102 goto error; 1103 } 1104 1105 return (0); 1106 1107 error: 1108 return (ret); 1109 } 1110 1111 /* 1112 * objset_phys_t blocks introduce a number of exceptions to the normal 1113 * authentication process. objset_phys_t's contain 2 separate HMACS for 1114 * protecting the integrity of their data. The portable_mac protects the 1115 * metadnode. This MAC can be sent with a raw send and protects against 1116 * reordering of data within the metadnode. The local_mac protects the user 1117 * accounting objects which are not sent from one system to another. 1118 * 1119 * In addition, objset blocks are the only blocks that can be modified and 1120 * written to disk without the key loaded under certain circumstances. During 1121 * zil_claim() we need to be able to update the zil_header_t to complete 1122 * claiming log blocks and during raw receives we need to write out the 1123 * portable_mac from the send file. Both of these actions are possible 1124 * because these fields are not protected by either MAC so neither one will 1125 * need to modify the MACs without the key. However, when the modified blocks 1126 * are written out they will be byteswapped into the host machine's native 1127 * endianness which will modify fields protected by the MAC. As a result, MAC 1128 * calculation for objset blocks works slightly differently from other block 1129 * types. Where other block types MAC the data in whatever endianness is 1130 * written to disk, objset blocks always MAC little endian version of their 1131 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP() 1132 * and le_bswap indicates whether a byteswap is needed to get this block 1133 * into little endian format. 1134 */ 1135 int 1136 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen, 1137 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac) 1138 { 1139 int ret; 1140 crypto_mechanism_t mech; 1141 crypto_context_t ctx; 1142 crypto_data_t cd; 1143 objset_phys_t *osp = data; 1144 uint64_t intval; 1145 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER); 1146 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH]; 1147 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH]; 1148 1149 /* initialize HMAC mechanism */ 1150 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 1151 mech.cm_param = NULL; 1152 mech.cm_param_len = 0; 1153 1154 cd.cd_format = CRYPTO_DATA_RAW; 1155 cd.cd_offset = 0; 1156 1157 /* calculate the portable MAC from the portable fields and metadnode */ 1158 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx); 1159 if (ret != CRYPTO_SUCCESS) { 1160 ret = SET_ERROR(EIO); 1161 goto error; 1162 } 1163 1164 /* add in the os_type */ 1165 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type); 1166 cd.cd_length = sizeof (uint64_t); 1167 cd.cd_raw.iov_base = (char *)&intval; 1168 cd.cd_raw.iov_len = cd.cd_length; 1169 1170 ret = crypto_mac_update(ctx, &cd); 1171 if (ret != CRYPTO_SUCCESS) { 1172 ret = SET_ERROR(EIO); 1173 goto error; 1174 } 1175 1176 /* add in the portable os_flags */ 1177 intval = osp->os_flags; 1178 if (should_bswap) 1179 intval = BSWAP_64(intval); 1180 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK; 1181 if (!ZFS_HOST_BYTEORDER) 1182 intval = BSWAP_64(intval); 1183 1184 cd.cd_length = sizeof (uint64_t); 1185 cd.cd_raw.iov_base = (char *)&intval; 1186 cd.cd_raw.iov_len = cd.cd_length; 1187 1188 ret = crypto_mac_update(ctx, &cd); 1189 if (ret != CRYPTO_SUCCESS) { 1190 ret = SET_ERROR(EIO); 1191 goto error; 1192 } 1193 1194 /* add in fields from the metadnode */ 1195 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1196 should_bswap, &osp->os_meta_dnode); 1197 if (ret) 1198 goto error; 1199 1200 /* store the final digest in a temporary buffer and copy what we need */ 1201 cd.cd_length = SHA512_DIGEST_LENGTH; 1202 cd.cd_raw.iov_base = (char *)raw_portable_mac; 1203 cd.cd_raw.iov_len = cd.cd_length; 1204 1205 ret = crypto_mac_final(ctx, &cd); 1206 if (ret != CRYPTO_SUCCESS) { 1207 ret = SET_ERROR(EIO); 1208 goto error; 1209 } 1210 1211 memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN); 1212 1213 /* 1214 * This is necessary here as we check next whether 1215 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to 1216 * decide if the local_mac should be zeroed out. That flag will always 1217 * be set by dmu_objset_id_quota_upgrade_cb() and 1218 * dmu_objset_userspace_upgrade_cb() if useraccounting has been 1219 * completed. 