1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/mntent.h> 37 #include <sys/cmn_err.h> 38 #include <sys/zfs_znode.h> 39 #include <sys/zfs_vnops.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/sa.h> 50 #include <sys/sa_impl.h> 51 #include <sys/policy.h> 52 #include <sys/atomic.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_ctldir.h> 55 #include <sys/zfs_fuid.h> 56 #include <sys/zfs_quota.h> 57 #include <sys/sunddi.h> 58 #include <sys/dmu_objset.h> 59 #include <sys/dsl_dir.h> 60 #include <sys/objlist.h> 61 #include <sys/zfeature.h> 62 #include <sys/zpl.h> 63 #include <linux/vfs_compat.h> 64 #include <linux/fs.h> 65 #include "zfs_comutil.h" 66 67 enum { 68 TOKEN_RO, 69 TOKEN_RW, 70 TOKEN_SETUID, 71 TOKEN_NOSETUID, 72 TOKEN_EXEC, 73 TOKEN_NOEXEC, 74 TOKEN_DEVICES, 75 TOKEN_NODEVICES, 76 TOKEN_DIRXATTR, 77 TOKEN_SAXATTR, 78 TOKEN_XATTR, 79 TOKEN_NOXATTR, 80 TOKEN_ATIME, 81 TOKEN_NOATIME, 82 TOKEN_RELATIME, 83 TOKEN_NORELATIME, 84 TOKEN_NBMAND, 85 TOKEN_NONBMAND, 86 TOKEN_MNTPOINT, 87 TOKEN_LAST, 88 }; 89 90 static const match_table_t zpl_tokens = { 91 { TOKEN_RO, MNTOPT_RO }, 92 { TOKEN_RW, MNTOPT_RW }, 93 { TOKEN_SETUID, MNTOPT_SETUID }, 94 { TOKEN_NOSETUID, MNTOPT_NOSETUID }, 95 { TOKEN_EXEC, MNTOPT_EXEC }, 96 { TOKEN_NOEXEC, MNTOPT_NOEXEC }, 97 { TOKEN_DEVICES, MNTOPT_DEVICES }, 98 { TOKEN_NODEVICES, MNTOPT_NODEVICES }, 99 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR }, 100 { TOKEN_SAXATTR, MNTOPT_SAXATTR }, 101 { TOKEN_XATTR, MNTOPT_XATTR }, 102 { TOKEN_NOXATTR, MNTOPT_NOXATTR }, 103 { TOKEN_ATIME, MNTOPT_ATIME }, 104 { TOKEN_NOATIME, MNTOPT_NOATIME }, 105 { TOKEN_RELATIME, MNTOPT_RELATIME }, 106 { TOKEN_NORELATIME, MNTOPT_NORELATIME }, 107 { TOKEN_NBMAND, MNTOPT_NBMAND }, 108 { TOKEN_NONBMAND, MNTOPT_NONBMAND }, 109 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" }, 110 { TOKEN_LAST, NULL }, 111 }; 112 113 static void 114 zfsvfs_vfs_free(vfs_t *vfsp) 115 { 116 if (vfsp != NULL) { 117 if (vfsp->vfs_mntpoint != NULL) 118 kmem_strfree(vfsp->vfs_mntpoint); 119 mutex_destroy(&vfsp->vfs_mntpt_lock); 120 kmem_free(vfsp, sizeof (vfs_t)); 121 } 122 } 123 124 static int 125 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp) 126 { 127 switch (token) { 128 case TOKEN_RO: 129 vfsp->vfs_readonly = B_TRUE; 130 vfsp->vfs_do_readonly = B_TRUE; 131 break; 132 case TOKEN_RW: 133 vfsp->vfs_readonly = B_FALSE; 134 vfsp->vfs_do_readonly = B_TRUE; 135 break; 136 case TOKEN_SETUID: 137 vfsp->vfs_setuid = B_TRUE; 138 vfsp->vfs_do_setuid = B_TRUE; 139 break; 140 case TOKEN_NOSETUID: 141 vfsp->vfs_setuid = B_FALSE; 142 vfsp->vfs_do_setuid = B_TRUE; 143 break; 144 case TOKEN_EXEC: 145 vfsp->vfs_exec = B_TRUE; 146 vfsp->vfs_do_exec = B_TRUE; 147 break; 148 case TOKEN_NOEXEC: 149 vfsp->vfs_exec = B_FALSE; 150 vfsp->vfs_do_exec = B_TRUE; 151 break; 152 case TOKEN_DEVICES: 153 vfsp->vfs_devices = B_TRUE; 154 vfsp->vfs_do_devices = B_TRUE; 155 break; 156 case TOKEN_NODEVICES: 157 vfsp->vfs_devices = B_FALSE; 158 vfsp->vfs_do_devices = B_TRUE; 159 break; 160 case TOKEN_DIRXATTR: 161 vfsp->vfs_xattr = ZFS_XATTR_DIR; 162 vfsp->vfs_do_xattr = B_TRUE; 163 break; 164 case TOKEN_SAXATTR: 165 vfsp->vfs_xattr = ZFS_XATTR_SA; 166 vfsp->vfs_do_xattr = B_TRUE; 167 break; 168 case TOKEN_XATTR: 169 vfsp->vfs_xattr = ZFS_XATTR_SA; 170 vfsp->vfs_do_xattr = B_TRUE; 171 break; 172 case TOKEN_NOXATTR: 173 vfsp->vfs_xattr = ZFS_XATTR_OFF; 174 vfsp->vfs_do_xattr = B_TRUE; 175 break; 176 case TOKEN_ATIME: 177 vfsp->vfs_atime = B_TRUE; 178 vfsp->vfs_do_atime = B_TRUE; 179 break; 180 case TOKEN_NOATIME: 181 vfsp->vfs_atime = B_FALSE; 182 vfsp->vfs_do_atime = B_TRUE; 183 break; 184 case TOKEN_RELATIME: 185 vfsp->vfs_relatime = B_TRUE; 186 vfsp->vfs_do_relatime = B_TRUE; 187 break; 188 case TOKEN_NORELATIME: 189 vfsp->vfs_relatime = B_FALSE; 190 vfsp->vfs_do_relatime = B_TRUE; 191 break; 192 case TOKEN_NBMAND: 193 vfsp->vfs_nbmand = B_TRUE; 194 vfsp->vfs_do_nbmand = B_TRUE; 195 break; 196 case TOKEN_NONBMAND: 197 vfsp->vfs_nbmand = B_FALSE; 198 vfsp->vfs_do_nbmand = B_TRUE; 199 break; 200 case TOKEN_MNTPOINT: 201 if (vfsp->vfs_mntpoint != NULL) 202 kmem_strfree(vfsp->vfs_mntpoint); 203 vfsp->vfs_mntpoint = match_strdup(&args[0]); 204 if (vfsp->vfs_mntpoint == NULL) 205 return (SET_ERROR(ENOMEM)); 206 break; 207 default: 208 break; 209 } 210 211 return (0); 212 } 213 214 /* 215 * Parse the raw mntopts and return a vfs_t describing the options. 216 */ 217 static int 218 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp) 219 { 220 vfs_t *tmp_vfsp; 221 int error; 222 223 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP); 224 mutex_init(&tmp_vfsp->vfs_mntpt_lock, NULL, MUTEX_DEFAULT, NULL); 225 226 if (mntopts != NULL) { 227 substring_t args[MAX_OPT_ARGS]; 228 char *tmp_mntopts, *p, *t; 229 int token; 230 231 tmp_mntopts = t = kmem_strdup(mntopts); 232 if (tmp_mntopts == NULL) 233 return (SET_ERROR(ENOMEM)); 234 235 while ((p = strsep(&t, ",")) != NULL) { 236 if (!*p) 237 continue; 238 239 args[0].to = args[0].from = NULL; 240 token = match_token(p, zpl_tokens, args); 241 error = zfsvfs_parse_option(p, token, args, tmp_vfsp); 242 if (error) { 243 kmem_strfree(tmp_mntopts); 244 zfsvfs_vfs_free(tmp_vfsp); 245 return (error); 246 } 247 } 248 249 kmem_strfree(tmp_mntopts); 250 } 251 252 *vfsp = tmp_vfsp; 253 254 return (0); 255 } 256 257 boolean_t 258 zfs_is_readonly(zfsvfs_t *zfsvfs) 259 { 260 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY)); 261 } 262 263 int 264 zfs_sync(struct super_block *sb, int wait, cred_t *cr) 265 { 266 (void) cr; 267 zfsvfs_t *zfsvfs = sb->s_fs_info; 268 269 /* 270 * Semantically, the only requirement is that the sync be initiated. 271 * The DMU syncs out txgs frequently, so there's nothing to do. 272 */ 273 if (!wait) 274 return (0); 275 276 if (zfsvfs != NULL) { 277 /* 278 * Sync a specific filesystem. 