1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/pathname.h> 33 #include <sys/vnode.h> 34 #include <sys/vfs.h> 35 #include <sys/mntent.h> 36 #include <sys/cmn_err.h> 37 #include <sys/zfs_znode.h> 38 #include <sys/zfs_vnops.h> 39 #include <sys/zfs_dir.h> 40 #include <sys/zil.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/dmu.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/dsl_dataset.h> 45 #include <sys/dsl_deleg.h> 46 #include <sys/spa.h> 47 #include <sys/zap.h> 48 #include <sys/sa.h> 49 #include <sys/sa_impl.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_ctldir.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/zfs_quota.h> 56 #include <sys/sunddi.h> 57 #include <sys/dmu_objset.h> 58 #include <sys/dsl_dir.h> 59 #include <sys/spa_boot.h> 60 #include <sys/objlist.h> 61 #include <sys/zpl.h> 62 #include <linux/vfs_compat.h> 63 #include "zfs_comutil.h" 64 65 enum { 66 TOKEN_RO, 67 TOKEN_RW, 68 TOKEN_SETUID, 69 TOKEN_NOSETUID, 70 TOKEN_EXEC, 71 TOKEN_NOEXEC, 72 TOKEN_DEVICES, 73 TOKEN_NODEVICES, 74 TOKEN_DIRXATTR, 75 TOKEN_SAXATTR, 76 TOKEN_XATTR, 77 TOKEN_NOXATTR, 78 TOKEN_ATIME, 79 TOKEN_NOATIME, 80 TOKEN_RELATIME, 81 TOKEN_NORELATIME, 82 TOKEN_NBMAND, 83 TOKEN_NONBMAND, 84 TOKEN_MNTPOINT, 85 TOKEN_LAST, 86 }; 87 88 static const match_table_t zpl_tokens = { 89 { TOKEN_RO, MNTOPT_RO }, 90 { TOKEN_RW, MNTOPT_RW }, 91 { TOKEN_SETUID, MNTOPT_SETUID }, 92 { TOKEN_NOSETUID, MNTOPT_NOSETUID }, 93 { TOKEN_EXEC, MNTOPT_EXEC }, 94 { TOKEN_NOEXEC, MNTOPT_NOEXEC }, 95 { TOKEN_DEVICES, MNTOPT_DEVICES }, 96 { TOKEN_NODEVICES, MNTOPT_NODEVICES }, 97 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR }, 98 { TOKEN_SAXATTR, MNTOPT_SAXATTR }, 99 { TOKEN_XATTR, MNTOPT_XATTR }, 100 { TOKEN_NOXATTR, MNTOPT_NOXATTR }, 101 { TOKEN_ATIME, MNTOPT_ATIME }, 102 { TOKEN_NOATIME, MNTOPT_NOATIME }, 103 { TOKEN_RELATIME, MNTOPT_RELATIME }, 104 { TOKEN_NORELATIME, MNTOPT_NORELATIME }, 105 { TOKEN_NBMAND, MNTOPT_NBMAND }, 106 { TOKEN_NONBMAND, MNTOPT_NONBMAND }, 107 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" }, 108 { TOKEN_LAST, NULL }, 109 }; 110 111 static void 112 zfsvfs_vfs_free(vfs_t *vfsp) 113 { 114 if (vfsp != NULL) { 115 if (vfsp->vfs_mntpoint != NULL) 116 kmem_strfree(vfsp->vfs_mntpoint); 117 118 kmem_free(vfsp, sizeof (vfs_t)); 119 } 120 } 121 122 static int 123 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp) 124 { 125 switch (token) { 126 case TOKEN_RO: 127 vfsp->vfs_readonly = B_TRUE; 128 vfsp->vfs_do_readonly = B_TRUE; 129 break; 130 case TOKEN_RW: 131 vfsp->vfs_readonly = B_FALSE; 132 vfsp->vfs_do_readonly = B_TRUE; 133 break; 134 case TOKEN_SETUID: 135 vfsp->vfs_setuid = B_TRUE; 136 vfsp->vfs_do_setuid = B_TRUE; 137 break; 138 case TOKEN_NOSETUID: 139 vfsp->vfs_setuid = B_FALSE; 140 vfsp->vfs_do_setuid = B_TRUE; 141 break; 142 case TOKEN_EXEC: 143 vfsp->vfs_exec = B_TRUE; 144 vfsp->vfs_do_exec = B_TRUE; 145 break; 146 case TOKEN_NOEXEC: 147 vfsp->vfs_exec = B_FALSE; 148 vfsp->vfs_do_exec = B_TRUE; 149 break; 150 case TOKEN_DEVICES: 151 vfsp->vfs_devices = B_TRUE; 152 vfsp->vfs_do_devices = B_TRUE; 153 break; 154 case TOKEN_NODEVICES: 155 vfsp->vfs_devices = B_FALSE; 156 vfsp->vfs_do_devices = B_TRUE; 157 break; 158 case TOKEN_DIRXATTR: 159 vfsp->vfs_xattr = ZFS_XATTR_DIR; 160 vfsp->vfs_do_xattr = B_TRUE; 161 break; 162 case TOKEN_SAXATTR: 163 vfsp->vfs_xattr = ZFS_XATTR_SA; 164 vfsp->vfs_do_xattr = B_TRUE; 165 break; 166 case TOKEN_XATTR: 167 vfsp->vfs_xattr = ZFS_XATTR_DIR; 168 vfsp->vfs_do_xattr = B_TRUE; 169 break; 170 case TOKEN_NOXATTR: 171 vfsp->vfs_xattr = ZFS_XATTR_OFF; 172 vfsp->vfs_do_xattr = B_TRUE; 173 break; 174 case TOKEN_ATIME: 175 vfsp->vfs_atime = B_TRUE; 176 vfsp->vfs_do_atime = B_TRUE; 177 break; 178 case TOKEN_NOATIME: 179 vfsp->vfs_atime = B_FALSE; 180 vfsp->vfs_do_atime = B_TRUE; 181 break; 182 case TOKEN_RELATIME: 183 vfsp->vfs_relatime = B_TRUE; 184 vfsp->vfs_do_relatime = B_TRUE; 185 break; 186 case TOKEN_NORELATIME: 187 vfsp->vfs_relatime = B_FALSE; 188 vfsp->vfs_do_relatime = B_TRUE; 189 break; 190 case TOKEN_NBMAND: 191 vfsp->vfs_nbmand = B_TRUE; 192 vfsp->vfs_do_nbmand = B_TRUE; 193 break; 194 case TOKEN_NONBMAND: 195 vfsp->vfs_nbmand = B_FALSE; 196 vfsp->vfs_do_nbmand = B_TRUE; 197 break; 198 case TOKEN_MNTPOINT: 199 vfsp->vfs_mntpoint = match_strdup(&args[0]); 200 if (vfsp->vfs_mntpoint == NULL) 201 return (SET_ERROR(ENOMEM)); 202 203 break; 204 default: 205 break; 206 } 207 208 return (0); 209 } 210 211 /* 212 * Parse the raw mntopts and return a vfs_t describing the options. 213 */ 214 static int 215 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp) 216 { 217 vfs_t *tmp_vfsp; 218 int error; 219 220 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP); 221 222 if (mntopts != NULL) { 223 substring_t args[MAX_OPT_ARGS]; 224 char *tmp_mntopts, *p, *t; 225 int token; 226 227 tmp_mntopts = t = kmem_strdup(mntopts); 228 if (tmp_mntopts == NULL) 229 return (SET_ERROR(ENOMEM)); 230 231 while ((p = strsep(&t, ",")) != NULL) { 232 if (!*p) 233 continue; 234 235 args[0].to = args[0].from = NULL; 236 token = match_token(p, zpl_tokens, args); 237 error = zfsvfs_parse_option(p, token, args, tmp_vfsp); 238 if (error) { 239 kmem_strfree(tmp_mntopts); 240 zfsvfs_vfs_free(tmp_vfsp); 241 return (error); 242 } 243 } 244 245 kmem_strfree(tmp_mntopts); 246 } 247 248 *vfsp = tmp_vfsp; 249 250 return (0); 251 } 252 253 boolean_t 254 zfs_is_readonly(zfsvfs_t *zfsvfs) 255 { 256 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY)); 257 } 258 259 /*ARGSUSED*/ 260 int 261 zfs_sync(struct super_block *sb, int wait, cred_t *cr) 262 { 263 zfsvfs_t *zfsvfs = sb->s_fs_info; 264 265 /* 266 * Semantically, the only requirement is that the sync be initiated. 267 * The DMU syncs out txgs frequently, so there's nothing to do. 268 */ 269 if (!wait) 270 return (0); 271 272 if (zfsvfs != NULL) { 273 /* 274 * Sync a specific filesystem. 275 */ 276 dsl_pool_t *dp; 277 278 ZFS_ENTER(zfsvfs); 279 dp = dmu_objset_pool(zfsvfs->z_os); 280 281 /* 282 * If the system is shutting down, then skip any 283 * filesystems which may exist on a suspended pool. 284 */ 285 if (spa_suspended(dp->dp_spa)) { 286 ZFS_EXIT(zfsvfs); 287 return (0); 288 } 289 290 if (zfsvfs->z_log != NULL) 291 zil_commit(zfsvfs->z_log, 0); 292 293 ZFS_EXIT(zfsvfs); 294 } else { 295 /* 296 * Sync all ZFS filesystems. This is what happens when you 297 * run sync(1M). Unlike other filesystems, ZFS honors the 298 * request by waiting for all pools to commit all dirty data. 299 */ 300 spa_sync_allpools(); 301 } 302 303 return (0); 304 } 305 306 static void 307 atime_changed_cb(void *arg, uint64_t newval) 308 { 309 zfsvfs_t *zfsvfs = arg; 310 struct super_block *sb = zfsvfs->z_sb; 311 312 if (sb == NULL) 313 return; 314 /* 315 * Update SB_NOATIME bit in VFS super block. Since atime update is 316 * determined by atime_needs_update(), atime_needs_update() needs to 317 * return false if atime is turned off, and not unconditionally return 318 * false if atime is turned on. 319 */ 320 if (newval) 321 sb->s_flags &= ~SB_NOATIME; 322 else 323 sb->s_flags |= SB_NOATIME; 324 } 325 326 static void 327 relatime_changed_cb(void *arg, uint64_t newval) 328 { 329 ((zfsvfs_t *)arg)->z_relatime = newval; 330 } 331 332 static void 333 xattr_changed_cb(void *arg, uint64_t newval) 334 { 335 zfsvfs_t *zfsvfs = arg; 336 337 if (newval == ZFS_XATTR_OFF) { 338 zfsvfs->z_flags &= ~ZSB_XATTR; 339 } else { 340 zfsvfs->z_flags |= ZSB_XATTR; 341 342 if (newval == ZFS_XATTR_SA) 343 zfsvfs->z_xattr_sa = B_TRUE; 344 else 345 zfsvfs->z_xattr_sa = B_FALSE; 346 } 347 } 348 349 static void 350 acltype_changed_cb(void *arg, uint64_t newval) 351 { 352 zfsvfs_t *zfsvfs = arg; 