1220 */ 1221 intval = osp->os_flags; 1222 if (should_bswap) 1223 intval = BSWAP_64(intval); 1224 boolean_t uacct_incomplete = 1225 !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE); 1226 1227 /* 1228 * The local MAC protects the user, group and project accounting. 1229 * If these objects are not present, the local MAC is zeroed out. 1230 */ 1231 if (uacct_incomplete || 1232 (datalen >= OBJSET_PHYS_SIZE_V3 && 1233 osp->os_userused_dnode.dn_type == DMU_OT_NONE && 1234 osp->os_groupused_dnode.dn_type == DMU_OT_NONE && 1235 osp->os_projectused_dnode.dn_type == DMU_OT_NONE) || 1236 (datalen >= OBJSET_PHYS_SIZE_V2 && 1237 osp->os_userused_dnode.dn_type == DMU_OT_NONE && 1238 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) || 1239 (datalen <= OBJSET_PHYS_SIZE_V1)) { 1240 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN); 1241 return (0); 1242 } 1243 1244 /* calculate the local MAC from the userused and groupused dnodes */ 1245 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx); 1246 if (ret != CRYPTO_SUCCESS) { 1247 ret = SET_ERROR(EIO); 1248 goto error; 1249 } 1250 1251 /* add in the non-portable os_flags */ 1252 intval = osp->os_flags; 1253 if (should_bswap) 1254 intval = BSWAP_64(intval); 1255 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK; 1256 if (!ZFS_HOST_BYTEORDER) 1257 intval = BSWAP_64(intval); 1258 1259 cd.cd_length = sizeof (uint64_t); 1260 cd.cd_raw.iov_base = (char *)&intval; 1261 cd.cd_raw.iov_len = cd.cd_length; 1262 1263 ret = crypto_mac_update(ctx, &cd); 1264 if (ret != CRYPTO_SUCCESS) { 1265 ret = SET_ERROR(EIO); 1266 goto error; 1267 } 1268 1269 /* add in fields from the user accounting dnodes */ 1270 if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) { 1271 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1272 should_bswap, &osp->os_userused_dnode); 1273 if (ret) 1274 goto error; 1275 } 1276 1277 if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) { 1278 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1279 should_bswap, &osp->os_groupused_dnode); 1280 if (ret) 1281 goto error; 1282 } 1283 1284 if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE && 1285 datalen >= OBJSET_PHYS_SIZE_V3) { 1286 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1287 should_bswap, &osp->os_projectused_dnode); 1288 if (ret) 1289 goto error; 1290 } 1291 1292 /* store the final digest in a temporary buffer and copy what we need */ 1293 cd.cd_length = SHA512_DIGEST_LENGTH; 1294 cd.cd_raw.iov_base = (char *)raw_local_mac; 1295 cd.cd_raw.iov_len = cd.cd_length; 1296 1297 ret = crypto_mac_final(ctx, &cd); 1298 if (ret != CRYPTO_SUCCESS) { 1299 ret = SET_ERROR(EIO); 1300 goto error; 1301 } 1302 1303 memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN); 1304 1305 return (0); 1306 1307 error: 1308 memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN); 1309 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN); 1310 return (ret); 1311 } 1312 1313 static void 1314 zio_crypt_destroy_uio(zfs_uio_t *uio) 1315 { 1316 if (uio->uio_iov) 1317 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t)); 1318 } 1319 1320 /* 1321 * This function parses an uncompressed indirect block and returns a checksum 1322 * of all the portable fields from all of the contained bps. The portable 1323 * fields are the MAC and all of the fields from blk_prop except for the dedup, 1324 * checksum, and psize bits. For an explanation of the purpose of this, see 1325 * the comment block on object set authentication. 