1 /* 2 * CDDL HEADER START 3 * 4 * This file and its contents are supplied under the terms of the 5 * Common Development and Distribution License ("CDDL"), version 1.0. 6 * You may only use this file in accordance with the terms of version 7 * 1.0 of the CDDL. 8 * 9 * A full copy of the text of the CDDL should have accompanied this 10 * source. A copy of the CDDL is also available via the Internet at 11 * http://www.illumos.org/license/CDDL. 12 * 13 * CDDL HEADER END 14 */ 15 16 /* 17 * Copyright (c) 2017, Datto, Inc. All rights reserved. 18 */ 19 20 #include <sys/zio_crypt.h> 21 #include <sys/dmu.h> 22 #include <sys/dmu_objset.h> 23 #include <sys/dnode.h> 24 #include <sys/fs/zfs.h> 25 #include <sys/zio.h> 26 #include <sys/zil.h> 27 #include <sys/sha2.h> 28 #include <sys/hkdf.h> 29 #include <sys/qat.h> 30 31 /* 32 * This file is responsible for handling all of the details of generating 33 * encryption parameters and performing encryption and authentication. 34 * 35 * BLOCK ENCRYPTION PARAMETERS: 36 * Encryption /Authentication Algorithm Suite (crypt): 37 * The encryption algorithm, mode, and key length we are going to use. We 38 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit 39 * keys. All authentication is currently done with SHA512-HMAC. 40 * 41 * Plaintext: 42 * The unencrypted data that we want to encrypt. 43 * 44 * Initialization Vector (IV): 45 * An initialization vector for the encryption algorithms. This is used to 46 * "tweak" the encryption algorithms so that two blocks of the same data are 47 * encrypted into different ciphertext outputs, thus obfuscating block patterns. 48 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is 49 * never reused with the same encryption key. This value is stored unencrypted 50 * and must simply be provided to the decryption function. We use a 96 bit IV 51 * (as recommended by NIST) for all block encryption. For non-dedup blocks we 52 * derive the IV randomly. The first 64 bits of the IV are stored in the second 53 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of 54 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits 55 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count 56 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of 57 * level 0 blocks is the number of allocated dnodes in that block. The on-disk 58 * format supports at most 2^15 slots per L0 dnode block, because the maximum 59 * block size is 16MB (2^24). In either case, for level 0 blocks this number 60 * will still be smaller than UINT32_MAX so it is safe to store the IV in the 61 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count 62 * for the dnode code. 63 * 64 * Master key: 65 * This is the most important secret data of an encrypted dataset. It is used 66 * along with the salt to generate that actual encryption keys via HKDF. We 67 * do not use the master key to directly encrypt any data because there are 68 * theoretical limits on how much data can actually be safely encrypted with 69 * any encryption mode. The master key is stored encrypted on disk with the 70 * user's wrapping key. Its length is determined by the encryption algorithm. 71 * For details on how this is stored see the block comment in dsl_crypt.c 72 * 73 * Salt: 74 * Used as an input to the HKDF function, along with the master key. We use a 75 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt 76 * can be used for encrypting many blocks, so we cache the current salt and the 77 * associated derived key in zio_crypt_t so we do not need to derive it again 78 * needlessly. 79 * 80 * Encryption Key: 81 * A secret binary key, generated from an HKDF function used to encrypt and 82 * decrypt data. 83 * 84 * Message Authentication Code (MAC) 85 * The MAC is an output of authenticated encryption modes such as AES-GCM and 86 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted 87 * data on disk and return garbage to the application. Effectively, it is a 88 * checksum that can not be reproduced by an attacker. We store the MAC in the 89 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated 90 * regular checksum of the ciphertext which can be used for scrubbing. 91 * 92 * OBJECT AUTHENTICATION: 93 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because 94 * they contain some info that always needs to be readable. To prevent this 95 * data from being altered, we authenticate this data using SHA512-HMAC. This 96 * will produce a MAC (similar to the one produced via encryption) which can 97 * be used to verify the object was not modified. HMACs do not require key 98 * rotation or IVs, so we can keep up to the full 3 copies of authenticated 99 * data. 100 * 101 * ZIL ENCRYPTION: 102 * ZIL blocks have their bp written to disk ahead of the associated data, so we 103 * cannot store the MAC there as we normally do. For these blocks the MAC is 104 * stored in the embedded checksum within the zil_chain_t header. The salt and 105 * IV are generated for the block on bp allocation instead of at encryption 106 * time. In addition, ZIL blocks have some pieces that must be left in plaintext 107 * for claiming even though all of the sensitive user data still needs to be 108 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which 109 * pieces of the block need to be encrypted. All data that is not encrypted is 110 * authenticated using the AAD mechanisms that the supported encryption modes 111 * provide for. In order to preserve the semantics of the ZIL for encrypted 112 * datasets, the ZIL is not protected at the objset level as described below. 113 * 114 * DNODE ENCRYPTION: 115 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left 116 * in plaintext for scrubbing and claiming, but the bonus buffers might contain 117 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing 118 * which pieces of the block need to be encrypted. For more details about 119 * dnode authentication and encryption, see zio_crypt_init_uios_dnode(). 120 * 121 * OBJECT SET AUTHENTICATION: 122 * Up to this point, everything we have encrypted and authenticated has been 123 * at level 0 (or -2 for the ZIL). If we did not do any further work the 124 * on-disk format would be susceptible to attacks that deleted or rearranged 125 * the order of level 0 blocks. Ideally, the cleanest solution would be to 126 * maintain a tree of authentication MACs going up the bp tree. However, this 127 * presents a problem for raw sends. Send files do not send information about 128 * indirect blocks so there would be no convenient way to transfer the MACs and 129 * they cannot be recalculated on the receive side without the master key which 130 * would defeat one of the purposes of raw sends in the first place. Instead, 131 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs 132 * from the level below. We also include some portable fields from blk_prop such 133 * as the lsize and compression algorithm to prevent the data from being 134 * misinterpreted. 135 * 136 * At the objset level, we maintain 2 separate 256 bit MACs in the 137 * objset_phys_t. The first one is "portable" and is the logical root of the 138 * MAC tree maintained in the metadnode's bps. The second, is "local" and is 139 * used as the root MAC for the user accounting objects, which are also not 140 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload 141 * of the send file. The useraccounting code ensures that the useraccounting 142 * info is not present upon a receive, so the local MAC can simply be cleared 143 * out at that time. For more info about objset_phys_t authentication, see 144 * zio_crypt_do_objset_hmacs(). 145 * 146 * CONSIDERATIONS FOR DEDUP: 147 * In order for dedup to work, blocks that we want to dedup with one another 148 * need to use the same IV and encryption key, so that they will have the same 149 * ciphertext. Normally, one should never reuse an IV with the same encryption 150 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both 151 * blocks. In this case, however, since we are using the same plaintext as 152 * well all that we end up with is a duplicate of the original ciphertext we 153 * already had. As a result, an attacker with read access to the raw disk will 154 * be able to tell which blocks are the same but this information is given away 155 * by dedup anyway. In order to get the same IVs and encryption keys for 156 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC 157 * here so that a reproducible checksum of the plaintext is never available to 158 * the attacker. The HMAC key is kept alongside the master key, encrypted on 159 * disk. The first 64 bits of the HMAC are used in place of the random salt, and 160 * the next 96 bits are used as the IV. As a result of this mechanism, dedup 161 * will only work within a clone family since encrypted dedup requires use of 162 * the same master and HMAC keys. 163 */ 164 165 /* 166 * After encrypting many blocks with the same key we may start to run up 167 * against the theoretical limits of how much data can securely be encrypted 168 * with a single key using the supported encryption modes. The most obvious 169 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases 170 * the more IVs we generate (which both GCM and CCM modes strictly forbid). 