353 354 switch (newval) { 355 case ZFS_ACLTYPE_NFSV4: 356 case ZFS_ACLTYPE_OFF: 357 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 358 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 359 break; 360 case ZFS_ACLTYPE_POSIX: 361 #ifdef CONFIG_FS_POSIX_ACL 362 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX; 363 zfsvfs->z_sb->s_flags |= SB_POSIXACL; 364 #else 365 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 366 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 367 #endif /* CONFIG_FS_POSIX_ACL */ 368 break; 369 default: 370 break; 371 } 372 } 373 374 static void 375 blksz_changed_cb(void *arg, uint64_t newval) 376 { 377 zfsvfs_t *zfsvfs = arg; 378 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 379 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 380 ASSERT(ISP2(newval)); 381 382 zfsvfs->z_max_blksz = newval; 383 } 384 385 static void 386 readonly_changed_cb(void *arg, uint64_t newval) 387 { 388 zfsvfs_t *zfsvfs = arg; 389 struct super_block *sb = zfsvfs->z_sb; 390 391 if (sb == NULL) 392 return; 393 394 if (newval) 395 sb->s_flags |= SB_RDONLY; 396 else 397 sb->s_flags &= ~SB_RDONLY; 398 } 399 400 static void 401 devices_changed_cb(void *arg, uint64_t newval) 402 { 403 } 404 405 static void 406 setuid_changed_cb(void *arg, uint64_t newval) 407 { 408 } 409 410 static void 411 exec_changed_cb(void *arg, uint64_t newval) 412 { 413 } 414 415 static void 416 nbmand_changed_cb(void *arg, uint64_t newval) 417 { 418 zfsvfs_t *zfsvfs = arg; 419 struct super_block *sb = zfsvfs->z_sb; 420 421 if (sb == NULL) 422 return; 423 424 if (newval == TRUE) 425 sb->s_flags |= SB_MANDLOCK; 426 else 427 sb->s_flags &= ~SB_MANDLOCK; 428 } 429 430 static void 431 snapdir_changed_cb(void *arg, uint64_t newval) 432 { 433 ((zfsvfs_t *)arg)->z_show_ctldir = newval; 434 } 435 436 static void 437 vscan_changed_cb(void *arg, uint64_t newval) 438 { 439 ((zfsvfs_t *)arg)->z_vscan = newval; 440 } 441 442 static void 443 acl_mode_changed_cb(void *arg, uint64_t newval) 444 { 445 zfsvfs_t *zfsvfs = arg; 446 447 zfsvfs->z_acl_mode = newval; 448 } 449 450 static void 451 acl_inherit_changed_cb(void *arg, uint64_t newval) 452 { 453 ((zfsvfs_t *)arg)->z_acl_inherit = newval; 454 } 455 456 static int 457 zfs_register_callbacks(vfs_t *vfsp) 458 { 459 struct dsl_dataset *ds = NULL; 460 objset_t *os = NULL; 461 zfsvfs_t *zfsvfs = NULL; 462 int error = 0; 463 464 ASSERT(vfsp); 465 zfsvfs = vfsp->vfs_data; 466 ASSERT(zfsvfs); 467 os = zfsvfs->z_os; 468 469 /* 470 * The act of registering our callbacks will destroy any mount 471 * options we may have. In order to enable temporary overrides 472 * of mount options, we stash away the current values and 473 * restore them after we register the callbacks. 474 */ 475 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) { 476 vfsp->vfs_do_readonly = B_TRUE; 477 vfsp->vfs_readonly = B_TRUE; 478 } 479 480 /* 481 * Register property callbacks. 482 * 483 * It would probably be fine to just check for i/o error from 484 * the first prop_register(), but I guess I like to go 485 * overboard... 486 */ 487 ds = dmu_objset_ds(os); 488 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 489 error = dsl_prop_register(ds, 490 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 491 error = error ? error : dsl_prop_register(ds, 492 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs); 493 error = error ? error : dsl_prop_register(ds, 494 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 495 error = error ? error : dsl_prop_register(ds, 496 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 497 error = error ? error : dsl_prop_register(ds, 498 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 499 error = error ? error : dsl_prop_register(ds, 500 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 501 error = error ? error : dsl_prop_register(ds, 502 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 503 error = error ? error : dsl_prop_register(ds, 504 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 505 error = error ? error : dsl_prop_register(ds, 506 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 507 error = error ? error : dsl_prop_register(ds, 508 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs); 509 error = error ? error : dsl_prop_register(ds, 510 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 511 error = error ? error : dsl_prop_register(ds, 512 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 513 zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs); 518 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 519 if (error) 520 goto unregister; 521 522 /* 523 * Invoke our callbacks to restore temporary mount options. 524 */ 525 if (vfsp->vfs_do_readonly) 526 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly); 527 if (vfsp->vfs_do_setuid) 528 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid); 529 if (vfsp->vfs_do_exec) 530 exec_changed_cb(zfsvfs, vfsp->vfs_exec); 531 if (vfsp->vfs_do_devices) 532 devices_changed_cb(zfsvfs, vfsp->vfs_devices); 533 if (vfsp->vfs_do_xattr) 534 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr); 535 if (vfsp->vfs_do_atime) 536 atime_changed_cb(zfsvfs, vfsp->vfs_atime); 537 if (vfsp->vfs_do_relatime) 538 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime); 539 if (vfsp->vfs_do_nbmand) 540 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand); 541 542 return (0); 543 544 unregister: 545 dsl_prop_unregister_all(ds, zfsvfs); 546 return (error); 547 } 548 549 /* 550 * Takes a dataset, a property, a value and that value's setpoint as 551 * found in the ZAP. Checks if the property has been changed in the vfs. 552 * If so, val and setpoint will be overwritten with updated content. 553 * Otherwise, they are left unchanged. 554 */ 555 int 556 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val, 557 char *setpoint) 558 { 559 int error; 560 zfsvfs_t *zfvp; 561 vfs_t *vfsp; 562 objset_t *os; 563 uint64_t tmp = *val; 564 565 error = dmu_objset_from_ds(ds, &os); 566 if (error != 0) 567 return (error); 568 569 if (dmu_objset_type(os) != DMU_OST_ZFS) 570 return (EINVAL); 571 572 mutex_enter(&os->os_user_ptr_lock); 573 zfvp = dmu_objset_get_user(os); 574 mutex_exit(&os->os_user_ptr_lock); 575 if (zfvp == NULL) 576 return (ESRCH); 577 578 vfsp = zfvp->z_vfs; 579 580 switch (zfs_prop) { 581 case ZFS_PROP_ATIME: 582 if (vfsp->vfs_do_atime) 583 tmp = vfsp->vfs_atime; 584 break; 585 case ZFS_PROP_RELATIME: 586 if (vfsp->vfs_do_relatime) 587 tmp = vfsp->vfs_relatime; 588 break; 589 case ZFS_PROP_DEVICES: 590 if (vfsp->vfs_do_devices) 591 tmp = vfsp->vfs_devices; 592 break; 593 case ZFS_PROP_EXEC: 594 if (vfsp->vfs_do_exec) 595 tmp = vfsp->vfs_exec; 596 break; 597 case ZFS_PROP_SETUID: 598 if (vfsp->vfs_do_setuid) 599 tmp = vfsp->vfs_setuid; 600 break; 601 case ZFS_PROP_READONLY: 602 if (vfsp->vfs_do_readonly) 603 tmp = vfsp->vfs_readonly; 604 break; 605 case ZFS_PROP_XATTR: 606 if (vfsp->vfs_do_xattr) 607 tmp = vfsp->vfs_xattr; 608 break; 609 case ZFS_PROP_NBMAND: 610 if (vfsp->vfs_do_nbmand) 611 tmp = vfsp->vfs_nbmand; 612 break; 613 default: 614 return (ENOENT); 615 } 616 617 if (tmp != *val) { 618 (void) strcpy(setpoint, "temporary"); 619 *val = tmp; 620 } 621 return (0); 622 } 623 624 /* 625 * Associate this zfsvfs with the given objset, which must be owned. 626 * This will cache a bunch of on-disk state from the objset in the 627 * zfsvfs. 