1326 */ 1327 static int 1328 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf, 1329 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum) 1330 { 1331 blkptr_t *bp; 1332 int i, epb = datalen >> SPA_BLKPTRSHIFT; 1333 SHA2_CTX ctx; 1334 uint8_t digestbuf[SHA512_DIGEST_LENGTH]; 1335 1336 /* checksum all of the MACs from the layer below */ 1337 SHA2Init(SHA512, &ctx); 1338 for (i = 0, bp = buf; i < epb; i++, bp++) { 1339 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version, 1340 byteswap, bp); 1341 } 1342 SHA2Final(digestbuf, &ctx); 1343 1344 if (generate) { 1345 memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN); 1346 return (0); 1347 } 1348 1349 if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0) 1350 return (SET_ERROR(ECKSUM)); 1351 1352 return (0); 1353 } 1354 1355 int 1356 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf, 1357 uint_t datalen, boolean_t byteswap, uint8_t *cksum) 1358 { 1359 int ret; 1360 1361 /* 1362 * Unfortunately, callers of this function will not always have 1363 * easy access to the on-disk format version. This info is 1364 * normally found in the DSL Crypto Key, but the checksum-of-MACs 1365 * is expected to be verifiable even when the key isn't loaded. 1366 * Here, instead of doing a ZAP lookup for the version for each 1367 * zio, we simply try both existing formats. 1368 */ 1369 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf, 1370 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum); 1371 if (ret == ECKSUM) { 1372 ASSERT(!generate); 1373 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, 1374 buf, datalen, 0, byteswap, cksum); 1375 } 1376 1377 return (ret); 1378 } 1379 1380 int 1381 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd, 1382 uint_t datalen, boolean_t byteswap, uint8_t *cksum) 1383 { 1384 int ret; 1385 void *buf; 1386 1387 buf = abd_borrow_buf_copy(abd, datalen); 1388 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen, 1389 byteswap, cksum); 1390 abd_return_buf(abd, buf, datalen); 1391 1392 return (ret); 1393 } 1394 1395 /* 1396 * Special case handling routine for encrypting / decrypting ZIL blocks. 1397 * We do not check for the older ZIL chain because the encryption feature 1398 * was not available before the newer ZIL chain was introduced. The goal 1399 * here is to encrypt everything except the blkptr_t of a lr_write_t and 1400 * the zil_chain_t header. Everything that is not encrypted is authenticated. 1401 */ 1402 static int 1403 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf, 1404 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio, 1405 zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len, 1406 boolean_t *no_crypt) 1407 { 1408 int ret; 1409 uint64_t txtype, lr_len, nused; 1410 uint_t nr_src, nr_dst, crypt_len; 1411 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0; 1412 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL; 1413 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp; 1414 zil_chain_t *zilc; 1415 lr_t *lr; 1416 uint8_t *aadbuf = zio_buf_alloc(datalen); 1417 1418 /* cipherbuf always needs an extra iovec for the MAC */ 1419 if (encrypt) { 1420 src = plainbuf; 1421 dst = cipherbuf; 1422 nr_src = 0; 1423 nr_dst = 1; 1424 } else { 1425 src = cipherbuf; 1426 dst = plainbuf; 1427 nr_src = 1; 1428 nr_dst = 0; 1429 } 1430 memset(dst, 0, datalen); 1431 1432 /* find the start and end record of the log block */ 1433 zilc = (zil_chain_t *)src; 1434 slrp = src + sizeof (zil_chain_t); 1435 aadp = aadbuf; 1436 nused = ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused); 1437 ASSERT3U(nused, >=, sizeof (zil_chain_t)); 1438 ASSERT3U(nused, <=, datalen); 1439 blkend = src + nused; 1440 1441 /* calculate the number of