171 * This risk actually grows surprisingly quickly over time according to the 172 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have 173 * generated n IVs with a cryptographically secure RNG, the approximate 174 * probability p(n) of a collision is given as: 175 * 176 * p(n) ~= e^(-n*(n-1)/(2*(2^96))) 177 * 178 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html] 179 * 180 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion 181 * we must not write more than 398,065,730 blocks with the same encryption key. 182 * Therefore, we rotate our keys after 400,000,000 blocks have been written by 183 * generating a new random 64 bit salt for our HKDF encryption key generation 184 * function. 185 */ 186 #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000 187 #define ZFS_CURRENT_MAX_SALT_USES \ 188 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT)) 189 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT; 190 191 typedef struct blkptr_auth_buf { 192 uint64_t bab_prop; /* blk_prop - portable mask */ 193 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */ 194 uint64_t bab_pad; /* reserved for future use */ 195 } blkptr_auth_buf_t; 196 197 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = { 198 {"", ZC_TYPE_NONE, 0, "inherit"}, 199 {"", ZC_TYPE_NONE, 0, "on"}, 200 {"", ZC_TYPE_NONE, 0, "off"}, 201 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"}, 202 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"}, 203 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"}, 204 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"}, 205 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"}, 206 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"} 207 }; 208 209 void 210 zio_crypt_key_destroy(zio_crypt_key_t *key) 211 { 212 rw_destroy(&key->zk_salt_lock); 213 214 /* free crypto templates */ 215 crypto_destroy_ctx_template(key->zk_current_tmpl); 216 crypto_destroy_ctx_template(key->zk_hmac_tmpl); 217 218 /* zero out sensitive data */ 219 memset(key, 0, sizeof (zio_crypt_key_t)); 220 } 221 222 int 223 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key) 224 { 225 int ret; 226 crypto_mechanism_t mech; 227 uint_t keydata_len; 228 229 ASSERT(key != NULL); 230 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 231 232 keydata_len = zio_crypt_table[crypt].ci_keylen; 233 memset(key, 0, sizeof (zio_crypt_key_t)); 234 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL); 235 236 /* fill keydata buffers and salt with random data */ 237 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t)); 238 if (ret != 0) 239 goto error; 240 241 ret = random_get_bytes(key->zk_master_keydata, keydata_len); 242 if (ret != 0) 243 goto error; 244 245 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN); 246 if (ret != 0) 247 goto error; 248 249 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN); 250 if (ret != 0) 251 goto error; 252 253 /* derive the current key from the master key */ 254 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 255 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, 256 keydata_len); 257 if (ret != 0) 258 goto error; 259 260 /* initialize keys for the ICP */ 261 key->zk_current_key.ck_data = key->zk_current_keydata; 262 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len); 263 264 key->zk_hmac_key.ck_data = &key->zk_hmac_key; 265 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN); 266 267 /* 268 * Initialize the crypto templates. It's ok if this fails because 269 * this is just an optimization. 270 */ 271 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname); 272 ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 273 &key->zk_current_tmpl); 274 if (ret != CRYPTO_SUCCESS) 275 key->zk_current_tmpl = NULL; 276 277 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 278 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key, 279 &key->zk_hmac_tmpl); 280 if (ret != CRYPTO_SUCCESS) 281 key->zk_hmac_tmpl = NULL; 282 283 key->zk_crypt = crypt; 284 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION; 285 key->zk_salt_count = 0; 286 287 return (0); 288 289 error: 290 zio_crypt_key_destroy(key); 291 return (ret); 292 } 293 294 static int 295 zio_crypt_key_change_salt(zio_crypt_key_t *key) 296 { 297 int ret = 0; 298 uint8_t salt[ZIO_DATA_SALT_LEN]; 299 crypto_mechanism_t mech; 300 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen; 301 302 /* generate a new salt */ 303 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN); 304 if (ret != 0) 305 goto error; 306 307 rw_enter(&key->zk_salt_lock, RW_WRITER); 308 309 /* someone beat us to the salt rotation, just unlock and return */ 310 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES) 311 goto out_unlock; 312 313 /* derive the current key from the master key and the new salt */ 314 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 315 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len); 316 if (ret != 0) 317 goto out_unlock; 318 319 /* assign the salt and reset the usage count */ 320 memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN); 321 key->zk_salt_count = 0; 322 323 /* destroy the old context template and create the new one */ 324 crypto_destroy_ctx_template(key->zk_current_tmpl); 325 ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 326 &key->zk_current_tmpl); 327 if (ret != CRYPTO_SUCCESS) 328 key->zk_current_tmpl = NULL; 329 330 rw_exit(&key->zk_salt_lock); 331 332 return (0); 333 334 out_unlock: 335 rw_exit(&key->zk_salt_lock); 336 error: 337 return (ret); 338 } 339 340 /* See comment above zfs_key_max_salt_uses definition for details */ 341 int 342 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt) 343 { 344 int ret; 345 boolean_t salt_change; 346 347 rw_enter(&key->zk_salt_lock, RW_READER); 348 349 memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN); 350 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >= 351 ZFS_CURRENT_MAX_SALT_USES); 352 353 rw_exit(&key->zk_salt_lock); 354 355 if (salt_change) { 356 ret = zio_crypt_key_change_salt(key); 357 if (ret != 0) 358 goto error; 359 } 360 361 return (0); 362 363 error: 364 return (ret); 365 } 366 367 /* 368 * This function handles all encryption and decryption in zfs. When 369 * encrypting it expects puio to reference the plaintext and cuio to 370 * reference the ciphertext. cuio must have enough space for the 371 * ciphertext + room for a MAC. datalen should be the length of the 372 * plaintext / ciphertext alone. 373 */ 374 static int 375 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key, 376 crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen, 377 zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len) 378 { 379 int ret; 380 crypto_data_t plaindata, cipherdata; 381 CK_AES_CCM_PARAMS ccmp; 382 CK_AES_GCM_PARAMS gcmp; 383 crypto_mechanism_t mech; 384 zio_crypt_info_t crypt_info; 385 uint_t plain_full_len, maclen; 386 387 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 388 389 /* lookup the encryption info */ 390 crypt_info = zio_crypt_table[crypt]; 391 392 /* the mac will always be the last iovec_t in the cipher uio */ 393 maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len; 394 395 ASSERT(maclen <= ZIO_DATA_MAC_LEN); 396 397 /* setup encryption mechanism (same as crypt) */ 398 mech.cm_type = crypto_mech2id(crypt_info.ci_mechname); 399 400 /* 401 * Strangely, the ICP requires that plain_full_len must include 402 * the MAC length when decrypting, even though the UIO does not 403 * need to have the extra space allocated. 