xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c (revision bd66c1b43e33540205dbc1187c2f2a15c58b57ba)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/mntent.h>
36 #include <sys/cmn_err.h>
37 #include <sys/zfs_znode.h>
38 #include <sys/zfs_vnops.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/sa.h>
49 #include <sys/sa_impl.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/zfs_quota.h>
56 #include <sys/sunddi.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/objlist.h>
60 #include <sys/zfeature.h>
61 #include <sys/zpl.h>
62 #include <linux/vfs_compat.h>
63 #include <linux/fs.h>
64 #include "zfs_comutil.h"
65 
66 enum {
67 	TOKEN_RO,
68 	TOKEN_RW,
69 	TOKEN_SETUID,
70 	TOKEN_NOSETUID,
71 	TOKEN_EXEC,
72 	TOKEN_NOEXEC,
73 	TOKEN_DEVICES,
74 	TOKEN_NODEVICES,
75 	TOKEN_DIRXATTR,
76 	TOKEN_SAXATTR,
77 	TOKEN_XATTR,
78 	TOKEN_NOXATTR,
79 	TOKEN_ATIME,
80 	TOKEN_NOATIME,
81 	TOKEN_RELATIME,
82 	TOKEN_NORELATIME,
83 	TOKEN_NBMAND,
84 	TOKEN_NONBMAND,
85 	TOKEN_MNTPOINT,
86 	TOKEN_LAST,
87 };
88 
89 static const match_table_t zpl_tokens = {
90 	{ TOKEN_RO,		MNTOPT_RO },
91 	{ TOKEN_RW,		MNTOPT_RW },
92 	{ TOKEN_SETUID,		MNTOPT_SETUID },
93 	{ TOKEN_NOSETUID,	MNTOPT_NOSETUID },
94 	{ TOKEN_EXEC,		MNTOPT_EXEC },
95 	{ TOKEN_NOEXEC,		MNTOPT_NOEXEC },
96 	{ TOKEN_DEVICES,	MNTOPT_DEVICES },
97 	{ TOKEN_NODEVICES,	MNTOPT_NODEVICES },
98 	{ TOKEN_DIRXATTR,	MNTOPT_DIRXATTR },
99 	{ TOKEN_SAXATTR,	MNTOPT_SAXATTR },
100 	{ TOKEN_XATTR,		MNTOPT_XATTR },
101 	{ TOKEN_NOXATTR,	MNTOPT_NOXATTR },
102 	{ TOKEN_ATIME,		MNTOPT_ATIME },
103 	{ TOKEN_NOATIME,	MNTOPT_NOATIME },
104 	{ TOKEN_RELATIME,	MNTOPT_RELATIME },
105 	{ TOKEN_NORELATIME,	MNTOPT_NORELATIME },
106 	{ TOKEN_NBMAND,		MNTOPT_NBMAND },
107 	{ TOKEN_NONBMAND,	MNTOPT_NONBMAND },
108 	{ TOKEN_MNTPOINT,	MNTOPT_MNTPOINT "=%s" },
109 	{ TOKEN_LAST,		NULL },
110 };
111 
112 static void
113 zfsvfs_vfs_free(vfs_t *vfsp)
114 {
115 	if (vfsp != NULL) {
116 		if (vfsp->vfs_mntpoint != NULL)
117 			kmem_strfree(vfsp->vfs_mntpoint);
118 
119 		kmem_free(vfsp, sizeof (vfs_t));
120 	}
121 }
122 
123 static int
124 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
125 {
126 	switch (token) {
127 	case TOKEN_RO:
128 		vfsp->vfs_readonly = B_TRUE;
129 		vfsp->vfs_do_readonly = B_TRUE;
130 		break;
131 	case TOKEN_RW:
132 		vfsp->vfs_readonly = B_FALSE;
133 		vfsp->vfs_do_readonly = B_TRUE;
134 		break;
135 	case TOKEN_SETUID:
136 		vfsp->vfs_setuid = B_TRUE;
137 		vfsp->vfs_do_setuid = B_TRUE;
138 		break;
139 	case TOKEN_NOSETUID:
140 		vfsp->vfs_setuid = B_FALSE;
141 		vfsp->vfs_do_setuid = B_TRUE;
142 		break;
143 	case TOKEN_EXEC:
144 		vfsp->vfs_exec = B_TRUE;
145 		vfsp->vfs_do_exec = B_TRUE;
146 		break;
147 	case TOKEN_NOEXEC:
148 		vfsp->vfs_exec = B_FALSE;
149 		vfsp->vfs_do_exec = B_TRUE;
150 		break;
151 	case TOKEN_DEVICES:
152 		vfsp->vfs_devices = B_TRUE;
153 		vfsp->vfs_do_devices = B_TRUE;
154 		break;
155 	case TOKEN_NODEVICES:
156 		vfsp->vfs_devices = B_FALSE;
157 		vfsp->vfs_do_devices = B_TRUE;
158 		break;
159 	case TOKEN_DIRXATTR:
160 		vfsp->vfs_xattr = ZFS_XATTR_DIR;
161 		vfsp->vfs_do_xattr = B_TRUE;
162 		break;
163 	case TOKEN_SAXATTR:
164 		vfsp->vfs_xattr = ZFS_XATTR_SA;
165 		vfsp->vfs_do_xattr = B_TRUE;
166 		break;
167 	case TOKEN_XATTR:
168 		vfsp->vfs_xattr = ZFS_XATTR_SA;
169 		vfsp->vfs_do_xattr = B_TRUE;
170 		break;
171 	case TOKEN_NOXATTR:
172 		vfsp->vfs_xattr = ZFS_XATTR_OFF;
173 		vfsp->vfs_do_xattr = B_TRUE;
174 		break;
175 	case TOKEN_ATIME:
176 		vfsp->vfs_atime = B_TRUE;
177 		vfsp->vfs_do_atime = B_TRUE;
178 		break;
179 	case TOKEN_NOATIME:
180 		vfsp->vfs_atime = B_FALSE;
181 		vfsp->vfs_do_atime = B_TRUE;
182 		break;
183 	case TOKEN_RELATIME:
184 		vfsp->vfs_relatime = B_TRUE;
185 		vfsp->vfs_do_relatime = B_TRUE;
186 		break;
187 	case TOKEN_NORELATIME:
188 		vfsp->vfs_relatime = B_FALSE;
189 		vfsp->vfs_do_relatime = B_TRUE;
190 		break;
191 	case TOKEN_NBMAND:
192 		vfsp->vfs_nbmand = B_TRUE;
193 		vfsp->vfs_do_nbmand = B_TRUE;
194 		break;
195 	case TOKEN_NONBMAND:
196 		vfsp->vfs_nbmand = B_FALSE;
197 		vfsp->vfs_do_nbmand = B_TRUE;
198 		break;
199 	case TOKEN_MNTPOINT:
200 		vfsp->vfs_mntpoint = match_strdup(&args[0]);
201 		if (vfsp->vfs_mntpoint == NULL)
202 			return (SET_ERROR(ENOMEM));
203 
204 		break;
205 	default:
206 		break;
207 	}
208 
209 	return (0);
210 }
211 
212 /*
213  * Parse the raw mntopts and return a vfs_t describing the options.
214  */
215 static int
216 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
217 {
218 	vfs_t *tmp_vfsp;
219 	int error;
220 
221 	tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
222 
223 	if (mntopts != NULL) {
224 		substring_t args[MAX_OPT_ARGS];
225 		char *tmp_mntopts, *p, *t;
226 		int token;
227 
228 		tmp_mntopts = t = kmem_strdup(mntopts);
229 		if (tmp_mntopts == NULL)
230 			return (SET_ERROR(ENOMEM));
231 
232 		while ((p = strsep(&t, ",")) != NULL) {
233 			if (!*p)
234 				continue;
235 
236 			args[0].to = args[0].from = NULL;
237 			token = match_token(p, zpl_tokens, args);
238 			error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
239 			if (error) {
240 				kmem_strfree(tmp_mntopts);
241 				zfsvfs_vfs_free(tmp_vfsp);
242 				return (error);
243 			}
244 		}
245 
246 		kmem_strfree(tmp_mntopts);
247 	}
248 
249 	*vfsp = tmp_vfsp;
250 
251 	return (0);
252 }
253 
254 boolean_t
255 zfs_is_readonly(zfsvfs_t *zfsvfs)
256 {
257 	return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
258 }
259 
260 int
261 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
262 {
263 	(void) cr;
264 	zfsvfs_t *zfsvfs = sb->s_fs_info;
265 
266 	/*
267 	 * Semantically, the only requirement is that the sync be initiated.