628 */ 629 static int 630 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) 631 { 632 int error; 633 uint64_t val; 634 635 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 636 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 637 zfsvfs->z_os = os; 638 639 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 640 if (error != 0) 641 return (error); 642 if (zfsvfs->z_version > 643 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 644 (void) printk("Can't mount a version %lld file system " 645 "on a version %lld pool\n. Pool must be upgraded to mount " 646 "this file system.\n", (u_longlong_t)zfsvfs->z_version, 647 (u_longlong_t)spa_version(dmu_objset_spa(os))); 648 return (SET_ERROR(ENOTSUP)); 649 } 650 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); 651 if (error != 0) 652 return (error); 653 zfsvfs->z_norm = (int)val; 654 655 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); 656 if (error != 0) 657 return (error); 658 zfsvfs->z_utf8 = (val != 0); 659 660 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); 661 if (error != 0) 662 return (error); 663 zfsvfs->z_case = (uint_t)val; 664 665 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0) 666 return (error); 667 zfsvfs->z_acl_type = (uint_t)val; 668 669 /* 670 * Fold case on file systems that are always or sometimes case 671 * insensitive. 672 */ 673 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 674 zfsvfs->z_case == ZFS_CASE_MIXED) 675 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 676 677 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 678 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 679 680 uint64_t sa_obj = 0; 681 if (zfsvfs->z_use_sa) { 682 /* should either have both of these objects or none */ 683 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 684 &sa_obj); 685 if (error != 0) 686 return (error); 687 688 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val); 689 if ((error == 0) && (val == ZFS_XATTR_SA)) 690 zfsvfs->z_xattr_sa = B_TRUE; 691 } 692 693 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 694 &zfsvfs->z_root); 695 if (error != 0) 696 return (error); 697 ASSERT(zfsvfs->z_root != 0); 698 699 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 700 &zfsvfs->z_unlinkedobj); 701 if (error != 0) 702 return (error); 703 704 error = zap_lookup(os, MASTER_NODE_OBJ, 705 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 706 8, 1, &zfsvfs->z_userquota_obj); 707 if (error == ENOENT) 708 zfsvfs->z_userquota_obj = 0; 709 else if (error != 0) 710 return (error); 711 712 error = zap_lookup(os, MASTER_NODE_OBJ, 713 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 714 8, 1, &zfsvfs->z_groupquota_obj); 715 if (error == ENOENT) 716 zfsvfs->z_groupquota_obj = 0; 717 else if (error != 0) 718 return (error); 719 720 error = zap_lookup(os, MASTER_NODE_OBJ, 721 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 722 8, 1, &zfsvfs->z_projectquota_obj); 723 if (error == ENOENT) 724 zfsvfs->z_projectquota_obj = 0; 725 else if (error != 0) 726 return (error); 727 728 error = zap_lookup(os, MASTER_NODE_OBJ, 729 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 730 8, 1, &zfsvfs->z_userobjquota_obj); 731 if (error == ENOENT) 732 zfsvfs->z_userobjquota_obj = 0; 733 else if (error != 0) 734 return (error); 735 736 error = zap_lookup(os, MASTER_NODE_OBJ, 737 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 738 8, 1, &zfsvfs->z_groupobjquota_obj); 739 if (error == ENOENT) 740 zfsvfs->z_groupobjquota_obj = 0; 741 else if (error != 0) 742 return (error); 743 744 error = zap_lookup(os, MASTER_NODE_OBJ, 745 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 746 8, 1, &zfsvfs->z_projectobjquota_obj); 747 if (error == ENOENT) 748 zfsvfs->z_projectobjquota_obj = 0; 749 else if (error != 0) 750 return (error); 751 752 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 753 &zfsvfs->z_fuid_obj); 754 if (error == ENOENT) 755 zfsvfs->z_fuid_obj = 0; 756 else if (error != 0) 757 return (error); 758 759 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 760 &zfsvfs->z_shares_dir); 761 if (error == ENOENT) 762 zfsvfs->z_shares_dir = 0; 763 else if (error != 0) 764 return (error); 765 766 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 767 &zfsvfs->z_attr_table); 768 if (error != 0) 769 return (error); 770 771 if (zfsvfs->z_version >= ZPL_VERSION_SA) 772 sa_register_update_callback(os, zfs_sa_upgrade); 773 774 return (0); 775 } 776 777 int 778 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) 779 { 780 objset_t *os; 781 zfsvfs_t *zfsvfs; 782 int error; 783 boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); 784 785 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 786 787 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); 788 if (error != 0) { 789 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 790 return (error); 791 } 792 793 error = zfsvfs_create_impl(zfvp, zfsvfs, os); 794 if (error != 0) { 795 dmu_objset_disown(os, B_TRUE, zfsvfs); 796 } 797 return (error); 798 } 799 800 801 /* 802 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function 803 * on a failure. Do not pass in a statically allocated zfsvfs. 804 */ 805 int 806 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) 807 { 808 int error; 809 810 zfsvfs->z_vfs = NULL; 811 zfsvfs->z_sb = NULL; 812 zfsvfs->z_parent = zfsvfs; 813 814 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 815 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 816 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 817 offsetof(znode_t, z_link_node)); 818 ZFS_TEARDOWN_INIT(zfsvfs); 819 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 820 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 821 822 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1), 823 ZFS_OBJ_MTX_MAX); 824 zfsvfs->z_hold_size = size; 825 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, 826 KM_SLEEP); 827 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP); 828 for (int i = 0; i != size; i++) { 829 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare, 830 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node)); 831 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL); 832 } 833 834 error = zfsvfs_init(zfsvfs, os); 835 if (error != 0) { 836 *zfvp = NULL; 837 zfsvfs_free(zfsvfs); 838 return (error); 839 } 840 841 zfsvfs->z_drain_task = TASKQID_INVALID; 842 zfsvfs->z_draining = B_FALSE; 843 zfsvfs->z_drain_cancel = B_TRUE; 844 845 *zfvp = zfsvfs; 846 return (0); 847 } 848 849 static int 850 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 851 { 852 int error; 853 boolean_t readonly = zfs_is_readonly(zfsvfs); 854 855 error = zfs_register_callbacks(zfsvfs->z_vfs); 856 if (error) 857 return (error); 858 859 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 860 861 /* 862 * If we are not mounting (ie: online recv), then we don't 863 * have to worry about replaying the log as we blocked all 864 * operations out since we closed the ZIL. 865 */ 866 if (mounting) { 867 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL); 868 dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os); 869 870 /* 871 * During replay we remove the read only flag to 872 * allow replays to succeed. 873 */ 874 if (readonly != 0) { 875 readonly_changed_cb(zfsvfs, B_FALSE); 876 } else { 877 zap_stats_t zs; 878 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj, 879 &zs) == 0) { 880 dataset_kstats_update_nunlinks_kstat( 881 &zfsvfs->z_kstat, zs.zs_num_entries); 882 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 883 "num_entries in unlinked set: %llu", 884 zs.zs_num_entries); 885 } 886 zfs_unlinked_drain(zfsvfs); 887 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; 888 dd->dd_activity_cancelled = B_FALSE; 889 } 890 891 /* 892 * Parse and replay the intent log. 893 * 894 * Because of ziltest, this must be done after 895 * zfs_unlinked_drain(). (Further note: ziltest 896 * doesn't use readonly mounts, where 897 * zfs_unlinked_drain() isn't called.) This is because 898 * ziltest causes spa_sync() to think it's committed, 899 * but actually it is not, so the intent log contains 900 * many txg's worth of changes. 