404 */ 405 if (encrypt) { 406 plain_full_len = datalen; 407 } else { 408 plain_full_len = datalen + maclen; 409 } 410 411 /* 412 * setup encryption params (currently only AES CCM and AES GCM 413 * are supported) 414 */ 415 if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) { 416 ccmp.ulNonceSize = ZIO_DATA_IV_LEN; 417 ccmp.ulAuthDataSize = auth_len; 418 ccmp.authData = authbuf; 419 ccmp.ulMACSize = maclen; 420 ccmp.nonce = ivbuf; 421 ccmp.ulDataSize = plain_full_len; 422 423 mech.cm_param = (char *)(&ccmp); 424 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS); 425 } else { 426 gcmp.ulIvLen = ZIO_DATA_IV_LEN; 427 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN); 428 gcmp.ulAADLen = auth_len; 429 gcmp.pAAD = authbuf; 430 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen); 431 gcmp.pIv = ivbuf; 432 433 mech.cm_param = (char *)(&gcmp); 434 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS); 435 } 436 437 /* populate the cipher and plain data structs. */ 438 plaindata.cd_format = CRYPTO_DATA_UIO; 439 plaindata.cd_offset = 0; 440 plaindata.cd_uio = puio; 441 plaindata.cd_length = plain_full_len; 442 443 cipherdata.cd_format = CRYPTO_DATA_UIO; 444 cipherdata.cd_offset = 0; 445 cipherdata.cd_uio = cuio; 446 cipherdata.cd_length = datalen + maclen; 447 448 /* perform the actual encryption */ 449 if (encrypt) { 450 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata); 451 if (ret != CRYPTO_SUCCESS) { 452 ret = SET_ERROR(EIO); 453 goto error; 454 } 455 } else { 456 ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata); 457 if (ret != CRYPTO_SUCCESS) { 458 ASSERT3U(ret, ==, CRYPTO_INVALID_MAC); 459 ret = SET_ERROR(ECKSUM); 460 goto error; 461 } 462 } 463 464 return (0); 465 466 error: 467 return (ret); 468 } 469 470 int 471 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv, 472 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out) 473 { 474 int ret; 475 zfs_uio_t puio, cuio; 476 uint64_t aad[3]; 477 iovec_t plain_iovecs[2], cipher_iovecs[3]; 478 uint64_t crypt = key->zk_crypt; 479 uint_t enc_len, keydata_len, aad_len; 480 481 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 482 483 keydata_len = zio_crypt_table[crypt].ci_keylen; 484 485 /* generate iv for wrapping the master and hmac key */ 486 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN); 487 if (ret != 0) 488 goto error; 489 490 /* initialize zfs_uio_ts */ 491 plain_iovecs[0].iov_base = key->zk_master_keydata; 492 plain_iovecs[0].iov_len = keydata_len; 493 plain_iovecs[1].iov_base = key->zk_hmac_keydata; 494 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 495 496 cipher_iovecs[0].iov_base = keydata_out; 497 cipher_iovecs[0].iov_len = keydata_len; 498 cipher_iovecs[1].iov_base = hmac_keydata_out; 499 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 500 cipher_iovecs[2].iov_base = mac; 501 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN; 502 503 /* 504 * Although we don't support writing to the old format, we do 505 * support rewrapping the key so that the user can move and 506 * quarantine datasets on the old format. 507 */ 508 if (key->zk_version == 0) { 509 aad_len = sizeof (uint64_t); 510 aad[0] = LE_64(key->zk_guid); 511 } else { 512 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 513 aad_len = sizeof (uint64_t) * 3; 514 aad[0] = LE_64(key->zk_guid); 515 aad[1] = LE_64(crypt); 516 aad[2] = LE_64(key->zk_version); 517 } 518 519 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN; 520 puio.uio_iov = plain_iovecs; 521 puio.uio_iovcnt = 2; 522 puio.uio_segflg = UIO_SYSSPACE; 523 cuio.uio_iov = cipher_iovecs; 524 cuio.uio_iovcnt = 3; 525 cuio.uio_segflg = UIO_SYSSPACE; 526 527 /* encrypt the keys and store the resulting ciphertext and mac */ 528 ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len, 529 &puio, &cuio, (uint8_t *)aad, aad_len); 530 if (ret != 0) 531 goto error; 532 533 return (0); 534 535 error: 536 return (ret); 537 } 538 539 int 540 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version, 541 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv, 542 uint8_t *mac, zio_crypt_key_t *key) 543 { 544 crypto_mechanism_t mech; 545 zfs_uio_t puio, cuio; 546 uint64_t aad[3]; 547 iovec_t plain_iovecs[2], cipher_iovecs[3]; 548 uint_t enc_len, keydata_len, aad_len; 549 int ret; 550 551 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 552 553 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL); 554 555 keydata_len = zio_crypt_table[crypt].ci_keylen; 556 557 /* initialize zfs_uio_ts */ 558 plain_iovecs[0].iov_base = key->zk_master_keydata; 559 plain_iovecs[0].iov_len = keydata_len; 560 plain_iovecs[1].iov_base = key->zk_hmac_keydata; 561 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 562 563 cipher_iovecs[0].iov_base = keydata; 564 cipher_iovecs[0].iov_len = keydata_len; 565 cipher_iovecs[1].iov_base = hmac_keydata; 566 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 567 cipher_iovecs[2].iov_base = mac; 568 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN; 569 570 if (version == 0) { 571 aad_len = sizeof (uint64_t); 572 aad[0] = LE_64(guid); 573 } else { 574 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 575 aad_len = sizeof (uint64_t) * 3; 576 aad[0] = LE_64(guid); 577 aad[1] = LE_64(crypt); 578 aad[2] = LE_64(version); 579 } 580 581 enc_len = keydata_len + SHA512_HMAC_KEYLEN; 582 puio.uio_iov = plain_iovecs; 583 puio.uio_segflg = UIO_SYSSPACE; 584 puio.uio_iovcnt = 2; 585 cuio.uio_iov = cipher_iovecs; 586 cuio.uio_iovcnt = 3; 587 cuio.uio_segflg = UIO_SYSSPACE; 588 589 /* decrypt the keys and store the result in the output buffers */ 590 ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len, 591 &puio, &cuio, (uint8_t *)aad, aad_len); 592 if (ret != 0) 593 goto error; 594 595 /* generate a fresh salt */ 596 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN); 597 if (ret != 0) 598 goto error; 599 600 /* derive the current key from the master key */ 601 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 602 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, 603 keydata_len); 604 if (ret != 0) 605 goto error; 606 607 /* initialize keys for ICP */ 608 key->zk_current_key.ck_data = key->zk_current_keydata; 609 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len); 610 611 key->zk_hmac_key.ck_data = key->zk_hmac_keydata; 612 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN); 613 614 /* 615 * Initialize the crypto templates. It's ok if this fails because 616 * this is just an optimization. 617 */ 618 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname); 619 ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 620 &key->zk_current_tmpl); 621 if (ret != CRYPTO_SUCCESS) 622 key->zk_current_tmpl = NULL; 623 624 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 625 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key, 626 &key->zk_hmac_tmpl); 627 if (ret != CRYPTO_SUCCESS) 628 key->zk_hmac_tmpl = NULL; 629 630 key->zk_crypt = crypt; 631 key->zk_version = version; 632 key->zk_guid = guid; 633 key->zk_salt_count = 0; 634 635 return (0); 636 637 error: 638 zio_crypt_key_destroy(key); 639 return (ret); 640 } 641 642 int 643 zio_crypt_generate_iv(uint8_t *ivbuf) 644 { 645 int ret; 646 647 /* randomly generate the IV */ 648 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN); 649 if (ret != 0) 650 goto error; 651 652 return (0); 653 654 error: 655 memset(ivbuf, 0, ZIO_DATA_IV_LEN); 656 return (ret); 657 } 658 659 int 660 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen, 661 uint8_t *digestbuf, uint_t digestlen) 662 { 663 int ret; 664 crypto_mechanism_t mech; 665 crypto_data_t in_data, digest_data; 666 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH]; 667 668 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH); 669 670 /* initialize sha512-hmac mechanism and crypto data */ 671 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 672 mech.cm_param = NULL; 673 mech.cm_param_len = 0; 674 675 /* initialize the crypto data */ 676 in_data.cd_format = CRYPTO_DATA_RAW; 677 in_data.cd_offset = 0; 678 in_data.cd_length = datalen; 679 in_data.cd_raw.iov_base = (char *)data; 680 in_data.cd_raw.iov_len = in_data.cd_length; 681 682 digest_data.cd_format = CRYPTO_DATA_RAW; 683 digest_data.cd_offset = 0; 684 digest_data.cd_length = SHA512_DIGEST_LENGTH; 685 digest_data.cd_raw.iov_base = (char *)raw_digestbuf; 686 digest_data.cd_raw.iov_len = digest_data.cd_length; 687 688 /* generate the hmac */ 689 ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl, 690 &digest_data); 691 if (ret != CRYPTO_SUCCESS) { 692 ret = SET_ERROR(EIO); 693 goto error; 694 } 695 696 memcpy(digestbuf, raw_digestbuf, digestlen); 697 698 return (0); 699 700 error: 701 memset(digestbuf, 0, digestlen); 702 return (ret); 703 } 704 705 int 706 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data, 707 uint_t datalen, uint8_t *ivbuf, uint8_t *salt) 708 { 709 int ret; 710 uint8_t digestbuf[SHA512_DIGEST_LENGTH]; 711 712 ret = zio_crypt_do_hmac(key, data, datalen, 713 digestbuf, SHA512_DIGEST_LENGTH); 714 if (ret != 0) 715 return (ret); 716 717 memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN); 718 memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN); 719 720 return (0); 721 } 722 723 /* 724 * The following functions are used to encode and decode encryption parameters 725 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as 726 * byte strings, which normally means that these strings would not need to deal 727 * with byteswapping at all. However, both blkptr_t and zil_header_t may be 728 * byteswapped by lower layers and so we must "undo" that byteswap here upon 729 * decoding and encoding in a non-native byteorder. These functions require 730 * that the byteorder bit is correct before being called. 