279 */ 280 dsl_pool_t *dp; 281 int error; 282 283 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 284 return (error); 285 dp = dmu_objset_pool(zfsvfs->z_os); 286 287 /* 288 * If the system is shutting down, then skip any 289 * filesystems which may exist on a suspended pool. 290 */ 291 if (spa_suspended(dp->dp_spa)) { 292 zfs_exit(zfsvfs, FTAG); 293 return (0); 294 } 295 296 if (zfsvfs->z_log != NULL) 297 zil_commit(zfsvfs->z_log, 0); 298 299 zfs_exit(zfsvfs, FTAG); 300 } else { 301 /* 302 * Sync all ZFS filesystems. This is what happens when you 303 * run sync(1). Unlike other filesystems, ZFS honors the 304 * request by waiting for all pools to commit all dirty data. 305 */ 306 spa_sync_allpools(); 307 } 308 309 return (0); 310 } 311 312 static void 313 atime_changed_cb(void *arg, uint64_t newval) 314 { 315 zfsvfs_t *zfsvfs = arg; 316 struct super_block *sb = zfsvfs->z_sb; 317 318 if (sb == NULL) 319 return; 320 /* 321 * Update SB_NOATIME bit in VFS super block. Since atime update is 322 * determined by atime_needs_update(), atime_needs_update() needs to 323 * return false if atime is turned off, and not unconditionally return 324 * false if atime is turned on. 325 */ 326 if (newval) 327 sb->s_flags &= ~SB_NOATIME; 328 else 329 sb->s_flags |= SB_NOATIME; 330 } 331 332 static void 333 relatime_changed_cb(void *arg, uint64_t newval) 334 { 335 ((zfsvfs_t *)arg)->z_relatime = newval; 336 } 337 338 static void 339 xattr_changed_cb(void *arg, uint64_t newval) 340 { 341 zfsvfs_t *zfsvfs = arg; 342 343 if (newval == ZFS_XATTR_OFF) { 344 zfsvfs->z_flags &= ~ZSB_XATTR; 345 } else { 346 zfsvfs->z_flags |= ZSB_XATTR; 347 348 if (newval == ZFS_XATTR_SA) 349 zfsvfs->z_xattr_sa = B_TRUE; 350 else 351 zfsvfs->z_xattr_sa = B_FALSE; 352 } 353 } 354 355 static void 356 acltype_changed_cb(void *arg, uint64_t newval) 357 { 358 zfsvfs_t *zfsvfs = arg; 359 360 switch (newval) { 361 case ZFS_ACLTYPE_NFSV4: 362 case ZFS_ACLTYPE_OFF: 363 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 364 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 365 break; 366 case ZFS_ACLTYPE_POSIX: 367 #ifdef CONFIG_FS_POSIX_ACL 368 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX; 369 zfsvfs->z_sb->s_flags |= SB_POSIXACL; 370 #else 371 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 372 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 373 #endif /* CONFIG_FS_POSIX_ACL */ 374 break; 375 default: 376 break; 377 } 378 } 379 380 static void 381 blksz_changed_cb(void *arg, uint64_t newval) 382 { 383 zfsvfs_t *zfsvfs = arg; 384 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 385 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 386 ASSERT(ISP2(newval)); 387 388 zfsvfs->z_max_blksz = newval; 389 } 390 391 static void 392 readonly_changed_cb(void *arg, uint64_t newval) 393 { 394 zfsvfs_t *zfsvfs = arg; 395 struct super_block *sb = zfsvfs->z_sb; 396 397 if (sb == NULL) 398 return; 399 400 if (newval) 401 sb->s_flags |= SB_RDONLY; 402 else 403 sb->s_flags &= ~SB_RDONLY; 404 } 405 406 static void 407 devices_changed_cb(void *arg, uint64_t newval) 408 { 409 } 410 411 static void 412 setuid_changed_cb(void *arg, uint64_t newval) 413 { 414 } 415 416 static void 417 exec_changed_cb(void *arg, uint64_t newval) 418 { 419 } 420 421 static void 422 nbmand_changed_cb(void *arg, uint64_t newval) 423 { 424 zfsvfs_t *zfsvfs = arg; 425 struct super_block *sb = zfsvfs->z_sb; 426 427 if (sb == NULL) 428 return; 429 430 if (newval == TRUE) 431 sb->s_flags |= SB_MANDLOCK; 432 else 433 sb->s_flags &= ~SB_MANDLOCK; 434 } 435 436 static void 437 snapdir_changed_cb(void *arg, uint64_t newval) 438 { 439 ((zfsvfs_t *)arg)->z_show_ctldir = newval; 440 } 441 442 static void 443 acl_mode_changed_cb(void *arg, uint64_t newval) 444 { 445 zfsvfs_t *zfsvfs = arg; 446 447 zfsvfs->z_acl_mode = newval; 448 } 449 450 static void 451 acl_inherit_changed_cb(void *arg, uint64_t newval) 452 { 453 ((zfsvfs_t *)arg)->z_acl_inherit = newval; 454 } 455 456 static void 457 longname_changed_cb(void *arg, uint64_t newval) 458 { 459 ((zfsvfs_t *)arg)->z_longname = newval; 460 } 461 462 static int 463 zfs_register_callbacks(vfs_t *vfsp) 464 { 465 struct dsl_dataset *ds = NULL; 466 objset_t *os = NULL; 467 zfsvfs_t *zfsvfs = NULL; 468 int error = 0; 469 470 ASSERT(vfsp); 471 zfsvfs = vfsp->vfs_data; 472 ASSERT(zfsvfs); 473 os = zfsvfs->z_os; 474 475 /* 476 * The act of registering our callbacks will destroy any mount 477 * options we may have. In order to enable temporary overrides 478 * of mount options, we stash away the current values and 479 * restore them after we register the callbacks. 480 */ 481 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) { 482 vfsp->vfs_do_readonly = B_TRUE; 483 vfsp->vfs_readonly = B_TRUE; 484 } 485 486 /* 487 * Register property callbacks. 488 * 489 * It would probably be fine to just check for i/o error from 490 * the first prop_register(), but I guess I like to go 491 * overboard... 492 */ 493 ds = dmu_objset_ds(os); 494 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 495 error = dsl_prop_register(ds, 496 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 497 error = error ? error : dsl_prop_register(ds, 498 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs); 499 error = error ? error : dsl_prop_register(ds, 500 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 501 error = error ? error : dsl_prop_register(ds, 502 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 503 error = error ? error : dsl_prop_register(ds, 504 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 505 error = error ? error : dsl_prop_register(ds, 506 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 507 error = error ? error : dsl_prop_register(ds, 508 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 509 error = error ? error : dsl_prop_register(ds, 510 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 511 error = error ? error : dsl_prop_register(ds, 512 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 513 error = error ? error : dsl_prop_register(ds, 514 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs); 515 error = error ? error : dsl_prop_register(ds, 516 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 517 error = error ? error : dsl_prop_register(ds, 518 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 519 zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 zfs_prop_to_name(ZFS_PROP_LONGNAME), longname_changed_cb, zfsvfs); 524 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 525 if (error) 526 goto unregister; 527 528 /* 529 * Invoke our callbacks to restore temporary mount options. 