encrypted iovecs we will need */ 1442 for (; slrp < blkend; slrp += lr_len) { 1443 lr = (lr_t *)slrp; 1444 1445 if (!byteswap) { 1446 txtype = lr->lrc_txtype; 1447 lr_len = lr->lrc_reclen; 1448 } else { 1449 txtype = BSWAP_64(lr->lrc_txtype); 1450 lr_len = BSWAP_64(lr->lrc_reclen); 1451 } 1452 ASSERT3U(lr_len, >=, sizeof (lr_t)); 1453 ASSERT3U(lr_len, <=, blkend - slrp); 1454 1455 nr_iovecs++; 1456 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t)) 1457 nr_iovecs++; 1458 } 1459 1460 nr_src += nr_iovecs; 1461 nr_dst += nr_iovecs; 1462 1463 /* allocate the iovec arrays */ 1464 if (nr_src != 0) { 1465 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP); 1466 if (src_iovecs == NULL) { 1467 ret = SET_ERROR(ENOMEM); 1468 goto error; 1469 } 1470 } 1471 1472 if (nr_dst != 0) { 1473 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP); 1474 if (dst_iovecs == NULL) { 1475 ret = SET_ERROR(ENOMEM); 1476 goto error; 1477 } 1478 } 1479 1480 /* 1481 * Copy the plain zil header over and authenticate everything except 1482 * the checksum that will store our MAC. If we are writing the data 1483 * the embedded checksum will not have been calculated yet, so we don't 1484 * authenticate that. 1485 */ 1486 memcpy(dst, src, sizeof (zil_chain_t)); 1487 memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t)); 1488 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t); 1489 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t); 1490 1491 /* loop over records again, filling in iovecs */ 1492 nr_iovecs = 0; 1493 slrp = src + sizeof (zil_chain_t); 1494 dlrp = dst + sizeof (zil_chain_t); 1495 1496 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) { 1497 lr = (lr_t *)slrp; 1498 1499 if (!byteswap) { 1500 txtype = lr->lrc_txtype; 1501 lr_len = lr->lrc_reclen; 1502 } else { 1503 txtype = BSWAP_64(lr->lrc_txtype); 1504 lr_len = BSWAP_64(lr->lrc_reclen); 1505 } 1506 1507 /* copy the common lr_t */ 1508 memcpy(dlrp, slrp, sizeof (lr_t)); 1509 memcpy(aadp, slrp, sizeof (lr_t)); 1510 aadp += sizeof (lr_t); 1511 aad_len += sizeof (lr_t); 1512 1513 ASSERT3P(src_iovecs, !=, NULL); 1514 ASSERT3P(dst_iovecs, !=, NULL); 1515 1516 /* 1517 * If this is a TX_WRITE record we want to encrypt everything 1518 * except the bp if exists. If the bp does exist we want to 1519 * authenticate it. 1520 */ 1521 if (txtype == TX_WRITE) { 1522 const size_t o = offsetof(lr_write_t, lr_blkptr); 1523 crypt_len = o - sizeof (lr_t); 1524 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t); 1525 src_iovecs[nr_iovecs].iov_len = crypt_len; 1526 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t); 1527 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1528 1529 /* copy the bp now since it will not be encrypted */ 1530 memcpy(dlrp + o, slrp + o, sizeof (blkptr_t)); 1531 memcpy(aadp, slrp + o, sizeof (blkptr_t)); 1532 aadp += sizeof (blkptr_t); 1533 aad_len += sizeof (blkptr_t); 1534 nr_iovecs++; 1535 total_len += crypt_len; 1536 1537 if (lr_len != sizeof (lr_write_t)) { 1538 crypt_len = lr_len - sizeof (lr_write_t); 1539 src_iovecs[nr_iovecs].iov_base = 1540 slrp + sizeof (lr_write_t); 1541 src_iovecs[nr_iovecs].iov_len = crypt_len; 1542 dst_iovecs[nr_iovecs].iov_base = 1543 dlrp + sizeof (lr_write_t); 1544 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1545 nr_iovecs++; 1546 total_len += crypt_len; 1547 } 1548 } else if (txtype == TX_CLONE_RANGE) { 1549 const size_t o = offsetof(lr_clone_range_t, lr_nbps); 1550 crypt_len = o - sizeof (lr_t); 1551 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t); 1552 src_iovecs[nr_iovecs].iov_len = crypt_len; 1553 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t); 1554 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1555 1556 /* copy the bps now since they will not be encrypted */ 1557 memcpy(dlrp + o, slrp + o, lr_len - o); 1558 memcpy(aadp, slrp + o, lr_len - o); 1559 aadp += lr_len - o; 1560 aad_len += lr_len - o; 1561 nr_iovecs++; 1562 total_len += crypt_len; 1563 } else { 1564 crypt_len = lr_len - sizeof (lr_t); 1565 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t); 1566 src_iovecs[nr_iovecs].iov_len = crypt_len; 1567 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t); 1568 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1569 nr_iovecs++; 1570 total_len += crypt_len; 1571 } 1572 } 1573 1574 *no_crypt = (nr_iovecs == 0); 1575 *enc_len = total_len; 1576 *authbuf = aadbuf; 1577 *auth_len = aad_len; 1578 1579 if (encrypt) { 1580 puio->uio_iov = src_iovecs; 1581 puio->uio_iovcnt = nr_src; 1582 cuio->uio_iov = dst_iovecs; 1583 cuio->uio_iovcnt = nr_dst; 1584 } else { 1585 puio->uio_iov = dst_iovecs; 1586 puio->uio_iovcnt = nr_dst; 1587 cuio->uio_iov = src_iovecs; 1588 cuio->uio_iovcnt = nr_src; 1589 } 1590 1591 return (0); 1592 1593 error: 1594 zio_buf_free(aadbuf, datalen); 1595 if (src_iovecs != NULL) 1596 kmem_free(src_iovecs, nr_src * sizeof (iovec_t)); 1597 if (dst_iovecs != NULL) 1598 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t)); 1599 1600 *enc_len = 0; 1601 *authbuf = NULL; 1602 *auth_len = 0; 1603 *no_crypt = B_FALSE; 1604 puio->uio_iov = NULL; 1605 puio->uio_iovcnt = 0; 1606 cuio->uio_iov = NULL; 1607 cuio->uio_iovcnt = 0; 1608 return (ret); 1609 } 1610 1611 /* 1612 * Special case handling routine for encrypting / decrypting dnode blocks. 1613 */ 1614 static int 1615 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version, 1616 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, 1617 zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, 1618 uint_t *auth_len, boolean_t *no_crypt) 1619 { 1620 int ret; 1621 uint_t nr_src, nr_dst, crypt_len; 1622 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0; 1623 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT; 1624 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL; 1625 uint8_t *src, *dst, *aadp; 1626 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp; 1627 uint8_t *aadbuf = zio_buf_alloc(datalen); 1628 1629 if (encrypt) { 1630 src = plainbuf; 1631 dst = cipherbuf; 1632 nr_src = 0; 1633 nr_dst = 1; 1634 } else { 1635 src = cipherbuf; 1636 dst = plainbuf; 1637 nr_src = 1; 1638 nr_dst = 0; 1639 } 1640 1641 sdnp = (dnode_phys_t *)src; 1642 ddnp = (dnode_phys_t *)dst; 1643 aadp = aadbuf; 1644 1645 /* 1646 * Count the number of iovecs we will need to do the encryption by 1647 * counting the number of bonus buffers that need to be encrypted. 1648 */ 1649 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 1650 /* 1651 * This block may still be byteswapped. However, all of the 1652 * values we use are either uint8_t's (for which byteswapping 1653 * is a noop) or a * != 0 check, which will work regardless 1654 * of whether or not we byteswap. 1655 */ 1656 if (sdnp[i].dn_type != DMU_OT_NONE && 1657 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) && 1658 sdnp[i].dn_bonuslen != 0) { 1659 nr_iovecs++; 1660 } 1661 } 1662 1663 nr_src += nr_iovecs; 1664 nr_dst += nr_iovecs; 1665 1666 if (nr_src != 0) { 1667 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP); 1668 if (src_iovecs == NULL) { 1669 ret = SET_ERROR(ENOMEM); 1670 goto error; 1671 } 1672 } 1673 1674 if (nr_dst != 0) { 1675 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP); 1676 if (dst_iovecs == NULL) { 1677 ret = SET_ERROR(ENOMEM); 1678 goto error; 1679 } 1680 } 1681 1682 nr_iovecs = 0; 1683 1684 /* 1685 * Iterate through the dnodes again, this time filling in the uios 1686 * we allocated earlier. We also concatenate any data we want to 1687 * authenticate onto aadbuf. 