268 	 * The DMU syncs out txgs frequently, so there's nothing to do.
269 	 */
270 	if (!wait)
271 		return (0);
272 
273 	if (zfsvfs != NULL) {
274 		/*
275 		 * Sync a specific filesystem.
276 		 */
277 		dsl_pool_t *dp;
278 		int error;
279 
280 		if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
281 			return (error);
282 		dp = dmu_objset_pool(zfsvfs->z_os);
283 
284 		/*
285 		 * If the system is shutting down, then skip any
286 		 * filesystems which may exist on a suspended pool.
287 		 */
288 		if (spa_suspended(dp->dp_spa)) {
289 			zfs_exit(zfsvfs, FTAG);
290 			return (0);
291 		}
292 
293 		if (zfsvfs->z_log != NULL)
294 			zil_commit(zfsvfs->z_log, 0);
295 
296 		zfs_exit(zfsvfs, FTAG);
297 	} else {
298 		/*
299 		 * Sync all ZFS filesystems.  This is what happens when you
300 		 * run sync(1).  Unlike other filesystems, ZFS honors the
301 		 * request by waiting for all pools to commit all dirty data.
302 		 */
303 		spa_sync_allpools();
304 	}
305 
306 	return (0);
307 }
308 
309 static void
310 atime_changed_cb(void *arg, uint64_t newval)
311 {
312 	zfsvfs_t *zfsvfs = arg;
313 	struct super_block *sb = zfsvfs->z_sb;
314 
315 	if (sb == NULL)
316 		return;
317 	/*
318 	 * Update SB_NOATIME bit in VFS super block.  Since atime update is
319 	 * determined by atime_needs_update(), atime_needs_update() needs to
320 	 * return false if atime is turned off, and not unconditionally return
321 	 * false if atime is turned on.
322 	 */
323 	if (newval)
324 		sb->s_flags &= ~SB_NOATIME;
325 	else
326 		sb->s_flags |= SB_NOATIME;
327 }
328 
329 static void
330 relatime_changed_cb(void *arg, uint64_t newval)
331 {
332 	((zfsvfs_t *)arg)->z_relatime = newval;
333 }
334 
335 static void
336 xattr_changed_cb(void *arg, uint64_t newval)
337 {
338 	zfsvfs_t *zfsvfs = arg;
339 
340 	if (newval == ZFS_XATTR_OFF) {
341 		zfsvfs->z_flags &= ~ZSB_XATTR;
342 	} else {
343 		zfsvfs->z_flags |= ZSB_XATTR;
344 
345 		if (newval == ZFS_XATTR_SA)
346 			zfsvfs->z_xattr_sa = B_TRUE;
347 		else
348 			zfsvfs->z_xattr_sa = B_FALSE;
349 	}
350 }
351 
352 static void
353 acltype_changed_cb(void *arg, uint64_t newval)
354 {
355 	zfsvfs_t *zfsvfs = arg;
356 
357 	switch (newval) {
358 	case ZFS_ACLTYPE_NFSV4:
359 	case ZFS_ACLTYPE_OFF:
360 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
361 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
362 		break;
363 	case ZFS_ACLTYPE_POSIX:
364 #ifdef CONFIG_FS_POSIX_ACL
365 		zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
366 		zfsvfs->z_sb->s_flags |= SB_POSIXACL;
367 #else
368 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
369 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
370 #endif /* CONFIG_FS_POSIX_ACL */
371 		break;
372 	default:
373 		break;
374 	}
375 }
376 
377 static void
378 blksz_changed_cb(void *arg, uint64_t newval)
379 {
380 	zfsvfs_t *zfsvfs = arg;
381 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
382 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
383 	ASSERT(ISP2(newval));
384 
385 	zfsvfs->z_max_blksz = newval;
386 }
387 
388 static void
389 readonly_changed_cb(void *arg, uint64_t newval)
390 {
391 	zfsvfs_t *zfsvfs = arg;
392 	struct super_block *sb = zfsvfs->z_sb;
393 
394 	if (sb == NULL)
395 		return;
396 
397 	if (newval)
398 		sb->s_flags |= SB_RDONLY;
399 	else
400 		sb->s_flags &= ~SB_RDONLY;
401 }
402 
403 static void
404 devices_changed_cb(void *arg, uint64_t newval)
405 {
406 }
407 
408 static void
409 setuid_changed_cb(void *arg, uint64_t newval)
410 {
411 }
412 
413 static void
414 exec_changed_cb(void *arg, uint64_t newval)
415 {
416 }
417 
418 static void
419 nbmand_changed_cb(void *arg, uint64_t newval)
420 {
421 	zfsvfs_t *zfsvfs = arg;
422 	struct super_block *sb = zfsvfs->z_sb;
423 
424 	if (sb == NULL)
425 		return;
426 
427 	if (newval == TRUE)
428 		sb->s_flags |= SB_MANDLOCK;
429 	else
430 		sb->s_flags &= ~SB_MANDLOCK;
431 }
432 
433 static void
434 snapdir_changed_cb(void *arg, uint64_t newval)
435 {
436 	((zfsvfs_t *)arg)->z_show_ctldir = newval;
437 }
438 
439 static void
440 acl_mode_changed_cb(void *arg, uint64_t newval)
441 {
442 	zfsvfs_t *zfsvfs = arg;
443 
444 	zfsvfs->z_acl_mode = newval;
445 }
446 
447 static void
448 acl_inherit_changed_cb(void *arg, uint64_t newval)
449 {
450 	((zfsvfs_t *)arg)->z_acl_inherit = newval;
451 }
452 
453 static void
454 longname_changed_cb(void *arg, uint64_t newval)
455 {
456 	((zfsvfs_t *)arg)->z_longname = newval;
457 }
458 
459 static int
460 zfs_register_callbacks(vfs_t *vfsp)
461 {
462 	struct dsl_dataset *ds = NULL;
463 	objset_t *os = NULL;
464 	zfsvfs_t *zfsvfs = NULL;
465 	int error = 0;
466 
467 	ASSERT(vfsp);
468 	zfsvfs = vfsp->vfs_data;
469 	ASSERT(zfsvfs);
470 	os = zfsvfs->z_os;
471 
472 	/*
473 	 * The act of registering our callbacks will destroy any mount
474 	 * options we may have.  In order to enable temporary overrides
475 	 * of mount options, we stash away the current values and
476 	 * restore them after we register the callbacks.
477 	 */
478 	if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
479 		vfsp->vfs_do_readonly = B_TRUE;
480 		vfsp->vfs_readonly = B_TRUE;
481 	}
482 
483 	/*
484 	 * Register property callbacks.
485 	 *
486 	 * It would probably be fine to just check for i/o error from
487 	 * the first prop_register(), but I guess I like to go
488 	 * overboard...
489 	 */
490 	ds = dmu_objset_ds(os);
491 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
492 	error = dsl_prop_register(ds,
493 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
494 	error = error ? error : dsl_prop_register(ds,
495 	    zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
496 	error = error ? error : dsl_prop_register(ds,
497 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
498 	error = error ? error : dsl_prop_register(ds,
499 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
500 	error = error ? error : dsl_prop_register(ds,
501 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
502 	error = error ? error : dsl_prop_register(ds,
503 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
504 	error = error ? error : dsl_prop_register(ds,
505 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
506 	error = error ? error : dsl_prop_register(ds,
507 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
508 	error = error ? error : dsl_prop_register(ds,
509 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
510 	error = error ? error : dsl_prop_register(ds,
511 	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
512 	error = error ? error : dsl_prop_register(ds,
513 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
514 	error = error ? error : dsl_prop_register(ds,
515 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
516 	    zfsvfs);
517 	error = error ? error : dsl_prop_register(ds,
518 	    zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
519 	error = error ? error : dsl_prop_register(ds,
520 	    zfs_prop_to_name(ZFS_PROP_LONGNAME), longname_changed_cb, zfsvfs);
521 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
522 	if (error)
523 		goto unregister;
524 
525 	/*
526 	 * Invoke our callbacks to restore temporary mount options.