731 */ 732 void 733 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv) 734 { 735 uint64_t val64; 736 uint32_t val32; 737 738 ASSERT(BP_IS_ENCRYPTED(bp)); 739 740 if (!BP_SHOULD_BYTESWAP(bp)) { 741 memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t)); 742 memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t)); 743 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t)); 744 BP_SET_IV2(bp, val32); 745 } else { 746 memcpy(&val64, salt, sizeof (uint64_t)); 747 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64); 748 749 memcpy(&val64, iv, sizeof (uint64_t)); 750 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64); 751 752 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t)); 753 BP_SET_IV2(bp, BSWAP_32(val32)); 754 } 755 } 756 757 void 758 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv) 759 { 760 uint64_t val64; 761 uint32_t val32; 762 763 ASSERT(BP_IS_PROTECTED(bp)); 764 765 /* for convenience, so callers don't need to check */ 766 if (BP_IS_AUTHENTICATED(bp)) { 767 memset(salt, 0, ZIO_DATA_SALT_LEN); 768 memset(iv, 0, ZIO_DATA_IV_LEN); 769 return; 770 } 771 772 if (!BP_SHOULD_BYTESWAP(bp)) { 773 memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t)); 774 memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t)); 775 776 val32 = (uint32_t)BP_GET_IV2(bp); 777 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t)); 778 } else { 779 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]); 780 memcpy(salt, &val64, sizeof (uint64_t)); 781 782 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]); 783 memcpy(iv, &val64, sizeof (uint64_t)); 784 785 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp)); 786 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t)); 787 } 788 } 789 790 void 791 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac) 792 { 793 uint64_t val64; 794 795 ASSERT(BP_USES_CRYPT(bp)); 796 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET); 797 798 if (!BP_SHOULD_BYTESWAP(bp)) { 799 memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t)); 800 memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t), 801 sizeof (uint64_t)); 802 } else { 803 memcpy(&val64, mac, sizeof (uint64_t)); 804 bp->blk_cksum.zc_word[2] = BSWAP_64(val64); 805 806 memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t)); 807 bp->blk_cksum.zc_word[3] = BSWAP_64(val64); 808 } 809 } 810 811 void 812 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac) 813 { 814 uint64_t val64; 815 816 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp)); 817 818 /* for convenience, so callers don't need to check */ 819 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 820 memset(mac, 0, ZIO_DATA_MAC_LEN); 821 return; 822 } 823 824 if (!BP_SHOULD_BYTESWAP(bp)) { 825 memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t)); 826 memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3], 827 sizeof (uint64_t)); 828 } else { 829 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]); 830 memcpy(mac, &val64, sizeof (uint64_t)); 831 832 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]); 833 memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t)); 834 } 835 } 836 837 void 838 zio_crypt_encode_mac_zil(void *data, uint8_t *mac) 839 { 840 zil_chain_t *zilc = data; 841 842 memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t)); 843 memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t), 844 sizeof (uint64_t)); 845 } 846 847 void 848 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac) 849 { 850 /* 851 * The ZIL MAC is embedded in the block it protects, which will 852 * not have been byteswapped by the time this function has been called. 853 * As a result, we don't need to worry about byteswapping the MAC. 854 */ 855 const zil_chain_t *zilc = data; 856 857 memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t)); 858 memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3], 859 sizeof (uint64_t)); 860 } 861 862 /* 863 * This routine takes a block of dnodes (src_abd) and copies only the bonus 864 * buffers to the same offsets in the dst buffer. datalen should be the size 865 * of both the src_abd and the dst buffer (not just the length of the bonus 866 * buffers). 867 */ 868 void 869 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen) 870 { 871 uint_t i, max_dnp = datalen >> DNODE_SHIFT; 872 uint8_t *src; 873 dnode_phys_t *dnp, *sdnp, *ddnp; 874 875 src = abd_borrow_buf_copy(src_abd, datalen); 876 877 sdnp = (dnode_phys_t *)src; 878 ddnp = (dnode_phys_t *)dst; 879 880 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 881 dnp = &sdnp[i]; 882 if (dnp->dn_type != DMU_OT_NONE && 883 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) && 884 dnp->dn_bonuslen != 0) { 885 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), 886 DN_MAX_BONUS_LEN(dnp)); 887 } 888 } 889 890 abd_return_buf(src_abd, src, datalen); 891 } 892 893 /* 894 * This function decides what fields from blk_prop are included in 895 * the on-disk various MAC algorithms. 896 */ 897 static void 898 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version) 899 { 900 /* 901 * Version 0 did not properly zero out all non-portable fields 902 * as it should have done. We maintain this code so that we can 903 * do read-only imports of pools on this version. 904 */ 905 if (version == 0) { 906 BP_SET_DEDUP(bp, 0); 907 BP_SET_CHECKSUM(bp, 0); 908 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE); 909 return; 910 } 911 912 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 913 914 /* 915 * The hole_birth feature might set these fields even if this bp 916 * is a hole. We zero them out here to guarantee that raw sends 917 * will function with or without the feature. 918 */ 919 if (BP_IS_HOLE(bp)) { 920 bp->blk_prop = 0ULL; 921 return; 922 } 923 924 /* 925 * At L0 we want to verify these fields to ensure that data blocks 926 * can not be reinterpreted. For instance, we do not want an attacker 927 * to trick us into returning raw lz4 compressed data to the user 928 * by modifying the compression bits. At higher levels, we cannot 929 * enforce this policy since raw sends do not convey any information 930 * about indirect blocks, so these values might be different on the 931 * receive side. Fortunately, this does not open any new attack 932 * vectors, since any alterations that can be made to a higher level 933 * bp must still verify the correct order of the layer below it. 934 */ 935 if (BP_GET_LEVEL(bp) != 0) { 936 BP_SET_BYTEORDER(bp, 0); 937 BP_SET_COMPRESS(bp, 0); 938 939 /* 940 * psize cannot be set to zero or it will trigger 941 * asserts, but the value doesn't really matter as 942 * long as it is constant. 