901 * 902 * In particular, if object N is in the unlinked set in 903 * the last txg to actually sync, then it could be 904 * actually freed in a later txg and then reallocated 905 * in a yet later txg. This would write a "create 906 * object N" record to the intent log. Normally, this 907 * would be fine because the spa_sync() would have 908 * written out the fact that object N is free, before 909 * we could write the "create object N" intent log 910 * record. 911 * 912 * But when we are in ziltest mode, we advance the "open 913 * txg" without actually spa_sync()-ing the changes to 914 * disk. So we would see that object N is still 915 * allocated and in the unlinked set, and there is an 916 * intent log record saying to allocate it. 917 */ 918 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 919 if (zil_replay_disable) { 920 zil_destroy(zfsvfs->z_log, B_FALSE); 921 } else { 922 zfsvfs->z_replay = B_TRUE; 923 zil_replay(zfsvfs->z_os, zfsvfs, 924 zfs_replay_vector); 925 zfsvfs->z_replay = B_FALSE; 926 } 927 } 928 929 /* restore readonly bit */ 930 if (readonly != 0) 931 readonly_changed_cb(zfsvfs, B_TRUE); 932 } 933 934 /* 935 * Set the objset user_ptr to track its zfsvfs. 936 */ 937 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 938 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 939 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 940 941 return (0); 942 } 943 944 void 945 zfsvfs_free(zfsvfs_t *zfsvfs) 946 { 947 int i, size = zfsvfs->z_hold_size; 948 949 zfs_fuid_destroy(zfsvfs); 950 951 mutex_destroy(&zfsvfs->z_znodes_lock); 952 mutex_destroy(&zfsvfs->z_lock); 953 list_destroy(&zfsvfs->z_all_znodes); 954 ZFS_TEARDOWN_DESTROY(zfsvfs); 955 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 956 rw_destroy(&zfsvfs->z_fuid_lock); 957 for (i = 0; i != size; i++) { 958 avl_destroy(&zfsvfs->z_hold_trees[i]); 959 mutex_destroy(&zfsvfs->z_hold_locks[i]); 960 } 961 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size); 962 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size); 963 zfsvfs_vfs_free(zfsvfs->z_vfs); 964 dataset_kstats_destroy(&zfsvfs->z_kstat); 965 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 966 } 967 968 static void 969 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 970 { 971 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 972 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 973 } 974 975 static void 976 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 977 { 978 objset_t *os = zfsvfs->z_os; 979 980 if (!dmu_objset_is_snapshot(os)) 981 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 982 } 983 984 #ifdef HAVE_MLSLABEL 985 /* 986 * Check that the hex label string is appropriate for the dataset being 987 * mounted into the global_zone proper. 988 * 989 * Return an error if the hex label string is not default or 990 * admin_low/admin_high. For admin_low labels, the corresponding 991 * dataset must be readonly. 992 */ 993 int 994 zfs_check_global_label(const char *dsname, const char *hexsl) 995 { 996 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 997 return (0); 998 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 999 return (0); 1000 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1001 /* must be readonly */ 1002 uint64_t rdonly; 1003 1004 if (dsl_prop_get_integer(dsname, 1005 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1006 return (SET_ERROR(EACCES)); 1007 return (rdonly ? 0 : SET_ERROR(EACCES)); 1008 } 1009 return (SET_ERROR(EACCES)); 1010 } 1011 #endif /* HAVE_MLSLABEL */ 1012 1013 static int 1014 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp, 1015 uint32_t bshift) 1016 { 1017 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 1018 uint64_t offset = DMU_OBJACCT_PREFIX_LEN; 1019 uint64_t quota; 1020 uint64_t used; 1021 int err; 1022 1023 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1); 1024 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, 1025 sizeof (buf) - offset, B_FALSE); 1026 if (err) 1027 return (err); 1028 1029 if (zfsvfs->z_projectquota_obj == 0) 1030 goto objs; 1031 1032 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj, 1033 buf + offset, 8, 1, "a); 1034 if (err == ENOENT) 1035 goto objs; 1036 else if (err) 1037 return (err); 1038 1039 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1040 buf + offset, 8, 1, &used); 1041 if (unlikely(err == ENOENT)) { 1042 uint32_t blksize; 1043 u_longlong_t nblocks; 1044 1045 /* 1046 * Quota accounting is async, so it is possible race case. 1047 * There is at least one object with the given project ID. 1048 */ 1049 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); 1050 if (unlikely(zp->z_blksz == 0)) 1051 blksize = zfsvfs->z_max_blksz; 1052 1053 used = blksize * nblocks; 1054 } else if (err) { 1055 return (err); 1056 } 1057 1058 statp->f_blocks = quota >> bshift; 1059 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0; 1060 statp->f_bavail = statp->f_bfree; 1061 1062 objs: 1063 if (zfsvfs->z_projectobjquota_obj == 0) 1064 return (0); 1065 1066 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj, 1067 buf + offset, 8, 1, "a); 1068 if (err == ENOENT) 1069 return (0); 1070 else if (err) 1071 return (err); 1072 1073 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1074 buf, 8, 1, &used); 1075 if (unlikely(err == ENOENT)) { 1076 /* 1077 * Quota accounting is async, so it is possible race case. 1078 * There is at least one object with the given project ID. 1079 */ 1080 used = 1; 1081 } else if (err) { 1082 return (err); 1083 } 1084 1085 statp->f_files = quota; 1086 statp->f_ffree = (quota > used) ? (quota - used) : 0; 1087 1088 return (0); 1089 } 1090 1091 int 1092 zfs_statvfs(struct inode *ip, struct kstatfs *statp) 1093 { 1094 zfsvfs_t *zfsvfs = ITOZSB(ip); 1095 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1096 int err = 0; 1097 1098 ZFS_ENTER(zfsvfs); 1099 1100 dmu_objset_space(zfsvfs->z_os, 1101 &refdbytes, &availbytes, &usedobjs, &availobjs); 1102 1103 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os); 1104 /* 1105 * The underlying storage pool actually uses multiple block 1106 * size. Under Solaris frsize (fragment size) is reported as 1107 * the smallest block size we support, and bsize (block size) 1108 * as the filesystem's maximum block size. Unfortunately, 1109 * under Linux the fragment size and block size are often used 1110 * interchangeably. Thus we are forced to report both of them 1111 * as the filesystem's maximum block size. 1112 */ 1113 statp->f_frsize = zfsvfs->z_max_blksz; 1114 statp->f_bsize = zfsvfs->z_max_blksz; 1115 uint32_t bshift = fls(statp->f_bsize) - 1; 1116 1117 /* 1118 * The following report "total" blocks of various kinds in 1119 * the file system, but reported in terms of f_bsize - the 1120 * "preferred" size. 1121 */ 1122 1123 /* Round up so we never have a filesystem using 0 blocks. */ 1124 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize); 1125 statp->f_blocks = (refdbytes + availbytes) >> bshift; 1126 statp->f_bfree = availbytes >> bshift; 1127 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1128 1129 /* 1130 * statvfs() should really be called statufs(), because it assumes 1131 * static metadata. ZFS doesn't preallocate files, so the best 1132 * we can do is report the max that could possibly fit in f_files, 1133 * and that minus the number actually used in f_ffree. 