527 	 */
528 	if (vfsp->vfs_do_readonly)
529 		readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
530 	if (vfsp->vfs_do_setuid)
531 		setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
532 	if (vfsp->vfs_do_exec)
533 		exec_changed_cb(zfsvfs, vfsp->vfs_exec);
534 	if (vfsp->vfs_do_devices)
535 		devices_changed_cb(zfsvfs, vfsp->vfs_devices);
536 	if (vfsp->vfs_do_xattr)
537 		xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
538 	if (vfsp->vfs_do_atime)
539 		atime_changed_cb(zfsvfs, vfsp->vfs_atime);
540 	if (vfsp->vfs_do_relatime)
541 		relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
542 	if (vfsp->vfs_do_nbmand)
543 		nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
544 
545 	return (0);
546 
547 unregister:
548 	dsl_prop_unregister_all(ds, zfsvfs);
549 	return (error);
550 }
551 
552 /*
553  * Takes a dataset, a property, a value and that value's setpoint as
554  * found in the ZAP. Checks if the property has been changed in the vfs.
555  * If so, val and setpoint will be overwritten with updated content.
556  * Otherwise, they are left unchanged.
557  */
558 int
559 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
560     char *setpoint)
561 {
562 	int error;
563 	zfsvfs_t *zfvp;
564 	vfs_t *vfsp;
565 	objset_t *os;
566 	uint64_t tmp = *val;
567 
568 	error = dmu_objset_from_ds(ds, &os);
569 	if (error != 0)
570 		return (error);
571 
572 	if (dmu_objset_type(os) != DMU_OST_ZFS)
573 		return (EINVAL);
574 
575 	mutex_enter(&os->os_user_ptr_lock);
576 	zfvp = dmu_objset_get_user(os);
577 	mutex_exit(&os->os_user_ptr_lock);
578 	if (zfvp == NULL)
579 		return (ESRCH);
580 
581 	vfsp = zfvp->z_vfs;
582 
583 	switch (zfs_prop) {
584 	case ZFS_PROP_ATIME:
585 		if (vfsp->vfs_do_atime)
586 			tmp = vfsp->vfs_atime;
587 		break;
588 	case ZFS_PROP_RELATIME:
589 		if (vfsp->vfs_do_relatime)
590 			tmp = vfsp->vfs_relatime;
591 		break;
592 	case ZFS_PROP_DEVICES:
593 		if (vfsp->vfs_do_devices)
594 			tmp = vfsp->vfs_devices;
595 		break;
596 	case ZFS_PROP_EXEC:
597 		if (vfsp->vfs_do_exec)
598 			tmp = vfsp->vfs_exec;
599 		break;
600 	case ZFS_PROP_SETUID:
601 		if (vfsp->vfs_do_setuid)
602 			tmp = vfsp->vfs_setuid;
603 		break;
604 	case ZFS_PROP_READONLY:
605 		if (vfsp->vfs_do_readonly)
606 			tmp = vfsp->vfs_readonly;
607 		break;
608 	case ZFS_PROP_XATTR:
609 		if (vfsp->vfs_do_xattr)
610 			tmp = vfsp->vfs_xattr;
611 		break;
612 	case ZFS_PROP_NBMAND:
613 		if (vfsp->vfs_do_nbmand)
614 			tmp = vfsp->vfs_nbmand;
615 		break;
616 	default:
617 		return (ENOENT);
618 	}
619 
620 	if (tmp != *val) {
621 		if (setpoint)
622 			(void) strcpy(setpoint, "temporary");
623 		*val = tmp;
624 	}
625 	return (0);
626 }
627 
628 /*
629  * Associate this zfsvfs with the given objset, which must be owned.
630  * This will cache a bunch of on-disk state from the objset in the
631  * zfsvfs.
632  */
633 static int
634 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
635 {
636 	int error;
637 	uint64_t val;
638 
639 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
640 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
641 	zfsvfs->z_os = os;
642 
643 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
644 	if (error != 0)
645 		return (error);
646 	if (zfsvfs->z_version >
647 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
648 		(void) printk("Can't mount a version %lld file system "
649 		    "on a version %lld pool\n. Pool must be upgraded to mount "
650 		    "this file system.\n", (u_longlong_t)zfsvfs->z_version,
651 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
652 		return (SET_ERROR(ENOTSUP));
653 	}
654 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
655 	if (error != 0)
656 		return (error);
657 	zfsvfs->z_norm = (int)val;
658 
659 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
660 	if (error != 0)
661 		return (error);
662 	zfsvfs->z_utf8 = (val != 0);
663 
664 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
665 	if (error != 0)
666 		return (error);
667 	zfsvfs->z_case = (uint_t)val;
668 
669 	if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
670 		return (error);
671 	zfsvfs->z_acl_type = (uint_t)val;
672 
673 	/*
674 	 * Fold case on file systems that are always or sometimes case
675 	 * insensitive.
676 	 */
677 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
678 	    zfsvfs->z_case == ZFS_CASE_MIXED)
679 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
680 
681 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
682 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
683 
684 	uint64_t sa_obj = 0;
685 	if (zfsvfs->z_use_sa) {
686 		/* should either have both of these objects or none */
687 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
688 		    &sa_obj);
689 		if (error != 0)
690 			return (error);
691 
692 		error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
693 		if ((error == 0) && (val == ZFS_XATTR_SA))
694 			zfsvfs->z_xattr_sa = B_TRUE;
695 	}
696 
697 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
698 	    &zfsvfs->z_root);
699 	if (error != 0)
700 		return (error);
701 	ASSERT(zfsvfs->z_root != 0);
702 
703 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
704 	    &zfsvfs->z_unlinkedobj);
705 	if (error != 0)
706 		return (error);
707 
708 	error = zap_lookup(os, MASTER_NODE_OBJ,
709 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
710 	    8, 1, &zfsvfs->z_userquota_obj);
711 	if (error == ENOENT)
712 		zfsvfs->z_userquota_obj = 0;
713 	else if (error != 0)
714 		return (error);
715 
716 	error = zap_lookup(os, MASTER_NODE_OBJ,
717 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
718 	    8, 1, &zfsvfs->z_groupquota_obj);
719 	if (error == ENOENT)
720 		zfsvfs->z_groupquota_obj = 0;
721 	else if (error != 0)
722 		return (error);
723 
724 	error = zap_lookup(os, MASTER_NODE_OBJ,
725 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
726 	    8, 1, &zfsvfs->z_projectquota_obj);
727 	if (error == ENOENT)
728 		zfsvfs->z_projectquota_obj = 0;
729 	else if (error != 0)
730 		return (error);
731 
732 	error = zap_lookup(os, MASTER_NODE_OBJ,
733 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
734 	    8, 1, &zfsvfs->z_userobjquota_obj);
735 	if (error == ENOENT)
736 		zfsvfs->z_userobjquota_obj = 0;
737 	else if (error != 0)
738 		return (error);
739 
740 	error = zap_lookup(os, MASTER_NODE_OBJ,
741 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
742 	    8, 1, &zfsvfs->z_groupobjquota_obj);
743 	if (error == ENOENT)
744 		zfsvfs->z_groupobjquota_obj = 0;
745 	else if (error != 0)
746 		return (error);
747 
748 	error = zap_lookup(os, MASTER_NODE_OBJ,
749 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
750 	    8, 1, &zfsvfs->z_projectobjquota_obj);
751 	if (error == ENOENT)
752 		zfsvfs->z_projectobjquota_obj = 0;
753 	else if (error != 0)
754 		return (error);
755 
756 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
757 	    &zfsvfs->z_fuid_obj);
758 	if (error == ENOENT)
759 		zfsvfs->z_fuid_obj = 0;
760 	else if (error != 0)
761 		return (error);
762 
763 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
764 	    &zfsvfs->z_shares_dir);
765 	if (error == ENOENT)
766 		zfsvfs->z_shares_dir = 0;
767 	else if (error != 0)
768 		return (error);
769 
770 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
771 	    &zfsvfs->z_attr_table);
772 	if (error != 0)
773 		return (error);
774 
775 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
776 		sa_register_update_callback(os, zfs_sa_upgrade);
777 
778 	return (0);
779 }
780 
781 int
782 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
783 {
784 	objset_t *os;
785 	zfsvfs_t *zfsvfs;
786 	int error;
787 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
788 
789 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
790 
791 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
792 	if (error != 0) {
793 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
794 		return (error);
795 	}
796 
797 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
798 
799 	return (error);
800 }
801 
802 
803 /*
804  * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
805  * on a failure.  Do not pass in a statically allocated zfsvfs.