943 */ 944 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE); 945 } 946 947 BP_SET_DEDUP(bp, 0); 948 BP_SET_CHECKSUM(bp, 0); 949 } 950 951 static void 952 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp, 953 blkptr_auth_buf_t *bab, uint_t *bab_len) 954 { 955 blkptr_t tmpbp = *bp; 956 957 if (should_bswap) 958 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t)); 959 960 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp)); 961 ASSERT0(BP_IS_EMBEDDED(&tmpbp)); 962 963 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac); 964 965 /* 966 * We always MAC blk_prop in LE to ensure portability. This 967 * must be done after decoding the mac, since the endianness 968 * will get zero'd out here. 969 */ 970 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version); 971 bab->bab_prop = LE_64(tmpbp.blk_prop); 972 bab->bab_pad = 0ULL; 973 974 /* version 0 did not include the padding */ 975 *bab_len = sizeof (blkptr_auth_buf_t); 976 if (version == 0) 977 *bab_len -= sizeof (uint64_t); 978 } 979 980 static int 981 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version, 982 boolean_t should_bswap, blkptr_t *bp) 983 { 984 int ret; 985 uint_t bab_len; 986 blkptr_auth_buf_t bab; 987 crypto_data_t cd; 988 989 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 990 cd.cd_format = CRYPTO_DATA_RAW; 991 cd.cd_offset = 0; 992 cd.cd_length = bab_len; 993 cd.cd_raw.iov_base = (char *)&bab; 994 cd.cd_raw.iov_len = cd.cd_length; 995 996 ret = crypto_mac_update(ctx, &cd); 997 if (ret != CRYPTO_SUCCESS) { 998 ret = SET_ERROR(EIO); 999 goto error; 1000 } 1001 1002 return (0); 1003 1004 error: 1005 return (ret); 1006 } 1007 1008 static void 1009 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version, 1010 boolean_t should_bswap, blkptr_t *bp) 1011 { 1012 uint_t bab_len; 1013 blkptr_auth_buf_t bab; 1014 1015 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1016 SHA2Update(ctx, &bab, bab_len); 1017 } 1018 1019 static void 1020 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version, 1021 boolean_t should_bswap, blkptr_t *bp) 1022 { 1023 uint_t bab_len; 1024 blkptr_auth_buf_t bab; 1025 1026 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1027 memcpy(*aadp, &bab, bab_len); 1028 *aadp += bab_len; 1029 *aad_len += bab_len; 1030 } 1031 1032 static int 1033 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version, 1034 boolean_t should_bswap, dnode_phys_t *dnp) 1035 { 1036 int ret, i; 1037 dnode_phys_t *adnp, tmp_dncore; 1038 size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr); 1039 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER); 1040 crypto_data_t cd; 1041 1042 cd.cd_format = CRYPTO_DATA_RAW; 1043 cd.cd_offset = 0; 1044 1045 /* 1046 * Authenticate the core dnode (masking out non-portable bits). 1047 * We only copy the first 64 bytes we operate on to avoid the overhead 1048 * of copying 512-64 unneeded bytes. The compiler seems to be fine 1049 * with that. 1050 */ 1051 memcpy(&tmp_dncore, dnp, dn_core_size); 1052 adnp = &tmp_dncore; 1053 1054 if (le_bswap) { 1055 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec); 1056 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen); 1057 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid); 1058 adnp->dn_used = BSWAP_64(adnp->dn_used); 1059 } 1060 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK; 1061 adnp->dn_used = 0; 1062 1063 cd.cd_length = dn_core_size; 1064 cd.cd_raw.iov_base = (char *)adnp; 1065 cd.cd_raw.iov_len = cd.cd_length; 1066 1067 ret = crypto_mac_update(ctx, &cd); 1068 if (ret != CRYPTO_SUCCESS) { 1069 ret = SET_ERROR(EIO); 1070 goto error; 1071 } 1072 1073 for (i = 0; i < dnp->dn_nblkptr; i++) { 1074 ret = zio_crypt_bp_do_hmac_updates(ctx, version, 1075 should_bswap, &dnp->dn_blkptr[i]); 1076 if (ret != 0) 1077 goto error; 1078 } 1079 1080 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1081 ret = zio_crypt_bp_do_hmac_updates(ctx, version, 1082 should_bswap, DN_SPILL_BLKPTR(dnp)); 1083 if (ret != 0) 1084 goto error; 1085 } 1086 1087 return (0); 1088 1089 error: 1090 return (ret); 1091 } 1092 1093 /* 1094 * objset_phys_t blocks introduce a number of exceptions to the normal 1095 * authentication process. objset_phys_t's contain 2 separate HMACS for 1096 * protecting the integrity of their data. The portable_mac protects the 1097 * metadnode. This MAC can be sent with a raw send and protects against 1098 * reordering of data within the metadnode. The local_mac protects the user 1099 * accounting objects which are not sent from one system to another. 1100 * 1101 * In addition, objset blocks are the only blocks that can be modified and 1102 * written to disk without the key loaded under certain circumstances. During 1103 * zil_claim() we need to be able to update the zil_header_t to complete 1104 * claiming log blocks and during raw receives we need to write out the 1105 * portable_mac from the send file. Both of these actions are possible 1106 * because these fields are not protected by either MAC so neither one will 1107 * need to modify the MACs without the key. However, when the modified blocks 1108 * are written out they will be byteswapped into the host machine's native 1109 * endianness which will modify fields protected by the MAC. As a result, MAC 1110 * calculation for objset blocks works slightly differently from other block 1111 * types. Where other block types MAC the data in whatever endianness is 1112 * written to disk, objset blocks always MAC little endian version of their 1113 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP() 1114 * and le_bswap indicates whether a byteswap is needed to get this block 1115 * into little endian format. 1116 */ 1117 int 1118 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen, 1119 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac) 1120 { 1121 int ret; 1122 crypto_mechanism_t mech; 1123 crypto_context_t ctx; 1124 crypto_data_t cd; 1125 objset_phys_t *osp = data; 1126 uint64_t intval; 1127 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER); 1128 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH]; 1129 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH]; 1130 1131 /* initialize HMAC mechanism */ 1132 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 1133 mech.cm_param = NULL; 1134 mech.cm_param_len = 0; 1135 1136 cd.cd_format = CRYPTO_DATA_RAW; 1137 cd.cd_offset = 0; 1138 1139 /* calculate the portable MAC from the portable fields and metadnode */ 1140 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx); 1141 if (ret != CRYPTO_SUCCESS) { 1142 ret = SET_ERROR(EIO); 1143 goto error; 1144 } 1145 1146 /* add in the os_type */ 1147 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type); 1148 cd.cd_length = sizeof (uint64_t); 1149 cd.cd_raw.iov_base = (char *)&intval; 1150 cd.cd_raw.iov_len = cd.cd_length; 1151 1152 ret = crypto_mac_update(ctx, &cd); 1153 if (ret != CRYPTO_SUCCESS) { 1154 ret = SET_ERROR(EIO); 1155 goto error; 1156 } 1157 1158 /* add in the portable os_flags */ 1159 intval = osp->os_flags; 1160 if (should_bswap) 1161 intval = BSWAP_64(intval); 1162 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK; 1163 if (!ZFS_HOST_BYTEORDER) 1164 intval = BSWAP_64(intval); 1165 1166 cd.cd_length = sizeof (uint64_t); 1167 cd.cd_raw.iov_base = (char *)&intval; 1168 cd.cd_raw.iov_len = cd.cd_length; 1169 1170 ret = crypto_mac_update(ctx, &cd); 1171 if (ret != CRYPTO_SUCCESS) { 1172 ret = SET_ERROR(EIO); 1173 goto error; 1174 } 1175 1176 /* add in fields from the metadnode */ 1177 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1178 should_bswap, &osp->os_meta_dnode); 1179 if (ret) 1180 goto error; 1181 1182 /* store the final digest in a temporary buffer and copy what we need */ 1183 cd.cd_length = SHA512_DIGEST_LENGTH; 1184 cd.cd_raw.iov_base = (char *)raw_portable_mac; 1185 cd.cd_raw.iov_len = cd.cd_length; 1186 1187 ret = crypto_mac_final(ctx, &cd); 1188 if (ret != CRYPTO_SUCCESS) { 1189 ret = SET_ERROR(EIO); 1190 goto error; 1191 } 1192 1193 memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN); 1194 1195 /* 1196 * This is necessary here as we check next whether 1197 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to 1198 * decide if the local_mac should be zeroed out. That flag will always 1199 * be set by dmu_objset_id_quota_upgrade_cb() and 1200 * dmu_objset_userspace_upgrade_cb() if useraccounting has been 1201 * completed. 1202 */ 1203 intval = osp->os_flags; 1204 if (should_bswap) 1205 intval = BSWAP_64(intval); 1206 boolean_t uacct_incomplete = 1207 !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE); 1208 1209 /* 1210 * The local MAC protects the user, group and project accounting. 