1134 * For f_ffree, report the smaller of the number of objects available 1135 * and the number of blocks (each object will take at least a block). 1136 */ 1137 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT); 1138 statp->f_files = statp->f_ffree + usedobjs; 1139 statp->f_fsid.val[0] = (uint32_t)fsid; 1140 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32); 1141 statp->f_type = ZFS_SUPER_MAGIC; 1142 statp->f_namelen = MAXNAMELEN - 1; 1143 1144 /* 1145 * We have all of 40 characters to stuff a string here. 1146 * Is there anything useful we could/should provide? 1147 */ 1148 bzero(statp->f_spare, sizeof (statp->f_spare)); 1149 1150 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) && 1151 dmu_objset_projectquota_present(zfsvfs->z_os)) { 1152 znode_t *zp = ITOZ(ip); 1153 1154 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid && 1155 zpl_is_valid_projid(zp->z_projid)) 1156 err = zfs_statfs_project(zfsvfs, zp, statp, bshift); 1157 } 1158 1159 ZFS_EXIT(zfsvfs); 1160 return (err); 1161 } 1162 1163 static int 1164 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp) 1165 { 1166 znode_t *rootzp; 1167 int error; 1168 1169 ZFS_ENTER(zfsvfs); 1170 1171 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1172 if (error == 0) 1173 *ipp = ZTOI(rootzp); 1174 1175 ZFS_EXIT(zfsvfs); 1176 return (error); 1177 } 1178 1179 /* 1180 * Linux kernels older than 3.1 do not support a per-filesystem shrinker. 1181 * To accommodate this we must improvise and manually walk the list of znodes 1182 * attempting to prune dentries in order to be able to drop the inodes. 1183 * 1184 * To avoid scanning the same znodes multiple times they are always rotated 1185 * to the end of the z_all_znodes list. New znodes are inserted at the 1186 * end of the list so we're always scanning the oldest znodes first. 1187 */ 1188 static int 1189 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan) 1190 { 1191 znode_t **zp_array, *zp; 1192 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *)); 1193 int objects = 0; 1194 int i = 0, j = 0; 1195 1196 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP); 1197 1198 mutex_enter(&zfsvfs->z_znodes_lock); 1199 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) { 1200 1201 if ((i++ > nr_to_scan) || (j >= max_array)) 1202 break; 1203 1204 ASSERT(list_link_active(&zp->z_link_node)); 1205 list_remove(&zfsvfs->z_all_znodes, zp); 1206 list_insert_tail(&zfsvfs->z_all_znodes, zp); 1207 1208 /* Skip active znodes and .zfs entries */ 1209 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir) 1210 continue; 1211 1212 if (igrab(ZTOI(zp)) == NULL) 1213 continue; 1214 1215 zp_array[j] = zp; 1216 j++; 1217 } 1218 mutex_exit(&zfsvfs->z_znodes_lock); 1219 1220 for (i = 0; i < j; i++) { 1221 zp = zp_array[i]; 1222 1223 ASSERT3P(zp, !=, NULL); 1224 d_prune_aliases(ZTOI(zp)); 1225 1226 if (atomic_read(&ZTOI(zp)->i_count) == 1) 1227 objects++; 1228 1229 zrele(zp); 1230 } 1231 1232 kmem_free(zp_array, max_array * sizeof (znode_t *)); 1233 1234 return (objects); 1235 } 1236 1237 /* 1238 * The ARC has requested that the filesystem drop entries from the dentry 1239 * and inode caches. This can occur when the ARC needs to free meta data 1240 * blocks but can't because they are all pinned by entries in these caches. 1241 */ 1242 int 1243 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects) 1244 { 1245 zfsvfs_t *zfsvfs = sb->s_fs_info; 1246 int error = 0; 1247 struct shrinker *shrinker = &sb->s_shrink; 1248 struct shrink_control sc = { 1249 .nr_to_scan = nr_to_scan, 1250 .gfp_mask = GFP_KERNEL, 1251 }; 1252 1253 ZFS_ENTER(zfsvfs); 1254 1255 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \ 1256 defined(SHRINK_CONTROL_HAS_NID) && \ 1257 defined(SHRINKER_NUMA_AWARE) 1258 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) { 1259 *objects = 0; 1260 for_each_online_node(sc.nid) { 1261 *objects += (*shrinker->scan_objects)(shrinker, &sc); 1262 } 1263 } else { 1264 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1265 } 1266 1267 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK) 1268 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1269 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK) 1270 *objects = (*shrinker->shrink)(shrinker, &sc); 1271 #elif defined(HAVE_D_PRUNE_ALIASES) 1272 #define D_PRUNE_ALIASES_IS_DEFAULT 1273 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); 1274 #else 1275 #error "No available dentry and inode cache pruning mechanism." 1276 #endif 1277 1278 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT) 1279 #undef D_PRUNE_ALIASES_IS_DEFAULT 1280 /* 1281 * Fall back to zfs_prune_aliases if the kernel's per-superblock 1282 * shrinker couldn't free anything, possibly due to the inodes being 1283 * allocated in a different memcg. 1284 */ 1285 if (*objects == 0) 1286 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); 1287 #endif 1288 1289 ZFS_EXIT(zfsvfs); 1290 1291 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 1292 "pruning, nr_to_scan=%lu objects=%d error=%d\n", 1293 nr_to_scan, *objects, error); 1294 1295 return (error); 1296 } 1297 1298 /* 1299 * Teardown the zfsvfs_t. 1300 * 1301 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' 1302 * and 'z_teardown_inactive_lock' held. 1303 */ 1304 static int 1305 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1306 { 1307 znode_t *zp; 1308 1309 zfs_unlinked_drain_stop_wait(zfsvfs); 1310 1311 /* 1312 * If someone has not already unmounted this file system, 1313 * drain the zrele_taskq to ensure all active references to the 1314 * zfsvfs_t have been handled only then can it be safely destroyed. 1315 */ 1316 if (zfsvfs->z_os) { 1317 /* 1318 * If we're unmounting we have to wait for the list to 1319 * drain completely. 1320 * 1321 * If we're not unmounting there's no guarantee the list 1322 * will drain completely, but iputs run from the taskq 1323 * may add the parents of dir-based xattrs to the taskq 1324 * so we want to wait for these. 1325 * 1326 * We can safely read z_nr_znodes without locking because the 1327 * VFS has already blocked operations which add to the 1328 * z_all_znodes list and thus increment z_nr_znodes. 1329 */ 1330 int round = 0; 1331 while (zfsvfs->z_nr_znodes > 0) { 1332 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1333 dmu_objset_pool(zfsvfs->z_os)), 0); 1334 if (++round > 1 && !unmounting) 1335 break; 1336 } 1337 } 1338 1339 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); 1340 1341 if (!unmounting) { 1342 /* 1343 * We purge the parent filesystem's super block as the 1344 * parent filesystem and all of its snapshots have their 1345 * inode's super block set to the parent's filesystem's 1346 * super block. Note, 'z_parent' is self referential 1347 * for non-snapshots. 1348 */ 1349 shrink_dcache_sb(zfsvfs->z_parent->z_sb); 1350 } 1351 1352 /* 1353 * Close the zil. NB: Can't close the zil while zfs_inactive 1354 * threads are blocked as zil_close can call zfs_inactive. 1355 */ 1356 if (zfsvfs->z_log) { 1357 zil_close(zfsvfs->z_log); 1358 zfsvfs->z_log = NULL; 1359 } 1360 1361 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1362 1363 /* 1364 * If we are not unmounting (ie: online recv) and someone already 1365 * unmounted this file system while we were doing the switcheroo, 1366 * or a reopen of z_os failed then just bail out now. 1367 */ 1368 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1369 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1370 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1371 return (SET_ERROR(EIO)); 1372 } 1373 1374 /* 1375 * At this point there are no VFS ops active, and any new VFS ops 1376 * will fail with EIO since we have z_teardown_lock for writer (only 1377 * relevant for forced unmount). 