806  */
807 int
808 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
809 {
810 	int error;
811 
812 	zfsvfs->z_vfs = NULL;
813 	zfsvfs->z_sb = NULL;
814 	zfsvfs->z_parent = zfsvfs;
815 
816 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
817 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
818 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
819 	    offsetof(znode_t, z_link_node));
820 	ZFS_TEARDOWN_INIT(zfsvfs);
821 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
822 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
823 
824 	int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
825 	    ZFS_OBJ_MTX_MAX);
826 	zfsvfs->z_hold_size = size;
827 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
828 	    KM_SLEEP);
829 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
830 	for (int i = 0; i != size; i++) {
831 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
832 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
833 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
834 	}
835 
836 	error = zfsvfs_init(zfsvfs, os);
837 	if (error != 0) {
838 		dmu_objset_disown(os, B_TRUE, zfsvfs);
839 		*zfvp = NULL;
840 		zfsvfs_free(zfsvfs);
841 		return (error);
842 	}
843 
844 	zfsvfs->z_drain_task = TASKQID_INVALID;
845 	zfsvfs->z_draining = B_FALSE;
846 	zfsvfs->z_drain_cancel = B_TRUE;
847 
848 	*zfvp = zfsvfs;
849 	return (0);
850 }
851 
852 static int
853 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
854 {
855 	int error;
856 	boolean_t readonly = zfs_is_readonly(zfsvfs);
857 
858 	error = zfs_register_callbacks(zfsvfs->z_vfs);
859 	if (error)
860 		return (error);
861 
862 	/*
863 	 * If we are not mounting (ie: online recv), then we don't
864 	 * have to worry about replaying the log as we blocked all
865 	 * operations out since we closed the ZIL.
866 	 */
867 	if (mounting) {
868 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
869 		error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
870 		if (error)
871 			return (error);
872 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
873 		    &zfsvfs->z_kstat.dk_zil_sums);
874 
875 		/*
876 		 * During replay we remove the read only flag to
877 		 * allow replays to succeed.
878 		 */
879 		if (readonly != 0) {
880 			readonly_changed_cb(zfsvfs, B_FALSE);
881 		} else {
882 			zap_stats_t zs;
883 			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
884 			    &zs) == 0) {
885 				dataset_kstats_update_nunlinks_kstat(
886 				    &zfsvfs->z_kstat, zs.zs_num_entries);
887 				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
888 				    "num_entries in unlinked set: %llu",
889 				    zs.zs_num_entries);
890 			}
891 			zfs_unlinked_drain(zfsvfs);
892 			dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
893 			dd->dd_activity_cancelled = B_FALSE;
894 		}
895 
896 		/*
897 		 * Parse and replay the intent log.
898 		 *
899 		 * Because of ziltest, this must be done after
900 		 * zfs_unlinked_drain().  (Further note: ziltest
901 		 * doesn't use readonly mounts, where
902 		 * zfs_unlinked_drain() isn't called.)  This is because
903 		 * ziltest causes spa_sync() to think it's committed,
904 		 * but actually it is not, so the intent log contains
905 		 * many txg's worth of changes.
906 		 *
907 		 * In particular, if object N is in the unlinked set in
908 		 * the last txg to actually sync, then it could be
909 		 * actually freed in a later txg and then reallocated
910 		 * in a yet later txg.  This would write a "create
911 		 * object N" record to the intent log.  Normally, this
912 		 * would be fine because the spa_sync() would have
913 		 * written out the fact that object N is free, before
914 		 * we could write the "create object N" intent log
915 		 * record.
916 		 *
917 		 * But when we are in ziltest mode, we advance the "open
918 		 * txg" without actually spa_sync()-ing the changes to
919 		 * disk.  So we would see that object N is still
920 		 * allocated and in the unlinked set, and there is an
921 		 * intent log record saying to allocate it.
922 		 */
923 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
924 			if (zil_replay_disable) {
925 				zil_destroy(zfsvfs->z_log, B_FALSE);
926 			} else {
927 				zfsvfs->z_replay = B_TRUE;
928 				zil_replay(zfsvfs->z_os, zfsvfs,
929 				    zfs_replay_vector);
930 				zfsvfs->z_replay = B_FALSE;
931 			}
932 		}
933 
934 		/* restore readonly bit */
935 		if (readonly != 0)
936 			readonly_changed_cb(zfsvfs, B_TRUE);
937 	} else {
938 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
939 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
940 		    &zfsvfs->z_kstat.dk_zil_sums);
941 	}
942 
943 	/*
944 	 * Set the objset user_ptr to track its zfsvfs.
945 	 */
946 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
947 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
948 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
949 
950 	return (0);
951 }
952 
953 void
954 zfsvfs_free(zfsvfs_t *zfsvfs)
955 {
956 	int i, size = zfsvfs->z_hold_size;
957 
958 	zfs_fuid_destroy(zfsvfs);
959 
960 	mutex_destroy(&zfsvfs->z_znodes_lock);
961 	mutex_destroy(&zfsvfs->z_lock);
962 	list_destroy(&zfsvfs->z_all_znodes);
963 	ZFS_TEARDOWN_DESTROY(zfsvfs);
964 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
965 	rw_destroy(&zfsvfs->z_fuid_lock);
966 	for (i = 0; i != size; i++) {
967 		avl_destroy(&zfsvfs->z_hold_trees[i]);
968 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
969 	}
970 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
971 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
972 	zfsvfs_vfs_free(zfsvfs->z_vfs);
973 	dataset_kstats_destroy(&zfsvfs->z_kstat);
974 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
975 }
976 
977 static void
978 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
979 {
980 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
981 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
982 }
983 
984 static void
985 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
986 {
987 	objset_t *os = zfsvfs->z_os;
988 
989 	if (!dmu_objset_is_snapshot(os))
990 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
991 }
992 
993 #ifdef HAVE_MLSLABEL
994 /*
995  * Check that the hex label string is appropriate for the dataset being
996  * mounted into the global_zone proper.
997  *
998  * Return an error if the hex label string is not default or
999  * admin_low/admin_high.  For admin_low labels, the corresponding
1000  * dataset must be readonly.
1001  */
1002 int
1003 zfs_check_global_label(const char *dsname, const char *hexsl)
1004 {
1005 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1006 		return (0);
1007 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1008 		return (0);
1009 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1010 		/* must be readonly */
1011 		uint64_t rdonly;
1012 
1013 		if (dsl_prop_get_integer(dsname,
1014 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1015 			return (SET_ERROR(EACCES));
1016 		return (rdonly ? 0 : SET_ERROR(EACCES));
1017 	}
1018 	return (SET_ERROR(EACCES));
1019 }
1020 #endif /* HAVE_MLSLABEL */
1021 
1022 static int
1023 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1024     uint32_t bshift)
1025 {
1026 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1027 	uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1028 	uint64_t quota;
1029 	uint64_t used;
1030 	int err;
1031 
1032 	strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1033 	err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1034 	    sizeof (buf) - offset, B_FALSE);
1035 	if (err)
1036 		return (err);
1037 
1038 	if (zfsvfs->z_projectquota_obj == 0)
1039 		goto objs;
1040 
1041 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1042 	    buf + offset, 8, 1, &quota);
1043 	if (err == ENOENT)
1044 		goto objs;
1045 	else if (err)
1046 		return (err);
1047 
1048 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1049 	    buf + offset, 8, 1, &used);
1050 	if (unlikely(err == ENOENT)) {
1051 		uint32_t blksize;
1052 		u_longlong_t nblocks;
1053 
1054 		/*
1055 		 * Quota accounting is async, so it is possible race case.
1056 		 * There is at least one object with the given project ID.
1057 		 */
1058 		sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1059 		if (unlikely(zp->z_blksz == 0))
1060 			blksize = zfsvfs->z_max_blksz;
1061 
1062 		used = blksize * nblocks;
1063 	} else if (err) {
1064 		return (err);
1065 	}
1066 
1067 	statp->f_blocks = quota >> bshift;
1068 	statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1069 	statp->f_bavail = statp->f_bfree;
1070 
1071 objs:
1072 	if (zfsvfs->z_projectobjquota_obj == 0)
1073 		return (0);
1074 
1075 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1076 	    buf + offset, 8, 1, &quota);
1077 	if (err == ENOENT)
1078 		return (0);
1079 	else if (err)
1080 		return (err);
1081 
1082 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1083 	    buf, 8, 1, &used);
1084 	if (unlikely(err == ENOENT)) {
1085 		/*
1086 		 * Quota accounting is async, so it is possible race case.