1211 * If these objects are not present, the local MAC is zeroed out. 1212 */ 1213 if (uacct_incomplete || 1214 (datalen >= OBJSET_PHYS_SIZE_V3 && 1215 osp->os_userused_dnode.dn_type == DMU_OT_NONE && 1216 osp->os_groupused_dnode.dn_type == DMU_OT_NONE && 1217 osp->os_projectused_dnode.dn_type == DMU_OT_NONE) || 1218 (datalen >= OBJSET_PHYS_SIZE_V2 && 1219 osp->os_userused_dnode.dn_type == DMU_OT_NONE && 1220 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) || 1221 (datalen <= OBJSET_PHYS_SIZE_V1)) { 1222 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN); 1223 return (0); 1224 } 1225 1226 /* calculate the local MAC from the userused and groupused dnodes */ 1227 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx); 1228 if (ret != CRYPTO_SUCCESS) { 1229 ret = SET_ERROR(EIO); 1230 goto error; 1231 } 1232 1233 /* add in the non-portable os_flags */ 1234 intval = osp->os_flags; 1235 if (should_bswap) 1236 intval = BSWAP_64(intval); 1237 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK; 1238 if (!ZFS_HOST_BYTEORDER) 1239 intval = BSWAP_64(intval); 1240 1241 cd.cd_length = sizeof (uint64_t); 1242 cd.cd_raw.iov_base = (char *)&intval; 1243 cd.cd_raw.iov_len = cd.cd_length; 1244 1245 ret = crypto_mac_update(ctx, &cd); 1246 if (ret != CRYPTO_SUCCESS) { 1247 ret = SET_ERROR(EIO); 1248 goto error; 1249 } 1250 1251 /* add in fields from the user accounting dnodes */ 1252 if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) { 1253 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1254 should_bswap, &osp->os_userused_dnode); 1255 if (ret) 1256 goto error; 1257 } 1258 1259 if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) { 1260 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1261 should_bswap, &osp->os_groupused_dnode); 1262 if (ret) 1263 goto error; 1264 } 1265 1266 if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE && 1267 datalen >= OBJSET_PHYS_SIZE_V3) { 1268 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1269 should_bswap, &osp->os_projectused_dnode); 1270 if (ret) 1271 goto error; 1272 } 1273 1274 /* store the final digest in a temporary buffer and copy what we need */ 1275 cd.cd_length = SHA512_DIGEST_LENGTH; 1276 cd.cd_raw.iov_base = (char *)raw_local_mac; 1277 cd.cd_raw.iov_len = cd.cd_length; 1278 1279 ret = crypto_mac_final(ctx, &cd); 1280 if (ret != CRYPTO_SUCCESS) { 1281 ret = SET_ERROR(EIO); 1282 goto error; 1283 } 1284 1285 memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN); 1286 1287 return (0); 1288 1289 error: 1290 memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN); 1291 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN); 1292 return (ret); 1293 } 1294 1295 static void 1296 zio_crypt_destroy_uio(zfs_uio_t *uio) 1297 { 1298 if (uio->uio_iov) 1299 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t)); 1300 } 1301 1302 /* 1303 * This function parses an uncompressed indirect block and returns a checksum 1304 * of all the portable fields from all of the contained bps. The portable 1305 * fields are the MAC and all of the fields from blk_prop except for the dedup, 1306 * checksum, and psize bits. For an explanation of the purpose of this, see 1307 * the comment block on object set authentication. 1308 */ 1309 static int 1310 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf, 1311 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum) 1312 { 1313 blkptr_t *bp; 1314 int i, epb = datalen >> SPA_BLKPTRSHIFT; 1315 SHA2_CTX ctx; 1316 uint8_t digestbuf[SHA512_DIGEST_LENGTH]; 1317 1318 /* checksum all of the MACs from the layer below */ 1319 SHA2Init(SHA512, &ctx); 1320 for (i = 0, bp = buf; i < epb; i++, bp++) { 1321 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version, 1322 byteswap, bp); 1323 } 1324 SHA2Final(digestbuf, &ctx); 1325 1326 if (generate) { 1327 memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN); 1328 return (0); 1329 } 1330 1331 if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0) 1332 return (SET_ERROR(ECKSUM)); 1333 1334 return (0); 1335 } 1336 1337 int 1338 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf, 1339 uint_t datalen, boolean_t byteswap, uint8_t *cksum) 1340 { 1341 int ret; 1342 1343 /* 1344 * Unfortunately, callers of this function will not always have 1345 * easy access to the on-disk format version. This info is 1346 * normally found in the DSL Crypto Key, but the checksum-of-MACs 1347 * is expected to be verifiable even when the key isn't loaded. 1348 * Here, instead of doing a ZAP lookup for the version for each 1349 * zio, we simply try both existing formats. 1350 */ 1351 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf, 1352 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum); 1353 if (ret == ECKSUM) { 1354 ASSERT(!generate); 1355 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, 1356 buf, datalen, 0, byteswap, cksum); 1357 } 1358 1359 return (ret); 1360 } 1361 1362 int 1363 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd, 1364 uint_t datalen, boolean_t byteswap, uint8_t *cksum) 1365 { 1366 int ret; 1367 void *buf; 1368 1369 buf = abd_borrow_buf_copy(abd, datalen); 1370 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen, 1371 byteswap, cksum); 1372 abd_return_buf(abd, buf, datalen); 1373 1374 return (ret); 1375 } 1376 1377 /* 1378 * Special case handling routine for encrypting / decrypting ZIL blocks. 1379 * We do not check for the older ZIL chain because the encryption feature 1380 * was not available before the newer ZIL chain was introduced. The goal 1381 * here is to encrypt everything except the blkptr_t of a lr_write_t and 1382 * the zil_chain_t header. Everything that is not encrypted is authenticated. 1383 */ 1384 static int 1385 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf, 1386 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio, 1387 zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len, 1388 boolean_t *no_crypt) 1389 { 1390 int ret; 1391 uint64_t txtype, lr_len; 1392 uint_t nr_src, nr_dst, crypt_len; 1393 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0; 1394 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL; 1395 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp; 1396 zil_chain_t *zilc; 1397 lr_t *lr; 1398 uint8_t *aadbuf = zio_buf_alloc(datalen); 1399 1400 /* cipherbuf always needs an extra iovec for the MAC */ 1401 if (encrypt) { 1402 src = plainbuf; 1403 dst = cipherbuf; 1404 nr_src = 0; 1405 nr_dst = 1; 1406 } else { 1407 src = cipherbuf; 1408 dst = plainbuf; 1409 nr_src = 1; 1410 nr_dst = 0; 1411 } 1412 memset(dst, 0, datalen); 1413 1414 /* find the start and end record of the log block */ 1415 zilc = (zil_chain_t *)src; 1416 slrp = src + sizeof (zil_chain_t); 1417 aadp = aadbuf; 1418 blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused); 1419 1420 /* calculate the number of encrypted iovecs we will need */ 1421 for (; slrp < blkend; slrp += lr_len) { 1422 lr = (lr_t *)slrp; 1423 1424 if (!byteswap) { 1425 txtype = lr->lrc_txtype; 1426 lr_len = lr->lrc_reclen; 1427 } else { 1428 txtype = BSWAP_64(lr->lrc_txtype); 1429 lr_len = BSWAP_64(lr->lrc_reclen); 1430 } 1431 1432 nr_iovecs++; 1433 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t)) 1434 nr_iovecs++; 1435 } 1436 1437 nr_src += nr_iovecs; 1438 nr_dst += nr_iovecs; 1439 1440 /* allocate the iovec arrays */ 1441 if (nr_src != 0) { 1442 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP); 1443 if (src_iovecs == NULL) { 1444 ret = SET_ERROR(ENOMEM); 1445 goto error; 1446 } 1447 } 1448 1449 if (nr_dst != 0) { 1450 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP); 1451 if (dst_iovecs == NULL) { 1452 ret = SET_ERROR(ENOMEM); 1453 goto error; 1454 } 1455 } 1456 1457 /* 1458 * Copy the plain zil header over and authenticate everything except 1459 * the checksum that will store our MAC. If we are writing the data 1460 * the embedded checksum will not have been calculated yet, so we don't 1461 * authenticate that. 1462 */ 1463 memcpy(dst, src, sizeof (zil_chain_t)); 1464 memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t)); 1465 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t); 1466 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t); 1467 1468 /* loop over records again, filling in iovecs */ 1469 nr_iovecs = 0; 1470 slrp = src + sizeof (zil_chain_t); 1471 dlrp = dst + sizeof (zil_chain_t); 1472 1473 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) { 1474 lr = (lr_t *)slrp; 1475 1476 if (!byteswap) { 1477 txtype = lr->lrc_txtype; 1478 lr_len = lr->lrc_reclen; 1479 } else { 1480 txtype = BSWAP_64(lr->lrc_txtype); 1481 lr_len = BSWAP_64(lr->lrc_reclen); 1482 } 1483 1484 /* copy the common lr_t */ 1485 memcpy(dlrp, slrp, sizeof (lr_t)); 1486 memcpy(aadp, slrp, sizeof (lr_t)); 1487 aadp += sizeof (lr_t); 1488 aad_len += sizeof (lr_t); 1489 1490 ASSERT3P(src_iovecs, !