1688 */ 1689 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 1690 dnp = &sdnp[i]; 1691 1692 /* copy over the core fields and blkptrs (kept as plaintext) */ 1693 memcpy(&ddnp[i], dnp, 1694 (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp); 1695 1696 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1697 memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp), 1698 sizeof (blkptr_t)); 1699 } 1700 1701 /* 1702 * Handle authenticated data. We authenticate everything in 1703 * the dnode that can be brought over when we do a raw send. 1704 * This includes all of the core fields as well as the MACs 1705 * stored in the bp checksums and all of the portable bits 1706 * from blk_prop. We include the dnode padding here in case it 1707 * ever gets used in the future. Some dn_flags and dn_used are 1708 * not portable so we mask those out values out of the 1709 * authenticated data. 1710 */ 1711 crypt_len = offsetof(dnode_phys_t, dn_blkptr); 1712 memcpy(aadp, dnp, crypt_len); 1713 adnp = (dnode_phys_t *)aadp; 1714 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK; 1715 adnp->dn_used = 0; 1716 aadp += crypt_len; 1717 aad_len += crypt_len; 1718 1719 for (j = 0; j < dnp->dn_nblkptr; j++) { 1720 zio_crypt_bp_do_aad_updates(&aadp, &aad_len, 1721 version, byteswap, &dnp->dn_blkptr[j]); 1722 } 1723 1724 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1725 zio_crypt_bp_do_aad_updates(&aadp, &aad_len, 1726 version, byteswap, DN_SPILL_BLKPTR(dnp)); 1727 } 1728 1729 /* 1730 * If this bonus buffer needs to be encrypted, we prepare an 1731 * iovec_t. The encryption / decryption functions will fill 1732 * this in for us with the encrypted or decrypted data. 1733 * Otherwise we add the bonus buffer to the authenticated 1734 * data buffer and copy it over to the destination. The 1735 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that 1736 * we can guarantee alignment with the AES block size 1737 * (128 bits). 1738 */ 1739 crypt_len = DN_MAX_BONUS_LEN(dnp); 1740 if (dnp->dn_type != DMU_OT_NONE && 1741 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) && 1742 dnp->dn_bonuslen != 0) { 1743 ASSERT3U(nr_iovecs, <, nr_src); 1744 ASSERT3U(nr_iovecs, <, nr_dst); 1745 ASSERT3P(src_iovecs, !=, NULL); 1746 ASSERT3P(dst_iovecs, !=, NULL); 1747 src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp); 1748 src_iovecs[nr_iovecs].iov_len = crypt_len; 1749 dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]); 1750 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1751 1752 nr_iovecs++; 1753 total_len += crypt_len; 1754 } else { 1755 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len); 1756 memcpy(aadp, DN_BONUS(dnp), crypt_len); 1757 aadp += crypt_len; 1758 aad_len += crypt_len; 1759 } 1760 } 1761 1762 *no_crypt = (nr_iovecs == 0); 1763 *enc_len = total_len; 1764 *authbuf = aadbuf; 1765 *auth_len = aad_len; 1766 1767 if (encrypt) { 1768 puio->uio_iov = src_iovecs; 1769 puio->uio_iovcnt = nr_src; 1770 cuio->uio_iov = dst_iovecs; 1771 cuio->uio_iovcnt = nr_dst; 1772 } else { 1773 puio->uio_iov = dst_iovecs; 1774 puio->uio_iovcnt = nr_dst; 1775 cuio->uio_iov = src_iovecs; 1776 cuio->uio_iovcnt = nr_src; 1777 } 1778 1779 return (0); 1780 1781 error: 1782 zio_buf_free(aadbuf, datalen); 1783 if (src_iovecs != NULL) 1784 kmem_free(src_iovecs, nr_src * sizeof (iovec_t)); 1785 if (dst_iovecs != NULL) 1786 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t)); 1787 1788 *enc_len = 0; 1789 *authbuf = NULL; 1790 *auth_len = 0; 1791 *no_crypt = B_FALSE; 1792 puio->uio_iov = NULL; 1793 puio->uio_iovcnt = 0; 1794 cuio->uio_iov = NULL; 1795 cuio->uio_iovcnt = 0; 1796 return (ret); 1797 } 1798 1799 static int 1800 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf, 1801 uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio, 1802 uint_t *enc_len) 1803 { 1804 (void) encrypt; 1805 int ret; 1806 uint_t nr_plain = 1, nr_cipher = 2; 1807 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL; 1808 1809 /* allocate the iovecs for the plain and cipher data */ 1810 plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t), 1811 KM_SLEEP); 1812 if (!plain_iovecs) { 