1087 		 * There is at least one object with the given project ID.
1088 		 */
1089 		used = 1;
1090 	} else if (err) {
1091 		return (err);
1092 	}
1093 
1094 	statp->f_files = quota;
1095 	statp->f_ffree = (quota > used) ? (quota - used) : 0;
1096 
1097 	return (0);
1098 }
1099 
1100 int
1101 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1102 {
1103 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1104 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1105 	int err = 0;
1106 
1107 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1108 		return (err);
1109 
1110 	dmu_objset_space(zfsvfs->z_os,
1111 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1112 
1113 	uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1114 	/*
1115 	 * The underlying storage pool actually uses multiple block
1116 	 * size.  Under Solaris frsize (fragment size) is reported as
1117 	 * the smallest block size we support, and bsize (block size)
1118 	 * as the filesystem's maximum block size.  Unfortunately,
1119 	 * under Linux the fragment size and block size are often used
1120 	 * interchangeably.  Thus we are forced to report both of them
1121 	 * as the filesystem's maximum block size.
1122 	 */
1123 	statp->f_frsize = zfsvfs->z_max_blksz;
1124 	statp->f_bsize = zfsvfs->z_max_blksz;
1125 	uint32_t bshift = fls(statp->f_bsize) - 1;
1126 
1127 	/*
1128 	 * The following report "total" blocks of various kinds in
1129 	 * the file system, but reported in terms of f_bsize - the
1130 	 * "preferred" size.
1131 	 */
1132 
1133 	/* Round up so we never have a filesystem using 0 blocks. */
1134 	refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1135 	statp->f_blocks = (refdbytes + availbytes) >> bshift;
1136 	statp->f_bfree = availbytes >> bshift;
1137 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1138 
1139 	/*
1140 	 * statvfs() should really be called statufs(), because it assumes
1141 	 * static metadata.  ZFS doesn't preallocate files, so the best
1142 	 * we can do is report the max that could possibly fit in f_files,
1143 	 * and that minus the number actually used in f_ffree.
1144 	 * For f_ffree, report the smaller of the number of objects available
1145 	 * and the number of blocks (each object will take at least a block).
1146 	 */
1147 	statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1148 	statp->f_files = statp->f_ffree + usedobjs;
1149 	statp->f_fsid.val[0] = (uint32_t)fsid;
1150 	statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1151 	statp->f_type = ZFS_SUPER_MAGIC;
1152 	statp->f_namelen =
1153 	    zfsvfs->z_longname ? (ZAP_MAXNAMELEN_NEW - 1) : (MAXNAMELEN - 1);
1154 
1155 	/*
1156 	 * We have all of 40 characters to stuff a string here.
1157 	 * Is there anything useful we could/should provide?
1158 	 */
1159 	memset(statp->f_spare, 0, sizeof (statp->f_spare));
1160 
1161 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1162 	    dmu_objset_projectquota_present(zfsvfs->z_os)) {
1163 		znode_t *zp = ITOZ(ip);
1164 
1165 		if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1166 		    zpl_is_valid_projid(zp->z_projid))
1167 			err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1168 	}
1169 
1170 	zfs_exit(zfsvfs, FTAG);
1171 	return (err);
1172 }
1173 
1174 static int
1175 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1176 {
1177 	znode_t *rootzp;
1178 	int error;
1179 
1180 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1181 		return (error);
1182 
1183 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1184 	if (error == 0)
1185 		*ipp = ZTOI(rootzp);
1186 
1187 	zfs_exit(zfsvfs, FTAG);
1188 	return (error);
1189 }
1190 
1191 /*
1192  * The ARC has requested that the filesystem drop entries from the dentry
1193  * and inode caches.  This can occur when the ARC needs to free meta data
1194  * blocks but can't because they are all pinned by entries in these caches.
1195  */
1196 #if defined(HAVE_SUPER_BLOCK_S_SHRINK)
1197 #define	S_SHRINK(sb)	(&(sb)->s_shrink)
1198 #elif defined(HAVE_SUPER_BLOCK_S_SHRINK_PTR)
1199 #define	S_SHRINK(sb)	((sb)->s_shrink)
1200 #endif
1201 
1202 int
1203 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1204 {
1205 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1206 	int error = 0;
1207 	struct shrinker *shrinker = S_SHRINK(sb);
1208 	struct shrink_control sc = {
1209 		.nr_to_scan = nr_to_scan,
1210 		.gfp_mask = GFP_KERNEL,
1211 	};
1212 
1213 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1214 		return (error);
1215 
1216 #ifdef SHRINKER_NUMA_AWARE
1217 	if (shrinker->flags & SHRINKER_NUMA_AWARE) {
1218 		long tc = 1;
1219 		for_each_online_node(sc.nid) {
1220 			long c = shrinker->count_objects(shrinker, &sc);
1221 			if (c  == 0 || c == SHRINK_EMPTY)
1222 				continue;
1223 			tc += c;
1224 		}
1225 		*objects = 0;
1226 		for_each_online_node(sc.nid) {
1227 			long c = shrinker->count_objects(shrinker, &sc);
1228 			if (c  == 0 || c == SHRINK_EMPTY)
1229 				continue;
1230 			if (c > tc)
1231 				tc = c;
1232 			sc.nr_to_scan = mult_frac(nr_to_scan, c, tc) + 1;
1233 			*objects += (*shrinker->scan_objects)(shrinker, &sc);
1234 		}
1235 	} else {
1236 			*objects = (*shrinker->scan_objects)(shrinker, &sc);
1237 	}
1238 #else
1239 	*objects = (*shrinker->scan_objects)(shrinker, &sc);
1240 #endif
1241 
1242 	zfs_exit(zfsvfs, FTAG);
1243 
1244 	dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1245 	    "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1246 	    nr_to_scan, *objects, error);
1247 
1248 	return (error);
1249 }
1250 
1251 /*
1252  * Teardown the zfsvfs_t.
1253  *
1254  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1255  * and 'z_teardown_inactive_lock' held.
1256  */
1257 static int
1258 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1259 {
1260 	znode_t	*zp;
1261 
1262 	zfs_unlinked_drain_stop_wait(zfsvfs);
1263 
1264 	/*
1265 	 * If someone has not already unmounted this file system,
1266 	 * drain the zrele_taskq to ensure all active references to the
1267 	 * zfsvfs_t have been handled only then can it be safely destroyed.
1268 	 */
1269 	if (zfsvfs->z_os) {
1270 		/*
1271 		 * If we're unmounting we have to wait for the list to
1272 		 * drain completely.
1273 		 *
1274 		 * If we're not unmounting there's no guarantee the list
1275 		 * will drain completely, but iputs run from the taskq
1276 		 * may add the parents of dir-based xattrs to the taskq
1277 		 * so we want to wait for these.
1278 		 *
1279 		 * We can safely check z_all_znodes for being empty because the
1280 		 * VFS has already blocked operations which add to it.
1281 		 */
1282 		int round = 0;
1283 		while (!list_is_empty(&zfsvfs->z_all_znodes)) {
1284 			taskq_wait_outstanding(dsl_pool_zrele_taskq(
1285 			    dmu_objset_pool(zfsvfs->z_os)), 0);
1286 			if (++round > 1 && !unmounting)
1287 				break;
1288 		}
1289 	}
1290 
1291 	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1292 
1293 	if (!unmounting) {
1294 		/*
1295 		 * We purge the parent filesystem's super block as the
1296 		 * parent filesystem and all of its snapshots have their
1297 		 * inode's super block set to the parent's filesystem's
1298 		 * super block.  Note,  'z_parent' is self referential
1299 		 * for non-snapshots.
1300 		 */
1301 		shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1302 	}
1303 
1304 	/*
1305 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1306 	 * threads are blocked as zil_close can call zfs_inactive.