1378 * 1379 * Release all holds on dbufs. We also grab an extra reference to all 1380 * the remaining inodes so that the kernel does not attempt to free 1381 * any inodes of a suspended fs. This can cause deadlocks since the 1382 * zfs_resume_fs() process may involve starting threads, which might 1383 * attempt to free unreferenced inodes to free up memory for the new 1384 * thread. 1385 */ 1386 if (!unmounting) { 1387 mutex_enter(&zfsvfs->z_znodes_lock); 1388 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1389 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1390 if (zp->z_sa_hdl) 1391 zfs_znode_dmu_fini(zp); 1392 if (igrab(ZTOI(zp)) != NULL) 1393 zp->z_suspended = B_TRUE; 1394 1395 } 1396 mutex_exit(&zfsvfs->z_znodes_lock); 1397 } 1398 1399 /* 1400 * If we are unmounting, set the unmounted flag and let new VFS ops 1401 * unblock. zfs_inactive will have the unmounted behavior, and all 1402 * other VFS ops will fail with EIO. 1403 */ 1404 if (unmounting) { 1405 zfsvfs->z_unmounted = B_TRUE; 1406 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1407 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1408 } 1409 1410 /* 1411 * z_os will be NULL if there was an error in attempting to reopen 1412 * zfsvfs, so just return as the properties had already been 1413 * 1414 * unregistered and cached data had been evicted before. 1415 */ 1416 if (zfsvfs->z_os == NULL) 1417 return (0); 1418 1419 /* 1420 * Unregister properties. 1421 */ 1422 zfs_unregister_callbacks(zfsvfs); 1423 1424 /* 1425 * Evict cached data. We must write out any dirty data before 1426 * disowning the dataset. 1427 */ 1428 objset_t *os = zfsvfs->z_os; 1429 boolean_t os_dirty = B_FALSE; 1430 for (int t = 0; t < TXG_SIZE; t++) { 1431 if (dmu_objset_is_dirty(os, t)) { 1432 os_dirty = B_TRUE; 1433 break; 1434 } 1435 } 1436 if (!zfs_is_readonly(zfsvfs) && os_dirty) { 1437 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1438 } 1439 dmu_objset_evict_dbufs(zfsvfs->z_os); 1440 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 1441 dsl_dir_cancel_waiters(dd); 1442 1443 return (0); 1444 } 1445 1446 #if defined(HAVE_SUPER_SETUP_BDI_NAME) 1447 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0); 1448 #endif 1449 1450 int 1451 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent) 1452 { 1453 const char *osname = zm->mnt_osname; 1454 struct inode *root_inode; 1455 uint64_t recordsize; 1456 int error = 0; 1457 zfsvfs_t *zfsvfs = NULL; 1458 vfs_t *vfs = NULL; 1459 1460 ASSERT(zm); 1461 ASSERT(osname); 1462 1463 error = zfsvfs_parse_options(zm->mnt_data, &vfs); 1464 if (error) 1465 return (error); 1466 1467 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs); 1468 if (error) { 1469 zfsvfs_vfs_free(vfs); 1470 goto out; 1471 } 1472 1473 if ((error = dsl_prop_get_integer(osname, "recordsize", 1474 &recordsize, NULL))) { 1475 zfsvfs_vfs_free(vfs); 1476 goto out; 1477 } 1478 1479 vfs->vfs_data = zfsvfs; 1480 zfsvfs->z_vfs = vfs; 1481 zfsvfs->z_sb = sb; 1482 sb->s_fs_info = zfsvfs; 1483 sb->s_magic = ZFS_SUPER_MAGIC; 1484 sb->s_maxbytes = MAX_LFS_FILESIZE; 1485 sb->s_time_gran = 1; 1486 sb->s_blocksize = recordsize; 1487 sb->s_blocksize_bits = ilog2(recordsize); 1488 1489 error = -zpl_bdi_setup(sb, "zfs"); 1490 if (error) 1491 goto out; 1492 1493 sb->s_bdi->ra_pages = 0; 1494 1495 /* Set callback operations for the file system. */ 1496 sb->s_op = &zpl_super_operations; 1497 sb->s_xattr = zpl_xattr_handlers; 1498 sb->s_export_op = &zpl_export_operations; 1499 sb->s_d_op = &zpl_dentry_operations; 1500 1501 /* Set features for file system. */ 1502 zfs_set_fuid_feature(zfsvfs); 1503 1504 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1505 uint64_t pval; 1506 1507 atime_changed_cb(zfsvfs, B_FALSE); 1508 readonly_changed_cb(zfsvfs, B_TRUE); 1509 if ((error = dsl_prop_get_integer(osname, 1510 "xattr", &pval, NULL))) 1511 goto out; 1512 xattr_changed_cb(zfsvfs, pval); 1513 if ((error = dsl_prop_get_integer(osname, 1514 "acltype", &pval, NULL))) 1515 goto out; 1516 acltype_changed_cb(zfsvfs, pval); 1517 zfsvfs->z_issnap = B_TRUE; 1518 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1519 zfsvfs->z_snap_defer_time = jiffies; 1520 1521 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1522 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1523 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1524 } else { 1525 if ((error = zfsvfs_setup(zfsvfs, B_TRUE))) 1526 goto out; 1527 } 1528 1529 /* Allocate a root inode for the filesystem. */ 1530 error = zfs_root(zfsvfs, &root_inode); 1531 if (error) { 1532 (void) zfs_umount(sb); 1533 goto out; 1534 } 1535 1536 /* Allocate a root dentry for the filesystem */ 1537 sb->s_root = d_make_root(root_inode); 1538 if (sb->s_root == NULL) { 1539 (void) zfs_umount(sb); 1540 error = SET_ERROR(ENOMEM); 1541 goto out; 1542 } 1543 1544 if (!zfsvfs->z_issnap) 1545 zfsctl_create(zfsvfs); 1546 1547 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb); 1548 out: 1549 if (error) { 1550 if (zfsvfs != NULL) { 1551 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); 1552 zfsvfs_free(zfsvfs); 1553 } 1554 /* 1555 * make sure we don't have dangling sb->s_fs_info which 1556 * zfs_preumount will use. 1557 */ 1558 sb->s_fs_info = NULL; 1559 } 1560 1561 return (error); 1562 } 1563 1564 /* 1565 * Called when an unmount is requested and certain sanity checks have 1566 * already passed. At this point no dentries or inodes have been reclaimed 1567 * from their respective caches. We drop the extra reference on the .zfs 1568 * control directory to allow everything to be reclaimed. All snapshots 1569 * must already have been unmounted to reach this point. 1570 */ 1571 void 1572 zfs_preumount(struct super_block *sb) 1573 { 1574 zfsvfs_t *zfsvfs = sb->s_fs_info; 1575 1576 /* zfsvfs is NULL when zfs_domount fails during mount */ 1577 if (zfsvfs) { 1578 zfs_unlinked_drain_stop_wait(zfsvfs); 1579 zfsctl_destroy(sb->s_fs_info); 1580 /* 1581 * Wait for zrele_async before entering evict_inodes in 1582 * generic_shutdown_super. The reason we must finish before 1583 * evict_inodes is when lazytime is on, or when zfs_purgedir 1584 * calls zfs_zget, zrele would bump i_count from 0 to 1. This 1585 * would race with the i_count check in evict_inodes. This means 1586 * it could destroy the inode while we are still using it. 1587 * 1588 * We wait for two passes. xattr directories in the first pass 1589 * may add xattr entries in zfs_purgedir, so in the second pass 1590 * we wait for them. We don't use taskq_wait here because it is 1591 * a pool wide taskq. Other mounted filesystems can constantly 1592 * do zrele_async and there's no guarantee when taskq will be 1593 * empty. 1594 */ 1595 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1596 dmu_objset_pool(zfsvfs->z_os)), 0); 1597 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1598 dmu_objset_pool(zfsvfs->z_os)), 0); 1599 } 1600 } 1601 1602 /* 1603 * Called once all other unmount released tear down has occurred. 1604 * It is our responsibility to release any remaining infrastructure. 1605 */ 1606 /*ARGSUSED*/ 1607 int 1608 zfs_umount(struct super_block *sb) 1609 { 1610 zfsvfs_t *zfsvfs = sb->s_fs_info; 1611 objset_t *os; 1612 1613 if (zfsvfs->z_arc_prune != NULL) 1614 arc_remove_prune_callback(zfsvfs->z_arc_prune); 1615 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1616 os = zfsvfs->z_os; 1617 zpl_bdi_destroy(sb); 1618 1619 /* 1620 * z_os will be NULL if there was an error in 1621 * attempting to reopen zfsvfs. 