530 */ 531 if (vfsp->vfs_do_readonly) 532 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly); 533 if (vfsp->vfs_do_setuid) 534 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid); 535 if (vfsp->vfs_do_exec) 536 exec_changed_cb(zfsvfs, vfsp->vfs_exec); 537 if (vfsp->vfs_do_devices) 538 devices_changed_cb(zfsvfs, vfsp->vfs_devices); 539 if (vfsp->vfs_do_xattr) 540 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr); 541 if (vfsp->vfs_do_atime) 542 atime_changed_cb(zfsvfs, vfsp->vfs_atime); 543 if (vfsp->vfs_do_relatime) 544 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime); 545 if (vfsp->vfs_do_nbmand) 546 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand); 547 548 return (0); 549 550 unregister: 551 dsl_prop_unregister_all(ds, zfsvfs); 552 return (error); 553 } 554 555 /* 556 * Takes a dataset, a property, a value and that value's setpoint as 557 * found in the ZAP. Checks if the property has been changed in the vfs. 558 * If so, val and setpoint will be overwritten with updated content. 559 * Otherwise, they are left unchanged. 560 */ 561 int 562 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val, 563 char *setpoint) 564 { 565 int error; 566 zfsvfs_t *zfvp; 567 vfs_t *vfsp; 568 objset_t *os; 569 uint64_t tmp = *val; 570 571 error = dmu_objset_from_ds(ds, &os); 572 if (error != 0) 573 return (error); 574 575 if (dmu_objset_type(os) != DMU_OST_ZFS) 576 return (EINVAL); 577 578 mutex_enter(&os->os_user_ptr_lock); 579 zfvp = dmu_objset_get_user(os); 580 mutex_exit(&os->os_user_ptr_lock); 581 if (zfvp == NULL) 582 return (ESRCH); 583 584 vfsp = zfvp->z_vfs; 585 586 switch (zfs_prop) { 587 case ZFS_PROP_ATIME: 588 if (vfsp->vfs_do_atime) 589 tmp = vfsp->vfs_atime; 590 break; 591 case ZFS_PROP_RELATIME: 592 if (vfsp->vfs_do_relatime) 593 tmp = vfsp->vfs_relatime; 594 break; 595 case ZFS_PROP_DEVICES: 596 if (vfsp->vfs_do_devices) 597 tmp = vfsp->vfs_devices; 598 break; 599 case ZFS_PROP_EXEC: 600 if (vfsp->vfs_do_exec) 601 tmp = vfsp->vfs_exec; 602 break; 603 case ZFS_PROP_SETUID: 604 if (vfsp->vfs_do_setuid) 605 tmp = vfsp->vfs_setuid; 606 break; 607 case ZFS_PROP_READONLY: 608 if (vfsp->vfs_do_readonly) 609 tmp = vfsp->vfs_readonly; 610 break; 611 case ZFS_PROP_XATTR: 612 if (vfsp->vfs_do_xattr) 613 tmp = vfsp->vfs_xattr; 614 break; 615 case ZFS_PROP_NBMAND: 616 if (vfsp->vfs_do_nbmand) 617 tmp = vfsp->vfs_nbmand; 618 break; 619 default: 620 return (ENOENT); 621 } 622 623 if (tmp != *val) { 624 if (setpoint) 625 (void) strcpy(setpoint, "temporary"); 626 *val = tmp; 627 } 628 return (0); 629 } 630 631 /* 632 * Associate this zfsvfs with the given objset, which must be owned. 633 * This will cache a bunch of on-disk state from the objset in the 634 * zfsvfs. 635 */ 636 static int 637 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) 638 { 639 int error; 640 uint64_t val; 641 642 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 643 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 644 zfsvfs->z_os = os; 645 646 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 647 if (error != 0) 648 return (error); 649 if (zfsvfs->z_version > 650 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 651 (void) printk("Can't mount a version %lld file system " 652 "on a version %lld pool\n. Pool must be upgraded to mount " 653 "this file system.\n", (u_longlong_t)zfsvfs->z_version, 654 (u_longlong_t)spa_version(dmu_objset_spa(os))); 655 return (SET_ERROR(ENOTSUP)); 656 } 657 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); 658 if (error != 0) 659 return (error); 660 zfsvfs->z_norm = (int)val; 661 662 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); 663 if (error != 0) 664 return (error); 665 zfsvfs->z_utf8 = (val != 0); 666 667 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); 668 if (error != 0) 669 return (error); 670 zfsvfs->z_case = (uint_t)val; 671 672 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0) 673 return (error); 674 zfsvfs->z_acl_type = (uint_t)val; 675 676 /* 677 * Fold case on file systems that are always or sometimes case 678 * insensitive. 679 */ 680 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 681 zfsvfs->z_case == ZFS_CASE_MIXED) 682 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 683 684 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 685 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 686 687 uint64_t sa_obj = 0; 688 if (zfsvfs->z_use_sa) { 689 /* should either have both of these objects or none */ 690 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 691 &sa_obj); 692 if (error != 0) 693 return (error); 694 695 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val); 696 if ((error == 0) && (val == ZFS_XATTR_SA)) 697 zfsvfs->z_xattr_sa = B_TRUE; 698 } 699 700 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSERQUOTA, 701 &zfsvfs->z_defaultuserquota); 702 if (error != 0) 703 return (error); 704 705 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPQUOTA, 706 &zfsvfs->z_defaultgroupquota); 707 if (error != 0) 708 return (error); 709 710 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTQUOTA, 711 &zfsvfs->z_defaultprojectquota); 712 if (error != 0) 713 return (error); 714 715 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSEROBJQUOTA, 716 &zfsvfs->z_defaultuserobjquota); 717 if (error != 0) 718 return (error); 719 720 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPOBJQUOTA, 721 &zfsvfs->z_defaultgroupobjquota); 722 if (error != 0) 723 return (error); 724 725 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTOBJQUOTA, 726 &zfsvfs->z_defaultprojectobjquota); 727 if (error != 0) 728 return (error); 729 730 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 731 &zfsvfs->z_root); 732 if (error != 0) 733 return (error); 734 ASSERT(zfsvfs->z_root != 0); 735 736 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 737 &zfsvfs->z_unlinkedobj); 738 if (error != 0) 739 return (error); 740 741 error = zap_lookup(os, MASTER_NODE_OBJ, 742 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 743 8, 1, &zfsvfs->z_userquota_obj); 744 if (error == ENOENT) 745 zfsvfs->z_userquota_obj = 0; 746 else if (error != 0) 747 return (error); 748 749 error = zap_lookup(os, MASTER_NODE_OBJ, 750 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 751 8, 1, &zfsvfs->z_groupquota_obj); 752 if (error == ENOENT) 753 zfsvfs->z_groupquota_obj = 0; 754 else if (error != 0) 755 return (error); 756 757 error = zap_lookup(os, MASTER_NODE_OBJ, 758 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 759 8, 1, &zfsvfs->z_projectquota_obj); 760 if (error == ENOENT) 761 zfsvfs->z_projectquota_obj = 0; 762 else if (error != 0) 763 return (error); 764 765 error = zap_lookup(os, MASTER_NODE_OBJ, 766 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 767 8, 1, &zfsvfs->z_userobjquota_obj); 768 if (error == ENOENT) 769 zfsvfs->z_userobjquota_obj = 0; 770 else if (error != 0) 771 return (error); 772 773 error = zap_lookup(os, MASTER_NODE_OBJ, 774 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 775 8, 1, &zfsvfs->z_groupobjquota_obj); 776 if (error == ENOENT) 777 zfsvfs->z_groupobjquota_obj = 0; 778 else if (error != 0) 779 return (error); 780 781 error = zap_lookup(os, MASTER_NODE_OBJ, 782 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 783 8, 1, &zfsvfs->z_projectobjquota_obj); 784 if (error == ENOENT) 785 zfsvfs->z_projectobjquota_obj = 0; 786 else if (error != 0) 787 return (error); 788 789 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 790 &zfsvfs->z_fuid_obj); 791 if (error == ENOENT) 792 zfsvfs->z_fuid_obj = 0; 793 else if (error != 0) 794 return (error); 795 796 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 797 &zfsvfs->z_shares_dir); 798 if (error == ENOENT) 799 zfsvfs->z_shares_dir = 0; 800 else if (error != 0) 801 return (error); 802 803 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 804 &zfsvfs->z_attr_table); 805 if (error != 0) 806 return (error); 807 808 if (zfsvfs->z_version >= ZPL_VERSION_SA) 809 sa_register_update_callback(os, zfs_sa_upgrade); 810 811 return (0); 812 } 813 814 int 815 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) 816 { 817 objset_t *os; 818 zfsvfs_t *zfsvfs; 819 int error; 820 boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); 821 822 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 823 824 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); 825 if (error != 0) { 826 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 827 return (error); 828 } 829 830 error = zfsvfs_create_impl(zfvp, zfsvfs, os); 831 832 return (error); 833 } 834 835 836 /* 837 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function 838 * on a failure. Do not pass in a statically allocated zfsvfs. 839 */ 840 int 841 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) 842 { 843 int error; 844 845 zfsvfs->z_vfs = NULL; 846 zfsvfs->z_sb = NULL; 847 zfsvfs->z_parent = zfsvfs; 848 849 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 850 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 851 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 852 offsetof(znode_t, z_link_node)); 853 ZFS_TEARDOWN_INIT(zfsvfs); 854 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 855 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 856 857 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1), 858 ZFS_OBJ_MTX_MAX); 859 zfsvfs->z_hold_size = size; 860 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, 861 KM_SLEEP); 862 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP); 863 for (int i = 0; i != size; i++) { 864 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare, 865 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node)); 866 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL); 867 } 868 869 error = zfsvfs_init(zfsvfs, os); 870 if (error != 0) { 871 dmu_objset_disown(os, B_TRUE, zfsvfs); 872 *zfvp = NULL; 873 zfsvfs_free(zfsvfs); 874 return (error); 875 } 876 877 zfsvfs->z_drain_task = TASKQID_INVALID; 878 zfsvfs->z_draining = B_FALSE; 879 zfsvfs->z_drain_cancel = B_TRUE; 880 881 *zfvp = zfsvfs; 882 return (0); 883 } 884 885 static int 886 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 887 { 888 int error; 889 boolean_t readonly = zfs_is_readonly(zfsvfs); 890 891 error = zfs_register_callbacks(zfsvfs->z_vfs); 892 if (error) 893 return (error); 894 895 /* 896 * If we are not mounting (ie: online recv), then we don't 897 * have to worry about replaying the log as we blocked all 898 * operations out since we closed the ZIL. 899 */ 900 if (mounting) { 901 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL); 902 error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os); 903 if (error) 904 return (error); 905 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data, 906 &zfsvfs->z_kstat.dk_zil_sums); 907 908 /* 909 * During replay we remove the read only flag to 910 * allow replays to succeed. 911 */ 912 if (readonly != 0) { 913 readonly_changed_cb(zfsvfs, B_FALSE); 914 } else { 915 zap_stats_t zs; 916 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj, 917 &zs) == 0) { 918 dataset_kstats_update_nunlinks_kstat( 919 &zfsvfs->z_kstat, zs.zs_num_entries); 920 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 921 "num_entries in unlinked set: %llu", 922 zs.zs_num_entries); 923 } 924 zfs_unlinked_drain(zfsvfs); 925 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; 926 dd->dd_activity_cancelled = B_FALSE; 927 } 928 929 /* 930 * Parse and replay the intent log. 931 * 932 * Because of ziltest, this must be done after 933 * zfs_unlinked_drain(). (Further note: ziltest 934 * doesn't use readonly mounts, where 935 * zfs_unlinked_drain() isn't called.) This is because 936 * ziltest causes spa_sync() to think it's committed, 937 * but actually it is not, so the intent log contains 938 * many txg's worth of changes. 939 * 940 * In particular, if object N is in the unlinked set in 941 * the last txg to actually sync, then it could be 942 * actually freed in a later txg and then reallocated 943 * in a yet later txg. This would write a "create 944 * object N" record to the intent log. Normally, this 945 * would be fine because the spa_sync() would have 946 * written out the fact that object N is free, before 947 * we could write the "create object N" intent log 948 * record. 