1307 	 */
1308 	if (zfsvfs->z_log) {
1309 		zil_close(zfsvfs->z_log);
1310 		zfsvfs->z_log = NULL;
1311 	}
1312 
1313 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1314 
1315 	/*
1316 	 * If we are not unmounting (ie: online recv) and someone already
1317 	 * unmounted this file system while we were doing the switcheroo,
1318 	 * or a reopen of z_os failed then just bail out now.
1319 	 */
1320 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1321 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1322 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1323 		return (SET_ERROR(EIO));
1324 	}
1325 
1326 	/*
1327 	 * At this point there are no VFS ops active, and any new VFS ops
1328 	 * will fail with EIO since we have z_teardown_lock for writer (only
1329 	 * relevant for forced unmount).
1330 	 *
1331 	 * Release all holds on dbufs. We also grab an extra reference to all
1332 	 * the remaining inodes so that the kernel does not attempt to free
1333 	 * any inodes of a suspended fs. This can cause deadlocks since the
1334 	 * zfs_resume_fs() process may involve starting threads, which might
1335 	 * attempt to free unreferenced inodes to free up memory for the new
1336 	 * thread.
1337 	 */
1338 	if (!unmounting) {
1339 		mutex_enter(&zfsvfs->z_znodes_lock);
1340 		for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1341 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1342 			if (zp->z_sa_hdl)
1343 				zfs_znode_dmu_fini(zp);
1344 			if (igrab(ZTOI(zp)) != NULL)
1345 				zp->z_suspended = B_TRUE;
1346 
1347 		}
1348 		mutex_exit(&zfsvfs->z_znodes_lock);
1349 	}
1350 
1351 	/*
1352 	 * If we are unmounting, set the unmounted flag and let new VFS ops
1353 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1354 	 * other VFS ops will fail with EIO.
1355 	 */
1356 	if (unmounting) {
1357 		zfsvfs->z_unmounted = B_TRUE;
1358 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1359 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1360 	}
1361 
1362 	/*
1363 	 * z_os will be NULL if there was an error in attempting to reopen
1364 	 * zfsvfs, so just return as the properties had already been
1365 	 *
1366 	 * unregistered and cached data had been evicted before.
1367 	 */
1368 	if (zfsvfs->z_os == NULL)
1369 		return (0);
1370 
1371 	/*
1372 	 * Unregister properties.
1373 	 */
1374 	zfs_unregister_callbacks(zfsvfs);
1375 
1376 	/*
1377 	 * Evict cached data. We must write out any dirty data before
1378 	 * disowning the dataset.
1379 	 */
1380 	objset_t *os = zfsvfs->z_os;
1381 	boolean_t os_dirty = B_FALSE;
1382 	for (int t = 0; t < TXG_SIZE; t++) {
1383 		if (dmu_objset_is_dirty(os, t)) {
1384 			os_dirty = B_TRUE;
1385 			break;
1386 		}
1387 	}
1388 	if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1389 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1390 	}
1391 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1392 	dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1393 	dsl_dir_cancel_waiters(dd);
1394 
1395 	return (0);
1396 }
1397 
1398 static atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1399 
1400 int
1401 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1402 {
1403 	const char *osname = zm->mnt_osname;
1404 	struct inode *root_inode = NULL;
1405 	uint64_t recordsize;
1406 	int error = 0;
1407 	zfsvfs_t *zfsvfs = NULL;
1408 	vfs_t *vfs = NULL;
1409 	int canwrite;
1410 	int dataset_visible_zone;
1411 
1412 	ASSERT(zm);
1413 	ASSERT(osname);
1414 
1415 	dataset_visible_zone = zone_dataset_visible(osname, &canwrite);
1416 
1417 	/*
1418 	 * Refuse to mount a filesystem if we are in a namespace and the
1419 	 * dataset is not visible or writable in that namespace.
1420 	 */
1421 	if (!INGLOBALZONE(curproc) &&
1422 	    (!dataset_visible_zone || !canwrite)) {
1423 		return (SET_ERROR(EPERM));
1424 	}
1425 
1426 	error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1427 	if (error)
1428 		return (error);
1429 
1430 	/*
1431 	 * If a non-writable filesystem is being mounted without the
1432 	 * read-only flag, pretend it was set, as done for snapshots.
1433 	 */
1434 	if (!canwrite)
1435 		vfs->vfs_readonly = B_TRUE;
1436 
1437 	error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1438 	if (error) {
1439 		zfsvfs_vfs_free(vfs);
1440 		goto out;
1441 	}
1442 
1443 	if ((error = dsl_prop_get_integer(osname, "recordsize",
1444 	    &recordsize, NULL))) {
1445 		zfsvfs_vfs_free(vfs);
1446 		goto out;
1447 	}
1448 
1449 	vfs->vfs_data = zfsvfs;
1450 	zfsvfs->z_vfs = vfs;
1451 	zfsvfs->z_sb = sb;
1452 	sb->s_fs_info = zfsvfs;
1453 	sb->s_magic = ZFS_SUPER_MAGIC;
1454 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1455 	sb->s_time_gran = 1;
1456 	sb->s_blocksize = recordsize;
1457 	sb->s_blocksize_bits = ilog2(recordsize);
1458 
1459 	error = -super_setup_bdi_name(sb, "%.28s-%ld", "zfs",
1460 	    atomic_long_inc_return(&zfs_bdi_seq));
1461 	if (error)
1462 		goto out;
1463 
1464 	sb->s_bdi->ra_pages = 0;
1465 
1466 	/* Set callback operations for the file system. */
1467 	sb->s_op = &zpl_super_operations;
1468 	sb->s_xattr = zpl_xattr_handlers;
1469 	sb->s_export_op = &zpl_export_operations;
1470 
1471 	/* Set features for file system. */
1472 	zfs_set_fuid_feature(zfsvfs);
1473 
1474 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1475 		uint64_t pval;
1476 
1477 		atime_changed_cb(zfsvfs, B_FALSE);
1478 		readonly_changed_cb(zfsvfs, B_TRUE);
1479 		if ((error = dsl_prop_get_integer(osname,
1480 		    "xattr", &pval, NULL)))
1481 			goto out;
1482 		xattr_changed_cb(zfsvfs, pval);
1483 		if ((error = dsl_prop_get_integer(osname,
1484 		    "acltype", &pval, NULL)))
1485 			goto out;
1486 		acltype_changed_cb(zfsvfs, pval);
1487 		zfsvfs->z_issnap = B_TRUE;
1488 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1489 		zfsvfs->z_snap_defer_time = jiffies;
1490 
1491 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1492 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1493 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1494 	} else {
1495 		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1496 			goto out;
1497 	}
1498 
1499 	/* Allocate a root inode for the filesystem. */
1500 	error = zfs_root(zfsvfs, &root_inode);
1501 	if (error) {
1502 		(void) zfs_umount(sb);
1503 		zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1504 		goto out;
1505 	}
1506 
1507 	/* Allocate a root dentry for the filesystem */
1508 	sb->s_root = d_make_root(root_inode);
1509 	if (sb->s_root == NULL) {
1510 		(void) zfs_umount(sb);
1511 		zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1512 		error = SET_ERROR(ENOMEM);
1513 		goto out;
1514 	}
1515 
1516 	if (!zfsvfs->z_issnap)
1517 		zfsctl_create(zfsvfs);
1518 
1519 	zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1520 out:
1521 	if (error) {
1522 		if (zfsvfs != NULL) {
1523 			dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1524 			zfsvfs_free(zfsvfs);
1525 		}
1526 		/*
1527 		 * make sure we don't have dangling sb->s_fs_info which
1528 		 * zfs_preumount will use.
1529 		 */
1530 		sb->s_fs_info = NULL;
1531 	}
1532 
1533 	return (error);
1534 }
1535 
1536 /*
1537  * Called when an unmount is requested and certain sanity checks have
1538  * already passed.  At this point no dentries or inodes have been reclaimed
1539  * from their respective caches.  We drop the extra reference on the .zfs
1540  * control directory to allow everything to be reclaimed.  All snapshots
1541  * must already have been unmounted to reach this point.
1542  */
1543 void
1544 zfs_preumount(struct super_block *sb)
1545 {
1546 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1547 
1548 	/* zfsvfs is NULL when zfs_domount fails during mount */
1549 	if (zfsvfs) {
1550 		zfs_unlinked_drain_stop_wait(zfsvfs);
1551 		zfsctl_destroy(sb->s_fs_info);
1552 		/*
1553 		 * Wait for zrele_async before entering evict_inodes in
1554 		 * generic_shutdown_super. The reason we must finish before
1555 		 * evict_inodes is when lazytime is on, or when zfs_purgedir
1556 		 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1557 		 * would race with the i_count check in evict_inodes. This means
1558 		 * it could destroy the inode while we are still using it.