1813 ret = SET_ERROR(ENOMEM); 1814 goto error; 1815 } 1816 1817 cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t), 1818 KM_SLEEP); 1819 if (!cipher_iovecs) { 1820 ret = SET_ERROR(ENOMEM); 1821 goto error; 1822 } 1823 1824 plain_iovecs[0].iov_base = plainbuf; 1825 plain_iovecs[0].iov_len = datalen; 1826 cipher_iovecs[0].iov_base = cipherbuf; 1827 cipher_iovecs[0].iov_len = datalen; 1828 1829 *enc_len = datalen; 1830 puio->uio_iov = plain_iovecs; 1831 puio->uio_iovcnt = nr_plain; 1832 cuio->uio_iov = cipher_iovecs; 1833 cuio->uio_iovcnt = nr_cipher; 1834 1835 return (0); 1836 1837 error: 1838 if (plain_iovecs != NULL) 1839 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t)); 1840 if (cipher_iovecs != NULL) 1841 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t)); 1842 1843 *enc_len = 0; 1844 puio->uio_iov = NULL; 1845 puio->uio_iovcnt = 0; 1846 cuio->uio_iov = NULL; 1847 cuio->uio_iovcnt = 0; 1848 return (ret); 1849 } 1850 1851 /* 1852 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so 1853 * that they can be used for encryption and decryption by zio_do_crypt_uio(). 1854 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks 1855 * requiring special handling to parse out pieces that are to be encrypted. The 1856 * authbuf is used by these special cases to store additional authenticated 1857 * data (AAD) for the encryption modes. 1858 */ 1859 static int 1860 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot, 1861 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, 1862 uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, 1863 uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt) 1864 { 1865 int ret; 1866 iovec_t *mac_iov; 1867 1868 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE); 1869 1870 /* route to handler */ 1871 switch (ot) { 1872 case DMU_OT_INTENT_LOG: 1873 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf, 1874 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len, 1875 no_crypt); 1876 break; 1877 case DMU_OT_DNODE: 1878 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf, 1879 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf, 1880 auth_len, no_crypt); 1881 break; 1882 default: 1883 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf, 1884 datalen, puio, cuio, enc_len); 1885 *authbuf = NULL; 1886 *auth_len = 0; 1887 *no_crypt = B_FALSE; 1888 break; 1889 } 1890 1891 if (ret != 0) 1892 goto error; 1893 1894 /* populate the uios */ 1895 puio->uio_segflg = UIO_SYSSPACE; 1896 cuio->uio_segflg = UIO_SYSSPACE; 1897 1898 mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]); 1899 mac_iov->iov_base = mac; 1900 mac_iov->iov_len = ZIO_DATA_MAC_LEN; 1901 1902 return (0); 1903 1904 error: 1905 return (ret); 1906 } 1907 1908 /* 1909 * Primary encryption / decryption entrypoint for zio data. 1910 */ 1911 int 1912 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key, 1913 dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv, 1914 uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf, 1915 boolean_t *no_crypt) 1916 { 1917 int ret; 1918 boolean_t locked = B_FALSE; 1919 uint64_t crypt = key->zk_crypt; 1920 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen; 1921 uint_t enc_len, auth_len; 1922 zfs_uio_t puio, cuio; 1923 uint8_t enc_keydata[MASTER_KEY_MAX_LEN]; 1924 crypto_key_t tmp_ckey, *ckey = NULL; 1925 crypto_ctx_template_t tmpl; 1926 uint8_t *authbuf = NULL; 1927 1928 memset(&puio, 0, sizeof (puio)); 1929 memset(&cuio, 0, sizeof (cuio)); 1930 1931 /* 1932 * If the needed key is the current one, just use it. Otherwise we 1933 * need to generate a temporary one from the given salt + master key. 1934 * If we are encrypting, we must return a copy of the current salt 1935 * so that it can be stored in the blkptr_t. 1936 */ 1937 rw_enter(&key->zk_salt_lock, RW_READER); 1938 locked = B_TRUE; 1939 1940 if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) { 