949 * 950 * But when we are in ziltest mode, we advance the "open 951 * txg" without actually spa_sync()-ing the changes to 952 * disk. So we would see that object N is still 953 * allocated and in the unlinked set, and there is an 954 * intent log record saying to allocate it. 955 */ 956 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 957 if (zil_replay_disable) { 958 zil_destroy(zfsvfs->z_log, B_FALSE); 959 } else { 960 zfsvfs->z_replay = B_TRUE; 961 zil_replay(zfsvfs->z_os, zfsvfs, 962 zfs_replay_vector); 963 zfsvfs->z_replay = B_FALSE; 964 } 965 } 966 967 /* restore readonly bit */ 968 if (readonly != 0) 969 readonly_changed_cb(zfsvfs, B_TRUE); 970 } else { 971 ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL); 972 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data, 973 &zfsvfs->z_kstat.dk_zil_sums); 974 } 975 976 /* 977 * Set the objset user_ptr to track its zfsvfs. 978 */ 979 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 980 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 981 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 982 983 return (0); 984 } 985 986 void 987 zfsvfs_free(zfsvfs_t *zfsvfs) 988 { 989 int i, size = zfsvfs->z_hold_size; 990 991 zfs_fuid_destroy(zfsvfs); 992 993 mutex_destroy(&zfsvfs->z_znodes_lock); 994 mutex_destroy(&zfsvfs->z_lock); 995 list_destroy(&zfsvfs->z_all_znodes); 996 ZFS_TEARDOWN_DESTROY(zfsvfs); 997 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 998 rw_destroy(&zfsvfs->z_fuid_lock); 999 for (i = 0; i != size; i++) { 1000 avl_destroy(&zfsvfs->z_hold_trees[i]); 1001 mutex_destroy(&zfsvfs->z_hold_locks[i]); 1002 } 1003 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size); 1004 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size); 1005 zfsvfs_vfs_free(zfsvfs->z_vfs); 1006 dataset_kstats_destroy(&zfsvfs->z_kstat); 1007 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1008 } 1009 1010 static void 1011 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1012 { 1013 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1014 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1015 } 1016 1017 static void 1018 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1019 { 1020 objset_t *os = zfsvfs->z_os; 1021 1022 if (!dmu_objset_is_snapshot(os)) 1023 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 1024 } 1025 1026 #ifdef HAVE_MLSLABEL 1027 /* 1028 * Check that the hex label string is appropriate for the dataset being 1029 * mounted into the global_zone proper. 1030 * 1031 * Return an error if the hex label string is not default or 1032 * admin_low/admin_high. For admin_low labels, the corresponding 1033 * dataset must be readonly. 1034 */ 1035 int 1036 zfs_check_global_label(const char *dsname, const char *hexsl) 1037 { 1038 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1039 return (0); 1040 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1041 return (0); 1042 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1043 /* must be readonly */ 1044 uint64_t rdonly; 1045 1046 if (dsl_prop_get_integer(dsname, 1047 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1048 return (SET_ERROR(EACCES)); 1049 return (rdonly ? 0 : SET_ERROR(EACCES)); 1050 } 1051 return (SET_ERROR(EACCES)); 1052 } 1053 #endif /* HAVE_MLSLABEL */ 1054 1055 static int 1056 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp, 1057 uint32_t bshift) 1058 { 1059 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 1060 uint64_t offset = DMU_OBJACCT_PREFIX_LEN; 1061 uint64_t quota; 1062 uint64_t used; 1063 int err; 1064 1065 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1); 1066 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, 1067 sizeof (buf) - offset, B_FALSE); 1068 if (err) 1069 return (err); 1070 1071 if (zfsvfs->z_projectquota_obj == 0) { 1072 if (zfsvfs->z_defaultprojectquota == 0) 1073 goto objs; 1074 quota = zfsvfs->z_defaultprojectquota; 1075 } else { 1076 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj, 1077 buf + offset, 8, 1, "a); 1078 if (err && (quota = zfsvfs->z_defaultprojectquota) == 0) { 1079 if (err == ENOENT) 1080 goto objs; 1081 return (err); 1082 } 1083 } 1084 1085 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1086 buf + offset, 8, 1, &used); 1087 if (unlikely(err == ENOENT)) { 1088 uint32_t blksize; 1089 u_longlong_t nblocks; 1090 1091 /* 1092 * Quota accounting is async, so it is possible race case. 1093 * There is at least one object with the given project ID. 1094 */ 1095 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); 1096 if (unlikely(zp->z_blksz == 0)) 1097 blksize = zfsvfs->z_max_blksz; 1098 1099 used = blksize * nblocks; 1100 } else if (err) { 1101 return (err); 1102 } 1103 1104 statp->f_blocks = quota >> bshift; 1105 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0; 1106 statp->f_bavail = statp->f_bfree; 1107 1108 objs: 1109 1110 if (zfsvfs->z_projectobjquota_obj == 0) { 1111 if (zfsvfs->z_defaultprojectobjquota == 0) 1112 return (0); 1113 quota = zfsvfs->z_defaultprojectobjquota; 1114 } else { 1115 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj, 1116 buf + offset, 8, 1, "a); 1117 if (err && (quota = zfsvfs->z_defaultprojectobjquota) == 0) { 1118 if (err == ENOENT) 1119 return (0); 1120 return (err); 1121 } 1122 } 1123 1124 1125 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1126 buf, 8, 1, &used); 1127 if (unlikely(err == ENOENT)) { 1128 /* 1129 * Quota accounting is async, so it is possible race case. 1130 * There is at least one object with the given project ID. 1131 */ 1132 used = 1; 1133 } else if (err) { 1134 return (err); 1135 } 1136 1137 statp->f_files = quota; 1138 statp->f_ffree = (quota > used) ? (quota - used) : 0; 1139 1140 return (0); 1141 } 1142 1143 int 1144 zfs_statvfs(struct inode *ip, struct kstatfs *statp) 1145 { 1146 zfsvfs_t *zfsvfs = ITOZSB(ip); 1147 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1148 int err = 0; 1149 1150 if ((err = zfs_enter(zfsvfs, FTAG)) != 0) 1151 return (err); 1152 1153 dmu_objset_space(zfsvfs->z_os, 1154 &refdbytes, &availbytes, &usedobjs, &availobjs); 1155 1156 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os); 1157 /* 1158 * The underlying storage pool actually uses multiple block 1159 * size. Under Solaris frsize (fragment size) is reported as 1160 * the smallest block size we support, and bsize (block size) 1161 * as the filesystem's maximum block size. Unfortunately, 1162 * under Linux the fragment size and block size are often used 1163 * interchangeably. Thus we are forced to report both of them 1164 * as the filesystem's maximum block size. 1165 */ 1166 statp->f_frsize = zfsvfs->z_max_blksz; 1167 statp->f_bsize = zfsvfs->z_max_blksz; 1168 uint32_t bshift = fls(statp->f_bsize) - 1; 1169 1170 /* 1171 * The following report "total" blocks of various kinds in 1172 * the file system, but reported in terms of f_bsize - the 1173 * "preferred" size. 1174 */ 1175 1176 /* Round up so we never have a filesystem using 0 blocks. */ 1177 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize); 1178 statp->f_blocks = (refdbytes + availbytes) >> bshift; 1179 statp->f_bfree = availbytes >> bshift; 1180 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1181 1182 /* 1183 * statvfs() should really be called statufs(), because it assumes 1184 * static metadata. ZFS doesn't preallocate files, so the best 1185 * we can do is report the max that could possibly fit in f_files, 1186 * and that minus the number actually used in f_ffree. 