1559 		 *
1560 		 * We wait for two passes. xattr directories in the first pass
1561 		 * may add xattr entries in zfs_purgedir, so in the second pass
1562 		 * we wait for them. We don't use taskq_wait here because it is
1563 		 * a pool wide taskq. Other mounted filesystems can constantly
1564 		 * do zrele_async and there's no guarantee when taskq will be
1565 		 * empty.
1566 		 */
1567 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1568 		    dmu_objset_pool(zfsvfs->z_os)), 0);
1569 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1570 		    dmu_objset_pool(zfsvfs->z_os)), 0);
1571 	}
1572 }
1573 
1574 /*
1575  * Called once all other unmount released tear down has occurred.
1576  * It is our responsibility to release any remaining infrastructure.
1577  */
1578 int
1579 zfs_umount(struct super_block *sb)
1580 {
1581 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1582 	objset_t *os;
1583 
1584 	if (zfsvfs->z_arc_prune != NULL)
1585 		arc_remove_prune_callback(zfsvfs->z_arc_prune);
1586 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1587 	os = zfsvfs->z_os;
1588 
1589 	/*
1590 	 * z_os will be NULL if there was an error in
1591 	 * attempting to reopen zfsvfs.
1592 	 */
1593 	if (os != NULL) {
1594 		/*
1595 		 * Unset the objset user_ptr.
1596 		 */
1597 		mutex_enter(&os->os_user_ptr_lock);
1598 		dmu_objset_set_user(os, NULL);
1599 		mutex_exit(&os->os_user_ptr_lock);
1600 
1601 		/*
1602 		 * Finally release the objset
1603 		 */
1604 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1605 	}
1606 
1607 	zfsvfs_free(zfsvfs);
1608 	sb->s_fs_info = NULL;
1609 	return (0);
1610 }
1611 
1612 int
1613 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1614 {
1615 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1616 	vfs_t *vfsp;
1617 	boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1618 	int error;
1619 
1620 	if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1621 	    !(*flags & SB_RDONLY)) {
1622 		*flags |= SB_RDONLY;
1623 		return (EROFS);
1624 	}
1625 
1626 	error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1627 	if (error)
1628 		return (error);
1629 
1630 	if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1631 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1632 
1633 	zfs_unregister_callbacks(zfsvfs);
1634 	zfsvfs_vfs_free(zfsvfs->z_vfs);
1635 
1636 	vfsp->vfs_data = zfsvfs;
1637 	zfsvfs->z_vfs = vfsp;
1638 	if (!issnap)
1639 		(void) zfs_register_callbacks(vfsp);
1640 
1641 	return (error);
1642 }
1643 
1644 int
1645 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1646 {
1647 	zfsvfs_t	*zfsvfs = sb->s_fs_info;
1648 	znode_t		*zp;
1649 	uint64_t	object = 0;
1650 	uint64_t	fid_gen = 0;
1651 	uint64_t	gen_mask;
1652 	uint64_t	zp_gen;
1653 	int		i, err;
1654 
1655 	*ipp = NULL;
1656 
1657 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1658 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1659 
1660 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1661 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1662 
1663 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1664 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1665 	} else {
1666 		return (SET_ERROR(EINVAL));
1667 	}
1668 
1669 	/* LONG_FID_LEN means snapdirs */
1670 	if (fidp->fid_len == LONG_FID_LEN) {
1671 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1672 		uint64_t	objsetid = 0;
1673 		uint64_t	setgen = 0;
1674 
1675 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1676 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1677 
1678 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1679 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1680 
1681 		if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1682 			dprintf("snapdir fid: objsetid (%llu) != "
1683 			    "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1684 			    objsetid, ZFSCTL_INO_SNAPDIRS, object);
1685 
1686 			return (SET_ERROR(EINVAL));
1687 		}
1688 
1689 		if (fid_gen > 1 || setgen != 0) {
1690 			dprintf("snapdir fid: fid_gen (%llu) and setgen "
1691 			    "(%llu)\n", fid_gen, setgen);
1692 			return (SET_ERROR(EINVAL));
1693 		}
1694 
1695 		return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1696 	}
1697 
1698 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1699 		return (err);
1700 	/* A zero fid_gen means we are in the .zfs control directories */
1701 	if (fid_gen == 0 &&
1702 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1703 		*ipp = zfsvfs->z_ctldir;
1704 		ASSERT(*ipp != NULL);
1705 
1706 		if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) {
1707 			return (SET_ERROR(ENOENT));
1708 		}
1709 
1710 		if (object == ZFSCTL_INO_SNAPDIR) {
1711 			VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1712 			    0, kcred, NULL, NULL) == 0);
1713 		} else {
1714 			/*
1715 			 * Must have an existing ref, so igrab()
1716 			 * cannot return NULL
1717 			 */
1718 			VERIFY3P(igrab(*ipp), !=, NULL);
1719 		}
1720 		zfs_exit(zfsvfs, FTAG);
1721 		return (0);
1722 	}
1723 
1724 	gen_mask = -1ULL >> (64 - 8 * i);
1725 
1726 	dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1727 	if ((err = zfs_zget(zfsvfs, object, &zp))) {
1728 		zfs_exit(zfsvfs, FTAG);
1729 		return (err);
1730 	}
1731 
1732 	/* Don't export xattr stuff */
1733 	if (zp->z_pflags & ZFS_XATTR) {
1734 		zrele(zp);
1735 		zfs_exit(zfsvfs, FTAG);
1736 		return (SET_ERROR(ENOENT));
1737 	}
1738 
1739 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1740 	    sizeof (uint64_t));
1741 	zp_gen = zp_gen & gen_mask;
1742 	if (zp_gen == 0)
1743 		zp_gen = 1;
1744 	if ((fid_gen == 0) && (zfsvfs->z_root == object))
1745 		fid_gen = zp_gen;
1746 	if (zp->z_unlinked || zp_gen != fid_gen) {
1747 		dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1748 		    fid_gen);
1749 		zrele(zp);
1750 		zfs_exit(zfsvfs, FTAG);
1751 		return (SET_ERROR(ENOENT));
1752 	}
1753 
1754 	*ipp = ZTOI(zp);
1755 	if (*ipp)
1756 		zfs_znode_update_vfs(ITOZ(*ipp));
1757 
1758 	zfs_exit(zfsvfs, FTAG);
1759 	return (0);
1760 }
1761 
1762 /*
1763  * Block out VFS ops and close zfsvfs_t
1764  *
1765  * Note, if successful, then we return with the 'z_teardown_lock' and
1766  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
1767  * dataset and objset intact so that they can be atomically handed off during
1768  * a subsequent rollback or recv operation and the resume thereafter.
1769  */
1770 int
1771 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1772 {
1773 	int error;
1774 
1775 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1776 		return (error);
1777 
1778 	return (0);
1779 }
1780 
1781 /*
1782  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
1783  * is an invariant across any of the operations that can be performed while the
1784  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
1785  * are the same: the relevant objset and associated dataset are owned by
1786  * zfsvfs, held, and long held on entry.
1787  */
1788 int
1789 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1790 {
1791 	int err, err2;
1792 	znode_t *zp;
1793 
1794 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1795 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1796 
1797 	/*
1798 	 * We already own this, so just update the objset_t, as the one we
1799 	 * had before may have been evicted.
1800 	 */
1801 	objset_t *os;
1802 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1803 	VERIFY(dsl_dataset_long_held(ds));
1804 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1805 	dsl_pool_config_enter(dp, FTAG);
1806 	VERIFY0(dmu_objset_from_ds(ds, &os));
1807 	dsl_pool_config_exit(dp, FTAG);
1808 
1809 	err = zfsvfs_init(zfsvfs, os);
1810 	if (err != 0)
1811 		goto bail;
1812 
1813 	ds->ds_dir->dd_activity_cancelled = B_FALSE;
1814 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1815 
1816 	zfs_set_fuid_feature(zfsvfs);
1817 	zfsvfs->z_rollback_time = jiffies;
1818 
1819 	/*
1820 	 * Attempt to re-establish all the active inodes with their
1821 	 * dbufs.  If a zfs_rezget() fails, then we unhash the inode
1822 	 * and mark it stale.  This prevents a collision if a new
1823 	 * inode/object is created which must use the same inode
1824 	 * number.  The stale inode will be be released when the
1825 	 * VFS prunes the dentry holding the remaining references
1826 	 * on the stale inode.