1622 */ 1623 if (os != NULL) { 1624 /* 1625 * Unset the objset user_ptr. 1626 */ 1627 mutex_enter(&os->os_user_ptr_lock); 1628 dmu_objset_set_user(os, NULL); 1629 mutex_exit(&os->os_user_ptr_lock); 1630 1631 /* 1632 * Finally release the objset 1633 */ 1634 dmu_objset_disown(os, B_TRUE, zfsvfs); 1635 } 1636 1637 zfsvfs_free(zfsvfs); 1638 return (0); 1639 } 1640 1641 int 1642 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm) 1643 { 1644 zfsvfs_t *zfsvfs = sb->s_fs_info; 1645 vfs_t *vfsp; 1646 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os); 1647 int error; 1648 1649 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) && 1650 !(*flags & SB_RDONLY)) { 1651 *flags |= SB_RDONLY; 1652 return (EROFS); 1653 } 1654 1655 error = zfsvfs_parse_options(zm->mnt_data, &vfsp); 1656 if (error) 1657 return (error); 1658 1659 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY)) 1660 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1661 1662 zfs_unregister_callbacks(zfsvfs); 1663 zfsvfs_vfs_free(zfsvfs->z_vfs); 1664 1665 vfsp->vfs_data = zfsvfs; 1666 zfsvfs->z_vfs = vfsp; 1667 if (!issnap) 1668 (void) zfs_register_callbacks(vfsp); 1669 1670 return (error); 1671 } 1672 1673 int 1674 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp) 1675 { 1676 zfsvfs_t *zfsvfs = sb->s_fs_info; 1677 znode_t *zp; 1678 uint64_t object = 0; 1679 uint64_t fid_gen = 0; 1680 uint64_t gen_mask; 1681 uint64_t zp_gen; 1682 int i, err; 1683 1684 *ipp = NULL; 1685 1686 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1687 zfid_short_t *zfid = (zfid_short_t *)fidp; 1688 1689 for (i = 0; i < sizeof (zfid->zf_object); i++) 1690 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1691 1692 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1693 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1694 } else { 1695 return (SET_ERROR(EINVAL)); 1696 } 1697 1698 /* LONG_FID_LEN means snapdirs */ 1699 if (fidp->fid_len == LONG_FID_LEN) { 1700 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1701 uint64_t objsetid = 0; 1702 uint64_t setgen = 0; 1703 1704 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1705 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1706 1707 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1708 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1709 1710 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) { 1711 dprintf("snapdir fid: objsetid (%llu) != " 1712 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n", 1713 objsetid, ZFSCTL_INO_SNAPDIRS, object); 1714 1715 return (SET_ERROR(EINVAL)); 1716 } 1717 1718 if (fid_gen > 1 || setgen != 0) { 1719 dprintf("snapdir fid: fid_gen (%llu) and setgen " 1720 "(%llu)\n", fid_gen, setgen); 1721 return (SET_ERROR(EINVAL)); 1722 } 1723 1724 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp)); 1725 } 1726 1727 ZFS_ENTER(zfsvfs); 1728 /* A zero fid_gen means we are in the .zfs control directories */ 1729 if (fid_gen == 0 && 1730 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1731 *ipp = zfsvfs->z_ctldir; 1732 ASSERT(*ipp != NULL); 1733 if (object == ZFSCTL_INO_SNAPDIR) { 1734 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, 1735 0, kcred, NULL, NULL) == 0); 1736 } else { 1737 igrab(*ipp); 1738 } 1739 ZFS_EXIT(zfsvfs); 1740 return (0); 1741 } 1742 1743 gen_mask = -1ULL >> (64 - 8 * i); 1744 1745 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask); 1746 if ((err = zfs_zget(zfsvfs, object, &zp))) { 1747 ZFS_EXIT(zfsvfs); 1748 return (err); 1749 } 1750 1751 /* Don't export xattr stuff */ 1752 if (zp->z_pflags & ZFS_XATTR) { 1753 zrele(zp); 1754 ZFS_EXIT(zfsvfs); 1755 return (SET_ERROR(ENOENT)); 1756 } 1757 1758 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1759 sizeof (uint64_t)); 1760 zp_gen = zp_gen & gen_mask; 1761 if (zp_gen == 0) 1762 zp_gen = 1; 1763 if ((fid_gen == 0) && (zfsvfs->z_root == object)) 1764 fid_gen = zp_gen; 1765 if (zp->z_unlinked || zp_gen != fid_gen) { 1766 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen, 1767 fid_gen); 1768 zrele(zp); 1769 ZFS_EXIT(zfsvfs); 1770 return (SET_ERROR(ENOENT)); 1771 } 1772 1773 *ipp = ZTOI(zp); 1774 if (*ipp) 1775 zfs_inode_update(ITOZ(*ipp)); 1776 1777 ZFS_EXIT(zfsvfs); 1778 return (0); 1779 } 1780 1781 /* 1782 * Block out VFS ops and close zfsvfs_t 1783 * 1784 * Note, if successful, then we return with the 'z_teardown_lock' and 1785 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 1786 * dataset and objset intact so that they can be atomically handed off during 1787 * a subsequent rollback or recv operation and the resume thereafter. 1788 */ 1789 int 1790 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1791 { 1792 int error; 1793 1794 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1795 return (error); 1796 1797 return (0); 1798 } 1799 1800 /* 1801 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 1802 * is an invariant across any of the operations that can be performed while the 1803 * filesystem was suspended. Whether it succeeded or failed, the preconditions 1804 * are the same: the relevant objset and associated dataset are owned by 1805 * zfsvfs, held, and long held on entry. 1806 */ 1807 int 1808 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1809 { 1810 int err, err2; 1811 znode_t *zp; 1812 1813 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); 1814 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1815 1816 /* 1817 * We already own this, so just update the objset_t, as the one we 1818 * had before may have been evicted. 1819 */ 1820 objset_t *os; 1821 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1822 VERIFY(dsl_dataset_long_held(ds)); 1823 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1824 dsl_pool_config_enter(dp, FTAG); 1825 VERIFY0(dmu_objset_from_ds(ds, &os)); 1826 dsl_pool_config_exit(dp, FTAG); 1827 1828 err = zfsvfs_init(zfsvfs, os); 1829 if (err != 0) 1830 goto bail; 1831 1832 ds->ds_dir->dd_activity_cancelled = B_FALSE; 1833 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1834 1835 zfs_set_fuid_feature(zfsvfs); 1836 zfsvfs->z_rollback_time = jiffies; 1837 1838 /* 1839 * Attempt to re-establish all the active inodes with their 1840 * dbufs. If a zfs_rezget() fails, then we unhash the inode 1841 * and mark it stale. This prevents a collision if a new 1842 * inode/object is created which must use the same inode 1843 * number. The stale inode will be be released when the 1844 * VFS prunes the dentry holding the remaining references 1845 * on the stale inode. 1846 */ 1847 mutex_enter(&zfsvfs->z_znodes_lock); 1848 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1849 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1850 err2 = zfs_rezget(zp); 1851 if (err2) { 1852 remove_inode_hash(ZTOI(zp)); 1853 zp->z_is_stale = B_TRUE; 1854 } 1855 1856 /* see comment in zfs_suspend_fs() */ 1857 if (zp->z_suspended) { 1858 zfs_zrele_async(zp); 1859 zp->z_suspended = B_FALSE; 1860 } 1861 } 1862 mutex_exit(&zfsvfs->z_znodes_lock); 1863 1864 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) { 1865 /* 1866 * zfs_suspend_fs() could have interrupted freeing 1867 * of dnodes. We need to restart this freeing so 1868 * that we don't "leak" the space. 1869 */ 1870 zfs_unlinked_drain(zfsvfs); 1871 } 1872 1873 /* 1874 * Most of the time zfs_suspend_fs is used for changing the contents 1875 * of the underlying dataset. ZFS rollback and receive operations 1876 * might create files for which negative dentries are present in 1877 * the cache. Since walking the dcache would require a lot of GPL-only 1878 * code duplication, it's much easier on these rather rare occasions 1879 * just to flush the whole dcache for the given dataset/filesystem. 