1187 * For f_ffree, report the smaller of the number of objects available 1188 * and the number of blocks (each object will take at least a block). 1189 */ 1190 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT); 1191 statp->f_files = statp->f_ffree + usedobjs; 1192 statp->f_fsid.val[0] = (uint32_t)fsid; 1193 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32); 1194 statp->f_type = ZFS_SUPER_MAGIC; 1195 statp->f_namelen = 1196 zfsvfs->z_longname ? (ZAP_MAXNAMELEN_NEW - 1) : (MAXNAMELEN - 1); 1197 1198 /* 1199 * We have all of 40 characters to stuff a string here. 1200 * Is there anything useful we could/should provide? 1201 */ 1202 memset(statp->f_spare, 0, sizeof (statp->f_spare)); 1203 1204 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) && 1205 dmu_objset_projectquota_present(zfsvfs->z_os)) { 1206 znode_t *zp = ITOZ(ip); 1207 1208 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid && 1209 zpl_is_valid_projid(zp->z_projid)) 1210 err = zfs_statfs_project(zfsvfs, zp, statp, bshift); 1211 } 1212 1213 zfs_exit(zfsvfs, FTAG); 1214 return (err); 1215 } 1216 1217 static int 1218 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp) 1219 { 1220 znode_t *rootzp; 1221 int error; 1222 1223 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1224 return (error); 1225 1226 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1227 if (error == 0) 1228 *ipp = ZTOI(rootzp); 1229 1230 zfs_exit(zfsvfs, FTAG); 1231 return (error); 1232 } 1233 1234 /* 1235 * The ARC has requested that the filesystem drop entries from the dentry 1236 * and inode caches. This can occur when the ARC needs to free meta data 1237 * blocks but can't because they are all pinned by entries in these caches. 1238 */ 1239 #if defined(HAVE_SUPER_BLOCK_S_SHRINK) 1240 #define S_SHRINK(sb) (&(sb)->s_shrink) 1241 #elif defined(HAVE_SUPER_BLOCK_S_SHRINK_PTR) 1242 #define S_SHRINK(sb) ((sb)->s_shrink) 1243 #endif 1244 1245 int 1246 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects) 1247 { 1248 zfsvfs_t *zfsvfs = sb->s_fs_info; 1249 int error = 0; 1250 struct shrinker *shrinker = S_SHRINK(sb); 1251 struct shrink_control sc = { 1252 .nr_to_scan = nr_to_scan, 1253 .gfp_mask = GFP_KERNEL, 1254 }; 1255 1256 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1257 return (error); 1258 1259 #ifdef SHRINKER_NUMA_AWARE 1260 if (shrinker->flags & SHRINKER_NUMA_AWARE) { 1261 long tc = 1; 1262 for_each_online_node(sc.nid) { 1263 long c = shrinker->count_objects(shrinker, &sc); 1264 if (c == 0 || c == SHRINK_EMPTY) 1265 continue; 1266 tc += c; 1267 } 1268 *objects = 0; 1269 for_each_online_node(sc.nid) { 1270 long c = shrinker->count_objects(shrinker, &sc); 1271 if (c == 0 || c == SHRINK_EMPTY) 1272 continue; 1273 if (c > tc) 1274 tc = c; 1275 sc.nr_to_scan = mult_frac(nr_to_scan, c, tc) + 1; 1276 *objects += (*shrinker->scan_objects)(shrinker, &sc); 1277 } 1278 } else { 1279 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1280 } 1281 #else 1282 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1283 #endif 1284 1285 zfs_exit(zfsvfs, FTAG); 1286 1287 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 1288 "pruning, nr_to_scan=%lu objects=%d error=%d\n", 1289 nr_to_scan, *objects, error); 1290 1291 return (error); 1292 } 1293 1294 /* 1295 * Teardown the zfsvfs_t. 1296 * 1297 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' 1298 * and 'z_teardown_inactive_lock' held. 1299 */ 1300 static int 1301 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1302 { 1303 znode_t *zp; 1304 1305 zfs_unlinked_drain_stop_wait(zfsvfs); 1306 1307 /* 1308 * If someone has not already unmounted this file system, 1309 * drain the zrele_taskq to ensure all active references to the 1310 * zfsvfs_t have been handled only then can it be safely destroyed. 1311 */ 1312 if (zfsvfs->z_os) { 1313 /* 1314 * If we're unmounting we have to wait for the list to 1315 * drain completely. 1316 * 1317 * If we're not unmounting there's no guarantee the list 1318 * will drain completely, but iputs run from the taskq 1319 * may add the parents of dir-based xattrs to the taskq 1320 * so we want to wait for these. 1321 * 1322 * We can safely check z_all_znodes for being empty because the 1323 * VFS has already blocked operations which add to it. 1324 */ 1325 int round = 0; 1326 while (!list_is_empty(&zfsvfs->z_all_znodes)) { 1327 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1328 dmu_objset_pool(zfsvfs->z_os)), 0); 1329 if (++round > 1 && !unmounting) 1330 break; 1331 } 1332 } 1333 1334 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); 1335 1336 if (!unmounting) { 1337 /* 1338 * We purge the parent filesystem's super block as the 1339 * parent filesystem and all of its snapshots have their 1340 * inode's super block set to the parent's filesystem's 1341 * super block. Note, 'z_parent' is self referential 1342 * for non-snapshots. 1343 */ 1344 shrink_dcache_sb(zfsvfs->z_parent->z_sb); 1345 } 1346 1347 /* 1348 * Close the zil. NB: Can't close the zil while zfs_inactive 1349 * threads are blocked as zil_close can call zfs_inactive. 