1827 	 */
1828 	mutex_enter(&zfsvfs->z_znodes_lock);
1829 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1830 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1831 		err2 = zfs_rezget(zp);
1832 		if (err2) {
1833 			zpl_d_drop_aliases(ZTOI(zp));
1834 			remove_inode_hash(ZTOI(zp));
1835 		}
1836 
1837 		/* see comment in zfs_suspend_fs() */
1838 		if (zp->z_suspended) {
1839 			zfs_zrele_async(zp);
1840 			zp->z_suspended = B_FALSE;
1841 		}
1842 	}
1843 	mutex_exit(&zfsvfs->z_znodes_lock);
1844 
1845 	if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1846 		/*
1847 		 * zfs_suspend_fs() could have interrupted freeing
1848 		 * of dnodes. We need to restart this freeing so
1849 		 * that we don't "leak" the space.
1850 		 */
1851 		zfs_unlinked_drain(zfsvfs);
1852 	}
1853 
1854 	/*
1855 	 * Most of the time zfs_suspend_fs is used for changing the contents
1856 	 * of the underlying dataset. ZFS rollback and receive operations
1857 	 * might create files for which negative dentries are present in
1858 	 * the cache. Since walking the dcache would require a lot of GPL-only
1859 	 * code duplication, it's much easier on these rather rare occasions
1860 	 * just to flush the whole dcache for the given dataset/filesystem.
1861 	 */
1862 	shrink_dcache_sb(zfsvfs->z_sb);
1863 
1864 bail:
1865 	if (err != 0)
1866 		zfsvfs->z_unmounted = B_TRUE;
1867 
1868 	/* release the VFS ops */
1869 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1870 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1871 
1872 	if (err != 0) {
1873 		/*
1874 		 * Since we couldn't setup the sa framework, try to force
1875 		 * unmount this file system.
1876 		 */
1877 		if (zfsvfs->z_os)
1878 			(void) zfs_umount(zfsvfs->z_sb);
1879 	}
1880 	return (err);
1881 }
1882 
1883 /*
1884  * Release VOPs and unmount a suspended filesystem.
1885  */
1886 int
1887 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1888 {
1889 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1890 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1891 
1892 	/*
1893 	 * We already own this, so just hold and rele it to update the
1894 	 * objset_t, as the one we had before may have been evicted.
1895 	 */
1896 	objset_t *os;
1897 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1898 	VERIFY(dsl_dataset_long_held(ds));
1899 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1900 	dsl_pool_config_enter(dp, FTAG);
1901 	VERIFY0(dmu_objset_from_ds(ds, &os));
1902 	dsl_pool_config_exit(dp, FTAG);
1903 	zfsvfs->z_os = os;
1904 
1905 	/* release the VOPs */
1906 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1907 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1908 
1909 	/*
1910 	 * Try to force unmount this file system.
1911 	 */
1912 	(void) zfs_umount(zfsvfs->z_sb);
1913 	zfsvfs->z_unmounted = B_TRUE;
1914 	return (0);
1915 }
1916 
1917 /*
1918  * Automounted snapshots rely on periodic revalidation
1919  * to defer snapshots from being automatically unmounted.
1920  */
1921 
1922 inline void
1923 zfs_exit_fs(zfsvfs_t *zfsvfs)
1924 {
1925 	if (!zfsvfs->z_issnap)
1926 		return;
1927 
1928 	if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1929 	    MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1930 		zfsvfs->z_snap_defer_time = jiffies;
1931 		zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1932 		    dmu_objset_id(zfsvfs->z_os),
1933 		    zfs_expire_snapshot);
1934 	}
1935 }
1936 
1937 int
1938 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1939 {
1940 	int error;
1941 	objset_t *os = zfsvfs->z_os;
1942 	dmu_tx_t *tx;
1943 
1944 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1945 		return (SET_ERROR(EINVAL));
1946 
1947 	if (newvers < zfsvfs->z_version)
1948 		return (SET_ERROR(EINVAL));
1949 
1950 	if (zfs_spa_version_map(newvers) >
1951 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
1952 		return (SET_ERROR(ENOTSUP));
1953 
1954 	tx = dmu_tx_create(os);
1955 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1956 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1957 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1958 		    ZFS_SA_ATTRS);
1959 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1960 	}
1961 	error = dmu_tx_assign(tx, TXG_WAIT);
1962 	if (error) {
1963 		dmu_tx_abort(tx);
1964 		return (error);
1965 	}
1966 
1967 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1968 	    8, 1, &newvers, tx);
1969 
1970 	if (error) {
1971 		dmu_tx_commit(tx);
1972 		return (error);
1973 	}
1974 
1975 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1976 		uint64_t sa_obj;
1977 
1978 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
1979 		    SPA_VERSION_SA);
1980 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1981 		    DMU_OT_NONE, 0, tx);
1982 
1983 		error = zap_add(os, MASTER_NODE_OBJ,
1984 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1985 		ASSERT0(error);
1986 
1987 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
1988 		sa_register_update_callback(os, zfs_sa_upgrade);
1989 	}
1990 
1991 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
1992 	    "from %llu to %llu", zfsvfs->z_version, newvers);
1993 
1994 	dmu_tx_commit(tx);
1995 
1996 	zfsvfs->z_version = newvers;
1997 	os->os_version = newvers;
1998 
1999 	zfs_set_fuid_feature(zfsvfs);
2000 
2001 	return (0);
2002 }
2003 
2004 /*
2005  * Return true if the corresponding vfs's unmounted flag is set.
2006  * Otherwise return false.
2007  * If this function returns true we know VFS unmount has been initiated.
2008  */
2009 boolean_t
2010 zfs_get_vfs_flag_unmounted(objset_t *os)
2011 {
2012 	zfsvfs_t *zfvp;
2013 	boolean_t unmounted = B_FALSE;
2014 
2015 	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2016 
2017 	mutex_enter(&os->os_user_ptr_lock);
2018 	zfvp = dmu_objset_get_user(os);
2019 	if (zfvp != NULL && zfvp->z_unmounted)
2020 		unmounted = B_TRUE;
2021 	mutex_exit(&os->os_user_ptr_lock);
2022 
2023 	return (unmounted);
2024 }
2025 
2026 void
2027 zfsvfs_update_fromname(const char *oldname, const char *newname)
2028 {
2029 	/*
2030 	 * We don't need to do anything here, the devname is always current by
2031 	 * virtue of zfsvfs->z_sb->s_op->show_devname.
2032 	 */
2033 	(void) oldname, (void) newname;
2034 }
2035 
2036 void
2037 zfs_init(void)
2038 {
2039 	zfsctl_init();
2040 	zfs_znode_init();
2041 	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2042 	register_filesystem(&zpl_fs_type);
2043 }
2044 
2045 void
2046 zfs_fini(void)
2047 {
2048 	/*
2049 	 * we don't use outstanding because zpl_posix_acl_free might add more.
2050 	 */
2051 	taskq_wait(system_delay_taskq);
2052 	taskq_wait(system_taskq);
2053 	unregister_filesystem(&zpl_fs_type);
2054 	zfs_znode_fini();
2055 	zfsctl_fini();
2056 }
2057 
2058 #if defined(_KERNEL)
2059 EXPORT_SYMBOL(zfs_suspend_fs);
2060 EXPORT_SYMBOL(zfs_resume_fs);
2061 EXPORT_SYMBOL(zfs_set_version);
2062 EXPORT_SYMBOL(zfsvfs_create);
2063 EXPORT_SYMBOL(zfsvfs_free);
2064 EXPORT_SYMBOL(zfs_is_readonly);
2065 EXPORT_SYMBOL(zfs_domount);
2066 EXPORT_SYMBOL(zfs_preumount);
2067 EXPORT_SYMBOL(zfs_umount);
2068 EXPORT_SYMBOL(zfs_remount);
2069 EXPORT_SYMBOL(zfs_statvfs);
2070 EXPORT_SYMBOL(zfs_vget);
2071 EXPORT_SYMBOL(zfs_prune);
2072 #endif
2073