1941 ckey = &key->zk_current_key; 1942 tmpl = key->zk_current_tmpl; 1943 } else { 1944 rw_exit(&key->zk_salt_lock); 1945 locked = B_FALSE; 1946 1947 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 1948 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len); 1949 if (ret != 0) 1950 goto error; 1951 1952 tmp_ckey.ck_data = enc_keydata; 1953 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len); 1954 1955 ckey = &tmp_ckey; 1956 tmpl = NULL; 1957 } 1958 1959 /* 1960 * Attempt to use QAT acceleration if we can. We currently don't 1961 * do this for metadnode and ZIL blocks, since they have a much 1962 * more involved buffer layout and the qat_crypt() function only 1963 * works in-place. 1964 */ 1965 if (qat_crypt_use_accel(datalen) && 1966 ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) { 1967 uint8_t *srcbuf, *dstbuf; 1968 1969 if (encrypt) { 1970 srcbuf = plainbuf; 1971 dstbuf = cipherbuf; 1972 } else { 1973 srcbuf = cipherbuf; 1974 dstbuf = plainbuf; 1975 } 1976 1977 ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf, 1978 dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen); 1979 if (ret == CPA_STATUS_SUCCESS) { 1980 if (locked) { 1981 rw_exit(&key->zk_salt_lock); 1982 locked = B_FALSE; 1983 } 1984 1985 return (0); 1986 } 1987 /* If the hardware implementation fails fall back to software */ 1988 } 1989 1990 /* create uios for encryption */ 1991 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf, 1992 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len, 1993 &authbuf, &auth_len, no_crypt); 1994 if (ret != 0) 1995 goto error; 1996 1997 /* perform the encryption / decryption in software */ 1998 ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len, 1999 &puio, &cuio, authbuf, auth_len); 2000 if (ret != 0) 2001 goto error; 2002 2003 if (locked) { 2004 rw_exit(&key->zk_salt_lock); 2005 } 2006 2007 if (authbuf != NULL) 2008 zio_buf_free(authbuf, datalen); 2009 if (ckey == &tmp_ckey) 2010 memset(enc_keydata, 0, keydata_len); 2011 zio_crypt_destroy_uio(&puio); 2012 zio_crypt_destroy_uio(&cuio); 2013 2014 return (0); 2015 2016 error: 2017 if (locked) 2018 rw_exit(&key->zk_salt_lock); 2019 if (authbuf != NULL) 2020 zio_buf_free(authbuf, datalen); 2021 if (ckey == &tmp_ckey) 2022 memset(enc_keydata, 0, keydata_len); 2023 zio_crypt_destroy_uio(&puio); 2024 zio_crypt_destroy_uio(&cuio); 2025 2026 return (ret); 2027 } 2028 2029 /* 2030 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of 2031 * linear buffers. 2032 */ 2033 int 2034 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot, 2035 boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac, 2036 uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt) 2037 { 2038 int ret; 2039 void *ptmp, *ctmp; 2040 2041 if (encrypt) { 2042 ptmp = abd_borrow_buf_copy(pabd, datalen); 2043 ctmp = abd_borrow_buf(cabd, datalen); 2044 } else { 2045 ptmp = abd_borrow_buf(pabd, datalen); 2046 ctmp = abd_borrow_buf_copy(cabd, datalen); 2047 } 2048 2049 ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac, 2050 datalen, ptmp, ctmp, no_crypt); 2051 if (ret != 0) 2052 goto error; 2053 2054 if (encrypt) { 2055 abd_return_buf(pabd, ptmp, datalen); 2056 abd_return_buf_copy(cabd, ctmp, datalen); 2057 } else { 2058 abd_return_buf_copy(pabd, ptmp, datalen); 2059 abd_return_buf(cabd, ctmp, datalen); 2060 } 2061 2062 return (0); 2063 2064 error: 2065 if (encrypt) { 2066 abd_return_buf(pabd, ptmp, datalen); 2067 abd_return_buf_copy(cabd, ctmp, datalen); 2068 } else { 2069 abd_return_buf_copy(pabd, ptmp, datalen); 2070 abd_return_buf(cabd, ctmp, datalen); 2071 } 2072 2073 return (ret); 2074 } 2075 2076 #if defined(_KERNEL) 2077 module_param(zfs_key_max_salt_uses, ulong, 0644); 2078 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value " 2079 "can be used for generating encryption keys before it is rotated"); 2080 #endif 2081