1350 */ 1351 if (zfsvfs->z_log) { 1352 zil_close(zfsvfs->z_log); 1353 zfsvfs->z_log = NULL; 1354 } 1355 1356 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1357 1358 /* 1359 * If we are not unmounting (ie: online recv) and someone already 1360 * unmounted this file system while we were doing the switcheroo, 1361 * or a reopen of z_os failed then just bail out now. 1362 */ 1363 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1364 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1365 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1366 return (SET_ERROR(EIO)); 1367 } 1368 1369 /* 1370 * At this point there are no VFS ops active, and any new VFS ops 1371 * will fail with EIO since we have z_teardown_lock for writer (only 1372 * relevant for forced unmount). 1373 * 1374 * Release all holds on dbufs. We also grab an extra reference to all 1375 * the remaining inodes so that the kernel does not attempt to free 1376 * any inodes of a suspended fs. This can cause deadlocks since the 1377 * zfs_resume_fs() process may involve starting threads, which might 1378 * attempt to free unreferenced inodes to free up memory for the new 1379 * thread. 1380 */ 1381 if (!unmounting) { 1382 mutex_enter(&zfsvfs->z_znodes_lock); 1383 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1384 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1385 if (zp->z_sa_hdl) 1386 zfs_znode_dmu_fini(zp); 1387 if (igrab(ZTOI(zp)) != NULL) 1388 zp->z_suspended = B_TRUE; 1389 1390 } 1391 mutex_exit(&zfsvfs->z_znodes_lock); 1392 } 1393 1394 /* 1395 * If we are unmounting, set the unmounted flag and let new VFS ops 1396 * unblock. zfs_inactive will have the unmounted behavior, and all 1397 * other VFS ops will fail with EIO. 1398 */ 1399 if (unmounting) { 1400 zfsvfs->z_unmounted = B_TRUE; 1401 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1402 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1403 } 1404 1405 /* 1406 * z_os will be NULL if there was an error in attempting to reopen 1407 * zfsvfs, so just return as the properties had already been 1408 * 1409 * unregistered and cached data had been evicted before. 1410 */ 1411 if (zfsvfs->z_os == NULL) 1412 return (0); 1413 1414 /* 1415 * Unregister properties. 1416 */ 1417 zfs_unregister_callbacks(zfsvfs); 1418 1419 /* 1420 * Evict cached data. We must write out any dirty data before 1421 * disowning the dataset. 1422 */ 1423 objset_t *os = zfsvfs->z_os; 1424 boolean_t os_dirty = B_FALSE; 1425 for (int t = 0; t < TXG_SIZE; t++) { 1426 if (dmu_objset_is_dirty(os, t)) { 1427 os_dirty = B_TRUE; 1428 break; 1429 } 1430 } 1431 if (!zfs_is_readonly(zfsvfs) && os_dirty) { 1432 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1433 } 1434 dmu_objset_evict_dbufs(zfsvfs->z_os); 1435 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 1436 dsl_dir_cancel_waiters(dd); 1437 1438 return (0); 1439 } 1440 1441 static atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0); 1442 1443 int 1444 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent) 1445 { 1446 const char *osname = zm->mnt_osname; 1447 struct inode *root_inode = NULL; 1448 uint64_t recordsize; 1449 int error = 0; 1450 zfsvfs_t *zfsvfs = NULL; 1451 vfs_t *vfs = NULL; 1452 int canwrite; 1453 int dataset_visible_zone; 1454 1455 ASSERT(zm); 1456 ASSERT(osname); 1457 1458 dataset_visible_zone = zone_dataset_visible(osname, &canwrite); 1459 1460 /* 1461 * Refuse to mount a filesystem if we are in a namespace and the 1462 * dataset is not visible or writable in that namespace. 1463 */ 1464 if (!INGLOBALZONE(curproc) && 1465 (!dataset_visible_zone || !canwrite)) { 1466 return (SET_ERROR(EPERM)); 1467 } 1468 1469 error = zfsvfs_parse_options(zm->mnt_data, &vfs); 1470 if (error) 1471 return (error); 1472 1473 /* 1474 * If a non-writable filesystem is being mounted without the 1475 * read-only flag, pretend it was set, as done for snapshots. 1476 */ 1477 if (!canwrite) 1478 vfs->vfs_readonly = B_TRUE; 1479 1480 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs); 1481 if (error) { 1482 zfsvfs_vfs_free(vfs); 1483 goto out; 1484 } 1485 1486 if ((error = dsl_prop_get_integer(osname, "recordsize", 1487 &recordsize, NULL))) { 1488 zfsvfs_vfs_free(vfs); 1489 goto out; 1490 } 1491 1492 vfs->vfs_data = zfsvfs; 1493 zfsvfs->z_vfs = vfs; 1494 zfsvfs->z_sb = sb; 1495 sb->s_fs_info = zfsvfs; 1496 sb->s_magic = ZFS_SUPER_MAGIC; 1497 sb->s_maxbytes = MAX_LFS_FILESIZE; 1498 sb->s_time_gran = 1; 1499 sb->s_blocksize = recordsize; 1500 sb->s_blocksize_bits = ilog2(recordsize); 1501 1502 error = -super_setup_bdi_name(sb, "%.28s-%ld", "zfs", 1503 atomic_long_inc_return(&zfs_bdi_seq)); 1504 if (error) 1505 goto out; 1506 1507 sb->s_bdi->ra_pages = 0; 1508 1509 /* Set callback operations for the file system. */ 1510 sb->s_op = &zpl_super_operations; 1511 sb->s_xattr = zpl_xattr_handlers; 1512 sb->s_export_op = &zpl_export_operations; 1513 1514 /* Set features for file system. */ 1515 zfs_set_fuid_feature(zfsvfs); 1516 1517 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1518 uint64_t pval; 1519 1520 atime_changed_cb(zfsvfs, B_FALSE); 1521 readonly_changed_cb(zfsvfs, B_TRUE); 1522 if ((error = dsl_prop_get_integer(osname, 1523 "xattr", &pval, NULL))) 1524 goto out; 1525 xattr_changed_cb(zfsvfs, pval); 1526 if ((error = dsl_prop_get_integer(osname, 1527 "acltype", &pval, NULL))) 1528 goto out; 1529 acltype_changed_cb(zfsvfs, pval); 1530 zfsvfs->z_issnap = B_TRUE; 1531 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1532 zfsvfs->z_snap_defer_time = jiffies; 1533 1534 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1535 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1536 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1537 } else { 1538 if ((error = zfsvfs_setup(zfsvfs, B_TRUE))) 1539 goto out; 1540 } 1541 1542 /* Allocate a root inode for the filesystem. */ 1543 error = zfs_root(zfsvfs, &root_inode); 1544 if (error) { 1545 (void) zfs_umount(sb); 1546 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */ 1547 goto out; 1548 } 1549 1550 /* Allocate a root dentry for the filesystem */ 1551 sb->s_root = d_make_root(root_inode); 1552 if (sb->s_root == NULL) { 1553 (void) zfs_umount(sb); 1554 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */ 1555 error = SET_ERROR(ENOMEM); 1556 goto out; 1557 } 1558 1559 if (!zfsvfs->z_issnap) 1560 zfsctl_create(zfsvfs); 1561 1562 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb); 1563 out: 1564 if (error) { 1565 if (zfsvfs != NULL) { 1566 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); 1567 zfsvfs_free(zfsvfs); 1568 } 1569 /* 1570 * make sure we don't have dangling sb->s_fs_info which 1571 * zfs_preumount will use. 1572 */ 1573 sb->s_fs_info = NULL; 1574 } 1575 1576 return (error); 1577 } 1578 1579 /* 1580 * Called when an unmount is requested and certain sanity checks have 1581 * already passed. At this point no dentries or inodes have been reclaimed 1582 * from their respective caches. We drop the extra reference on the .zfs 1583 * control directory to allow everything to be reclaimed. All snapshots 1584 * must already have been unmounted to reach this point. 