=, NULL); 1491 ASSERT3P(dst_iovecs, !=, NULL); 1492 1493 /* 1494 * If this is a TX_WRITE record we want to encrypt everything 1495 * except the bp if exists. If the bp does exist we want to 1496 * authenticate it. 1497 */ 1498 if (txtype == TX_WRITE) { 1499 crypt_len = sizeof (lr_write_t) - 1500 sizeof (lr_t) - sizeof (blkptr_t); 1501 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t); 1502 src_iovecs[nr_iovecs].iov_len = crypt_len; 1503 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t); 1504 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1505 1506 /* copy the bp now since it will not be encrypted */ 1507 memcpy(dlrp + sizeof (lr_write_t) - sizeof (blkptr_t), 1508 slrp + sizeof (lr_write_t) - sizeof (blkptr_t), 1509 sizeof (blkptr_t)); 1510 memcpy(aadp, 1511 slrp + sizeof (lr_write_t) - sizeof (blkptr_t), 1512 sizeof (blkptr_t)); 1513 aadp += sizeof (blkptr_t); 1514 aad_len += sizeof (blkptr_t); 1515 nr_iovecs++; 1516 total_len += crypt_len; 1517 1518 if (lr_len != sizeof (lr_write_t)) { 1519 crypt_len = lr_len - sizeof (lr_write_t); 1520 src_iovecs[nr_iovecs].iov_base = 1521 slrp + sizeof (lr_write_t); 1522 src_iovecs[nr_iovecs].iov_len = crypt_len; 1523 dst_iovecs[nr_iovecs].iov_base = 1524 dlrp + sizeof (lr_write_t); 1525 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1526 nr_iovecs++; 1527 total_len += crypt_len; 1528 } 1529 } else { 1530 crypt_len = lr_len - sizeof (lr_t); 1531 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t); 1532 src_iovecs[nr_iovecs].iov_len = crypt_len; 1533 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t); 1534 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1535 nr_iovecs++; 1536 total_len += crypt_len; 1537 } 1538 } 1539 1540 *no_crypt = (nr_iovecs == 0); 1541 *enc_len = total_len; 1542 *authbuf = aadbuf; 1543 *auth_len = aad_len; 1544 1545 if (encrypt) { 1546 puio->uio_iov = src_iovecs; 1547 puio->uio_iovcnt = nr_src; 1548 cuio->uio_iov = dst_iovecs; 1549 cuio->uio_iovcnt = nr_dst; 1550 } else { 1551 puio->uio_iov = dst_iovecs; 1552 puio->uio_iovcnt = nr_dst; 1553 cuio->uio_iov = src_iovecs; 1554 cuio->uio_iovcnt = nr_src; 1555 } 1556 1557 return (0); 1558 1559 error: 1560 zio_buf_free(aadbuf, datalen); 1561 if (src_iovecs != NULL) 1562 kmem_free(src_iovecs, nr_src * sizeof (iovec_t)); 1563 if (dst_iovecs != NULL) 1564 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t)); 1565 1566 *enc_len = 0; 1567 *authbuf = NULL; 1568 *auth_len = 0; 1569 *no_crypt = B_FALSE; 1570 puio->uio_iov = NULL; 1571 puio->uio_iovcnt = 0; 1572 cuio->uio_iov = NULL; 1573 cuio->uio_iovcnt = 0; 1574 return (ret); 1575 } 1576 1577 /* 1578 * Special case handling routine for encrypting / decrypting dnode blocks. 1579 */ 1580 static int 1581 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version, 1582 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, 1583 zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, 1584 uint_t *auth_len, boolean_t *no_crypt) 1585 { 1586 int ret; 1587 uint_t nr_src, nr_dst, crypt_len; 1588 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0; 1589 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT; 1590 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL; 1591 uint8_t *src, *dst, *aadp; 1592 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp; 1593 uint8_t *aadbuf = zio_buf_alloc(datalen); 1594 1595 if (encrypt) { 1596 src = plainbuf; 1597 dst = cipherbuf; 1598 nr_src = 0; 1599 nr_dst = 1; 1600 } else { 1601 src = cipherbuf; 1602 dst = plainbuf; 1603 nr_src = 1; 1604 nr_dst = 0; 1605 } 1606 1607 sdnp = (dnode_phys_t *)src; 1608 ddnp = (dnode_phys_t *)dst; 1609 aadp = aadbuf; 1610 1611 /* 1612 * Count the number of iovecs we will need to do the encryption by 1613 * counting the number of bonus buffers that need to be encrypted. 1614 */ 1615 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 1616 /* 1617 * This block may still be byteswapped. However, all of the 1618 * values we use are either uint8_t's (for which byteswapping 1619 * is a noop) or a * != 0 check, which will work regardless 1620 * of whether or not we byteswap. 1621 */ 1622 if (sdnp[i].dn_type != DMU_OT_NONE && 1623 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) && 1624 sdnp[i].dn_bonuslen != 0) { 1625 nr_iovecs++; 1626 } 1627 } 1628 1629 nr_src += nr_iovecs; 1630 nr_dst += nr_iovecs; 1631 1632 if (nr_src != 0) { 1633 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP); 1634 if (src_iovecs == NULL) { 1635 ret = SET_ERROR(ENOMEM); 1636 goto error; 1637 } 1638 } 1639 1640 if (nr_dst != 0) { 1641 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP); 1642 if (dst_iovecs == NULL) { 1643 ret = SET_ERROR(ENOMEM); 1644 goto error; 1645 } 1646 } 1647 1648 nr_iovecs = 0; 1649 1650 /* 1651 * Iterate through the dnodes again, this time filling in the uios 1652 * we allocated earlier. We also concatenate any data we want to 1653 * authenticate onto aadbuf. 1654 */ 1655 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 1656 dnp = &sdnp[i]; 1657 1658 /* copy over the core fields and blkptrs (kept as plaintext) */ 1659 memcpy(&ddnp[i], dnp, 1660 (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp); 1661 1662 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1663 memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp), 1664 sizeof (blkptr_t)); 1665 } 1666 1667 /* 1668 * Handle authenticated data. We authenticate everything in 1669 * the dnode that can be brought over when we do a raw send. 1670 * This includes all of the core fields as well as the MACs 1671 * stored in the bp checksums and all of the portable bits 1672 * from blk_prop. We include the dnode padding here in case it 1673 * ever gets used in the future. Some dn_flags and dn_used are 1674 * not portable so we mask those out values out of the 1675 * authenticated data. 1676 */ 1677 crypt_len = offsetof(dnode_phys_t, dn_blkptr); 1678 memcpy(aadp, dnp, crypt_len); 1679 adnp = (dnode_phys_t *)aadp; 1680 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK; 1681 adnp->dn_used = 0; 1682 aadp += crypt_len; 1683 aad_len += crypt_len; 1684 1685 for (j = 0; j < dnp->dn_nblkptr; j++) { 1686 zio_crypt_bp_do_aad_updates(&aadp, &aad_len, 1687 version, byteswap, &dnp->dn_blkptr[j]); 1688 } 1689 1690 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1691 zio_crypt_bp_do_aad_updates(&aadp, &aad_len, 1692 version, byteswap, DN_SPILL_BLKPTR(dnp)); 1693 } 1694 1695 /* 1696 * If this bonus buffer needs to be encrypted, we prepare an 1697 * iovec_t. The encryption / decryption functions will fill 1698 * this in for us with the encrypted or decrypted data. 1699 * Otherwise we add the bonus buffer to the authenticated 1700 * data buffer and copy it over to the destination. The 1701 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that 1702 * we can guarantee alignment with the AES block size 1703 * (128 bits). 1704 */ 1705 crypt_len = DN_MAX_BONUS_LEN(dnp); 1706 if (dnp->dn_type != DMU_OT_NONE && 1707 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) && 1708 dnp->dn_bonuslen != 0) { 1709 ASSERT3U(nr_iovecs, <, nr_src); 1710 ASSERT3U(nr_iovecs, <, nr_dst); 1711 ASSERT3P(src_iovecs, !=, NULL); 1712 ASSERT3P(dst_iovecs, !