1880 */ 1881 shrink_dcache_sb(zfsvfs->z_sb); 1882 1883 bail: 1884 if (err != 0) 1885 zfsvfs->z_unmounted = B_TRUE; 1886 1887 /* release the VFS ops */ 1888 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1889 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1890 1891 if (err != 0) { 1892 /* 1893 * Since we couldn't setup the sa framework, try to force 1894 * unmount this file system. 1895 */ 1896 if (zfsvfs->z_os) 1897 (void) zfs_umount(zfsvfs->z_sb); 1898 } 1899 return (err); 1900 } 1901 1902 /* 1903 * Release VOPs and unmount a suspended filesystem. 1904 */ 1905 int 1906 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1907 { 1908 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); 1909 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1910 1911 /* 1912 * We already own this, so just hold and rele it to update the 1913 * objset_t, as the one we had before may have been evicted. 1914 */ 1915 objset_t *os; 1916 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1917 VERIFY(dsl_dataset_long_held(ds)); 1918 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1919 dsl_pool_config_enter(dp, FTAG); 1920 VERIFY0(dmu_objset_from_ds(ds, &os)); 1921 dsl_pool_config_exit(dp, FTAG); 1922 zfsvfs->z_os = os; 1923 1924 /* release the VOPs */ 1925 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1926 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1927 1928 /* 1929 * Try to force unmount this file system. 1930 */ 1931 (void) zfs_umount(zfsvfs->z_sb); 1932 zfsvfs->z_unmounted = B_TRUE; 1933 return (0); 1934 } 1935 1936 /* 1937 * Automounted snapshots rely on periodic revalidation 1938 * to defer snapshots from being automatically unmounted. 1939 */ 1940 1941 inline void 1942 zfs_exit_fs(zfsvfs_t *zfsvfs) 1943 { 1944 if (!zfsvfs->z_issnap) 1945 return; 1946 1947 if (time_after(jiffies, zfsvfs->z_snap_defer_time + 1948 MAX(zfs_expire_snapshot * HZ / 2, HZ))) { 1949 zfsvfs->z_snap_defer_time = jiffies; 1950 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa, 1951 dmu_objset_id(zfsvfs->z_os), 1952 zfs_expire_snapshot); 1953 } 1954 } 1955 1956 int 1957 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 1958 { 1959 int error; 1960 objset_t *os = zfsvfs->z_os; 1961 dmu_tx_t *tx; 1962 1963 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1964 return (SET_ERROR(EINVAL)); 1965 1966 if (newvers < zfsvfs->z_version) 1967 return (SET_ERROR(EINVAL)); 1968 1969 if (zfs_spa_version_map(newvers) > 1970 spa_version(dmu_objset_spa(zfsvfs->z_os))) 1971 return (SET_ERROR(ENOTSUP)); 1972 1973 tx = dmu_tx_create(os); 1974 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 1975 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 1976 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 1977 ZFS_SA_ATTRS); 1978 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1979 } 1980 error = dmu_tx_assign(tx, TXG_WAIT); 1981 if (error) { 1982 dmu_tx_abort(tx); 1983 return (error); 1984 } 1985 1986 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1987 8, 1, &newvers, tx); 1988 1989 if (error) { 1990 dmu_tx_commit(tx); 1991 return (error); 1992 } 1993 1994 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 1995 uint64_t sa_obj; 1996 1997 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 1998 SPA_VERSION_SA); 1999 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2000 DMU_OT_NONE, 0, tx); 2001 2002 error = zap_add(os, MASTER_NODE_OBJ, 2003 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2004 ASSERT0(error); 2005 2006 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2007 sa_register_update_callback(os, zfs_sa_upgrade); 2008 } 2009 2010 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2011 "from %llu to %llu", zfsvfs->z_version, newvers); 2012 2013 dmu_tx_commit(tx); 2014 2015 zfsvfs->z_version = newvers; 2016 os->os_version = newvers; 2017 2018 zfs_set_fuid_feature(zfsvfs); 2019 2020 return (0); 2021 } 2022 2023 /* 2024 * Read a property stored within the master node. 2025 */ 2026 int 2027 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2028 { 2029 uint64_t *cached_copy = NULL; 2030 2031 /* 2032 * Figure out where in the objset_t the cached copy would live, if it 2033 * is available for the requested property. 2034 */ 2035 if (os != NULL) { 2036 switch (prop) { 2037 case ZFS_PROP_VERSION: 2038 cached_copy = &os->os_version; 2039 break; 2040 case ZFS_PROP_NORMALIZE: 2041 cached_copy = &os->os_normalization; 2042 break; 2043 case ZFS_PROP_UTF8ONLY: 2044 cached_copy = &os->os_utf8only; 2045 break; 2046 case ZFS_PROP_CASE: 2047 cached_copy = &os->os_casesensitivity; 2048 break; 2049 default: 2050 break; 2051 } 2052 } 2053 if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) { 2054 *value = *cached_copy; 2055 return (0); 2056 } 2057 2058 /* 2059 * If the property wasn't cached, look up the file system's value for 2060 * the property. For the version property, we look up a slightly 2061 * different string. 2062 */ 2063 const char *pname; 2064 int error = ENOENT; 2065 if (prop == ZFS_PROP_VERSION) 2066 pname = ZPL_VERSION_STR; 2067 else 2068 pname = zfs_prop_to_name(prop); 2069 2070 if (os != NULL) { 2071 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); 2072 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2073 } 2074 2075 if (error == ENOENT) { 2076 /* No value set, use the default value */ 2077 switch (prop) { 2078 case ZFS_PROP_VERSION: 2079 *value = ZPL_VERSION; 2080 break; 2081 case ZFS_PROP_NORMALIZE: 2082 case ZFS_PROP_UTF8ONLY: 2083 *value = 0; 2084 break; 2085 case ZFS_PROP_CASE: 2086 *value = ZFS_CASE_SENSITIVE; 2087 break; 2088 case ZFS_PROP_ACLTYPE: 2089 *value = ZFS_ACLTYPE_OFF; 2090 break; 2091 default: 2092 return (error); 2093 } 2094 error = 0; 2095 } 2096 2097 /* 2098 * If one of the methods for getting the property value above worked, 2099 * copy it into the objset_t's cache. 2100 */ 2101 if (error == 0 && cached_copy != NULL) { 2102 *cached_copy = *value; 2103 } 2104 2105 return (error); 2106 } 2107 2108 /* 2109 * Return true if the corresponding vfs's unmounted flag is set. 2110 * Otherwise return false. 2111 * If this function returns true we know VFS unmount has been initiated. 2112 */ 2113 boolean_t 2114 zfs_get_vfs_flag_unmounted(objset_t *os) 2115 { 2116 zfsvfs_t *zfvp; 2117 boolean_t unmounted = B_FALSE; 2118 2119 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS); 2120 2121 mutex_enter(&os->os_user_ptr_lock); 2122 zfvp = dmu_objset_get_user(os); 2123 if (zfvp != NULL && zfvp->z_unmounted) 2124 unmounted = B_TRUE; 2125 mutex_exit(&os->os_user_ptr_lock); 2126 2127 return (unmounted); 2128 } 2129 2130 /*ARGSUSED*/ 2131 void 2132 zfsvfs_update_fromname(const char *oldname, const char *newname) 2133 { 2134 /* 2135 * We don't need to do anything here, the devname is always current by 2136 * virtue of zfsvfs->z_sb->s_op->show_devname. 2137 */ 2138 } 2139 2140 void 2141 zfs_init(void) 2142 { 2143 zfsctl_init(); 2144 zfs_znode_init(); 2145 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info); 2146 register_filesystem(&zpl_fs_type); 2147 } 2148 2149 void 2150 zfs_fini(void) 2151 { 2152 /* 2153 * we don't use outstanding because zpl_posix_acl_free might add more. 2154 */ 2155 taskq_wait(system_delay_taskq); 2156 taskq_wait(system_taskq); 2157 unregister_filesystem(&zpl_fs_type); 2158 zfs_znode_fini(); 2159 zfsctl_fini(); 2160 } 2161 2162 #if defined(_KERNEL) 2163 EXPORT_SYMBOL(zfs_suspend_fs); 2164 EXPORT_SYMBOL(zfs_resume_fs); 2165 EXPORT_SYMBOL(zfs_set_version); 2166 EXPORT_SYMBOL(zfsvfs_create); 2167 EXPORT_SYMBOL(zfsvfs_free); 2168 EXPORT_SYMBOL(zfs_is_readonly); 2169 EXPORT_SYMBOL(zfs_domount); 2170 EXPORT_SYMBOL(zfs_preumount); 2171 EXPORT_SYMBOL(zfs_umount); 2172 EXPORT_SYMBOL(zfs_remount); 2173 EXPORT_SYMBOL(zfs_statvfs); 2174 EXPORT_SYMBOL(zfs_vget); 2175 EXPORT_SYMBOL(zfs_prune); 2176 #endif 2177