=, NULL); 1713 src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp); 1714 src_iovecs[nr_iovecs].iov_len = crypt_len; 1715 dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]); 1716 dst_iovecs[nr_iovecs].iov_len = crypt_len; 1717 1718 nr_iovecs++; 1719 total_len += crypt_len; 1720 } else { 1721 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len); 1722 memcpy(aadp, DN_BONUS(dnp), crypt_len); 1723 aadp += crypt_len; 1724 aad_len += crypt_len; 1725 } 1726 } 1727 1728 *no_crypt = (nr_iovecs == 0); 1729 *enc_len = total_len; 1730 *authbuf = aadbuf; 1731 *auth_len = aad_len; 1732 1733 if (encrypt) { 1734 puio->uio_iov = src_iovecs; 1735 puio->uio_iovcnt = nr_src; 1736 cuio->uio_iov = dst_iovecs; 1737 cuio->uio_iovcnt = nr_dst; 1738 } else { 1739 puio->uio_iov = dst_iovecs; 1740 puio->uio_iovcnt = nr_dst; 1741 cuio->uio_iov = src_iovecs; 1742 cuio->uio_iovcnt = nr_src; 1743 } 1744 1745 return (0); 1746 1747 error: 1748 zio_buf_free(aadbuf, datalen); 1749 if (src_iovecs != NULL) 1750 kmem_free(src_iovecs, nr_src * sizeof (iovec_t)); 1751 if (dst_iovecs != NULL) 1752 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t)); 1753 1754 *enc_len = 0; 1755 *authbuf = NULL; 1756 *auth_len = 0; 1757 *no_crypt = B_FALSE; 1758 puio->uio_iov = NULL; 1759 puio->uio_iovcnt = 0; 1760 cuio->uio_iov = NULL; 1761 cuio->uio_iovcnt = 0; 1762 return (ret); 1763 } 1764 1765 static int 1766 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf, 1767 uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio, 1768 uint_t *enc_len) 1769 { 1770 (void) encrypt; 1771 int ret; 1772 uint_t nr_plain = 1, nr_cipher = 2; 1773 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL; 1774 1775 /* allocate the iovecs for the plain and cipher data */ 1776 plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t), 1777 KM_SLEEP); 1778 if (!plain_iovecs) { 1779 ret = SET_ERROR(ENOMEM); 1780 goto error; 1781 } 1782 1783 cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t), 1784 KM_SLEEP); 1785 if (!cipher_iovecs) { 1786 ret = SET_ERROR(ENOMEM); 1787 goto error; 1788 } 1789 1790 plain_iovecs[0].iov_base = plainbuf; 1791 plain_iovecs[0].iov_len = datalen; 1792 cipher_iovecs[0].iov_base = cipherbuf; 1793 cipher_iovecs[0].iov_len = datalen; 1794 1795 *enc_len = datalen; 1796 puio->uio_iov = plain_iovecs; 1797 puio->uio_iovcnt = nr_plain; 1798 cuio->uio_iov = cipher_iovecs; 1799 cuio->uio_iovcnt = nr_cipher; 1800 1801 return (0); 1802 1803 error: 1804 if (plain_iovecs != NULL) 1805 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t)); 1806 if (cipher_iovecs != NULL) 1807 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t)); 1808 1809 *enc_len = 0; 1810 puio->uio_iov = NULL; 1811 puio->uio_iovcnt = 0; 1812 cuio->uio_iov = NULL; 1813 cuio->uio_iovcnt = 0; 1814 return (ret); 1815 } 1816 1817 /* 1818 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so 1819 * that they can be used for encryption and decryption by zio_do_crypt_uio(). 1820 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks 1821 * requiring special handling to parse out pieces that are to be encrypted. The 1822 * authbuf is used by these special cases to store additional authenticated 1823 * data (AAD) for the encryption modes. 1824 */ 1825 static int 1826 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot, 1827 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, 1828 uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, 1829 uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt) 1830 { 1831 int ret; 1832 iovec_t *mac_iov; 1833 1834 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE); 1835 1836 /* route to handler */ 1837 switch (ot) { 1838 case DMU_OT_INTENT_LOG: 1839 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf, 1840 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len, 1841 no_crypt); 1842 break; 1843 case DMU_OT_DNODE: 1844 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf, 1845 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf, 1846 auth_len, no_crypt); 1847 break; 1848 default: 1849 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf, 1850 datalen, puio, cuio, enc_len); 1851 *authbuf = NULL; 1852 *auth_len = 0; 1853 *no_crypt = B_FALSE; 1854 break; 1855 } 1856 1857 if (ret != 0) 1858 goto error; 1859 1860 /* populate the uios */ 1861 puio->uio_segflg = UIO_SYSSPACE; 1862 cuio->uio_segflg = UIO_SYSSPACE; 1863 1864 mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]); 1865 mac_iov->iov_base = mac; 1866 mac_iov->iov_len = ZIO_DATA_MAC_LEN; 1867 1868 return (0); 1869 1870 error: 1871 return (ret); 1872 } 1873 1874 /* 1875 * Primary encryption / decryption entrypoint for zio data. 1876 */ 1877 int 1878 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key, 1879 dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv, 1880 uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf, 1881 boolean_t *no_crypt) 1882 { 1883 int ret; 1884 boolean_t locked = B_FALSE; 1885 uint64_t crypt = key->zk_crypt; 1886 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen; 1887 uint_t enc_len, auth_len; 1888 zfs_uio_t puio, cuio; 1889 uint8_t enc_keydata[MASTER_KEY_MAX_LEN]; 1890 crypto_key_t tmp_ckey, *ckey = NULL; 1891 crypto_ctx_template_t tmpl; 1892 uint8_t *authbuf = NULL; 1893 1894 memset(&puio, 0, sizeof (puio)); 1895 memset(&cuio, 0, sizeof (cuio)); 1896 1897 /* 1898 * If the needed key is the current one, just use it. Otherwise we 1899 * need to generate a temporary one from the given salt + master key. 1900 * If we are encrypting, we must return a copy of the current salt 1901 * so that it can be stored in the blkptr_t. 1902 */ 1903 rw_enter(&key->zk_salt_lock, RW_READER); 1904 locked = B_TRUE; 1905 1906 if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) { 1907 ckey = &key->zk_current_key; 1908 tmpl = key->zk_current_tmpl; 1909 } else { 1910 rw_exit(&key->zk_salt_lock); 1911 locked = B_FALSE; 1912 1913 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 1914 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len); 1915 if (ret != 0) 1916 goto error; 1917 1918 tmp_ckey.ck_data = enc_keydata; 1919 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len); 1920 1921 ckey = &tmp_ckey; 1922 tmpl = NULL; 1923 } 1924 1925 /* 1926 * Attempt to use QAT acceleration if we can. We currently don't 1927 * do this for metadnode and ZIL blocks, since they have a much 1928 * more involved buffer layout and the qat_crypt() function only 1929 * works in-place. 1930 */ 1931 if (qat_crypt_use_accel(datalen) && 1932 ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) { 1933 uint8_t *srcbuf, *dstbuf; 1934 1935 if (encrypt) { 1936 srcbuf = plainbuf; 1937 dstbuf = cipherbuf; 1938 } else { 1939 srcbuf = cipherbuf; 1940 dstbuf = plainbuf; 1941 } 1942 1943 ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf, 1944 dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen); 1945 if (ret == CPA_STATUS_SUCCESS) { 1946 if (locked) { 1947 rw_exit(&key->zk_salt_lock); 1948 locked = B_FALSE; 1949 } 1950 1951 return (0); 1952 } 1953 /* If the hardware implementation fails fall back to software */ 1954 } 1955 1956 /* create uios for encryption */ 1957 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf, 1958 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len, 1959 &authbuf, &auth_len, no_crypt); 1960 if (ret != 0) 1961 goto error; 1962 1963 /* perform the encryption / decryption in software */ 1964 ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len, 1965 &puio, &cuio, authbuf, auth_len); 1966 if (ret != 0) 1967 goto error; 1968 1969 if (locked) { 1970 rw_exit(&key->zk_salt_lock); 1971 } 1972 1973 if (authbuf != NULL) 1974 zio_buf_free(authbuf, datalen); 1975 if (ckey == &tmp_ckey) 1976 memset(enc_keydata, 0, keydata_len); 1977 zio_crypt_destroy_uio(&puio); 1978 zio_crypt_destroy_uio(&cuio); 1979 1980 return (0); 1981 1982 error: 1983 if (locked) 1984 rw_exit(&key->zk_salt_lock); 1985 if (authbuf != NULL) 1986 zio_buf_free(authbuf, datalen); 1987 if (ckey == &tmp_ckey) 1988 memset(enc_keydata, 0, keydata_len); 1989 zio_crypt_destroy_uio(&puio); 1990 zio_crypt_destroy_uio(&cuio); 1991 1992 return (ret); 1993 } 1994 1995 /* 1996 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of 1997 * linear buffers. 1998 */ 1999 int 2000 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot, 2001 boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac, 2002 uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt) 2003 { 2004 int ret; 2005 void *ptmp, *ctmp; 2006 2007 if (encrypt) { 2008 ptmp = abd_borrow_buf_copy(pabd, datalen); 2009 ctmp = abd_borrow_buf(cabd, datalen); 2010 } else { 2011 ptmp = abd_borrow_buf(pabd, datalen); 2012 ctmp = abd_borrow_buf_copy(cabd, datalen); 2013 } 2014 2015 ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac, 2016 datalen, ptmp, ctmp, no_crypt); 2017 if (ret != 0) 2018 goto error; 2019 2020 if (encrypt) { 2021 abd_return_buf(pabd, ptmp, datalen); 2022 abd_return_buf_copy(cabd, ctmp, datalen); 2023 } else { 2024 abd_return_buf_copy(pabd, ptmp, datalen); 2025 abd_return_buf(cabd, ctmp, datalen); 2026 } 2027 2028 return (0); 2029 2030 error: 2031 if (encrypt) { 2032 abd_return_buf(pabd, ptmp, datalen); 2033 abd_return_buf_copy(cabd, ctmp, datalen); 2034 } else { 2035 abd_return_buf_copy(pabd, ptmp, datalen); 2036 abd_return_buf(cabd, ctmp, datalen); 2037 } 2038 2039 return (ret); 2040 } 2041 2042 #if defined(_KERNEL) 2043 /* CSTYLED */ 2044 module_param(zfs_key_max_salt_uses, ulong, 0644); 2045 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value " 2046 "can be used for generating encryption keys before it is rotated"); 2047 #endif 2048