1585 */ 1586 void 1587 zfs_preumount(struct super_block *sb) 1588 { 1589 zfsvfs_t *zfsvfs = sb->s_fs_info; 1590 1591 /* zfsvfs is NULL when zfs_domount fails during mount */ 1592 if (zfsvfs) { 1593 zfs_unlinked_drain_stop_wait(zfsvfs); 1594 zfsctl_destroy(sb->s_fs_info); 1595 /* 1596 * Wait for zrele_async before entering evict_inodes in 1597 * generic_shutdown_super. The reason we must finish before 1598 * evict_inodes is when lazytime is on, or when zfs_purgedir 1599 * calls zfs_zget, zrele would bump i_count from 0 to 1. This 1600 * would race with the i_count check in evict_inodes. This means 1601 * it could destroy the inode while we are still using it. 1602 * 1603 * We wait for two passes. xattr directories in the first pass 1604 * may add xattr entries in zfs_purgedir, so in the second pass 1605 * we wait for them. We don't use taskq_wait here because it is 1606 * a pool wide taskq. Other mounted filesystems can constantly 1607 * do zrele_async and there's no guarantee when taskq will be 1608 * empty. 1609 */ 1610 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1611 dmu_objset_pool(zfsvfs->z_os)), 0); 1612 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1613 dmu_objset_pool(zfsvfs->z_os)), 0); 1614 } 1615 } 1616 1617 /* 1618 * Called once all other unmount released tear down has occurred. 1619 * It is our responsibility to release any remaining infrastructure. 1620 */ 1621 int 1622 zfs_umount(struct super_block *sb) 1623 { 1624 zfsvfs_t *zfsvfs = sb->s_fs_info; 1625 objset_t *os; 1626 1627 if (zfsvfs->z_arc_prune != NULL) 1628 arc_remove_prune_callback(zfsvfs->z_arc_prune); 1629 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1630 os = zfsvfs->z_os; 1631 1632 /* 1633 * z_os will be NULL if there was an error in 1634 * attempting to reopen zfsvfs. 1635 */ 1636 if (os != NULL) { 1637 /* 1638 * Unset the objset user_ptr. 1639 */ 1640 mutex_enter(&os->os_user_ptr_lock); 1641 dmu_objset_set_user(os, NULL); 1642 mutex_exit(&os->os_user_ptr_lock); 1643 1644 /* 1645 * Finally release the objset 1646 */ 1647 dmu_objset_disown(os, B_TRUE, zfsvfs); 1648 } 1649 1650 zfsvfs_free(zfsvfs); 1651 sb->s_fs_info = NULL; 1652 return (0); 1653 } 1654 1655 int 1656 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm) 1657 { 1658 zfsvfs_t *zfsvfs = sb->s_fs_info; 1659 vfs_t *vfsp; 1660 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os); 1661 int error; 1662 1663 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) && 1664 !(*flags & SB_RDONLY)) { 1665 *flags |= SB_RDONLY; 1666 return (EROFS); 1667 } 1668 1669 error = zfsvfs_parse_options(zm->mnt_data, &vfsp); 1670 if (error) 1671 return (error); 1672 1673 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY)) 1674 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1675 1676 zfs_unregister_callbacks(zfsvfs); 1677 zfsvfs_vfs_free(zfsvfs->z_vfs); 1678 1679 vfsp->vfs_data = zfsvfs; 1680 zfsvfs->z_vfs = vfsp; 1681 if (!issnap) 1682 (void) zfs_register_callbacks(vfsp); 1683 1684 return (error); 1685 } 1686 1687 int 1688 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp) 1689 { 1690 zfsvfs_t *zfsvfs = sb->s_fs_info; 1691 znode_t *zp; 1692 uint64_t object = 0; 1693 uint64_t fid_gen = 0; 1694 uint64_t gen_mask; 1695 uint64_t zp_gen; 1696 int i, err; 1697 1698 *ipp = NULL; 1699 1700 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1701 zfid_short_t *zfid = (zfid_short_t *)fidp; 1702 1703 for (i = 0; i < sizeof (zfid->zf_object); i++) 1704 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1705 1706 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1707 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1708 } else { 1709 return (SET_ERROR(EINVAL)); 1710 } 1711 1712 /* LONG_FID_LEN means snapdirs */ 1713 if (fidp->fid_len == LONG_FID_LEN) { 1714 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1715 uint64_t objsetid = 0; 1716 uint64_t setgen = 0; 1717 1718 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1719 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1720 1721 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1722 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1723 1724 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) { 1725 dprintf("snapdir fid: objsetid (%llu) != " 1726 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n", 1727 objsetid, ZFSCTL_INO_SNAPDIRS, object); 1728 1729 return (SET_ERROR(EINVAL)); 1730 } 1731 1732 if (fid_gen > 1 || setgen != 0) { 1733 dprintf("snapdir fid: fid_gen (%llu) and setgen " 1734 "(%llu)\n", fid_gen, setgen); 1735 return (SET_ERROR(EINVAL)); 1736 } 1737 1738 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp)); 1739 } 1740 1741 if ((err = zfs_enter(zfsvfs, FTAG)) != 0) 1742 return (err); 1743 /* A zero fid_gen means we are in the .zfs control directories */ 1744 if (fid_gen == 0 && 1745 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1746 if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) { 1747 zfs_exit(zfsvfs, FTAG); 1748 return (SET_ERROR(ENOENT)); 1749 } 1750 1751 *ipp = zfsvfs->z_ctldir; 1752 ASSERT(*ipp != NULL); 1753 1754 if (object == ZFSCTL_INO_SNAPDIR) { 1755 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, 1756 0, kcred, NULL, NULL) == 0); 1757 } else { 1758 /* 1759 * Must have an existing ref, so igrab() 1760 * cannot return NULL 1761 */ 1762 VERIFY3P(igrab(*ipp), !=, NULL); 1763 } 1764 zfs_exit(zfsvfs, FTAG); 1765 return (0); 1766 } 1767 1768 gen_mask = -1ULL >> (64 - 8 * i); 1769 1770 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask); 1771 if ((err = zfs_zget(zfsvfs, object, &zp))) { 1772 zfs_exit(zfsvfs, FTAG); 1773 return (err); 1774 } 1775 1776 /* Don't export xattr stuff */ 1777 if (zp->z_pflags & ZFS_XATTR) { 1778 zrele(zp); 1779 zfs_exit(zfsvfs, FTAG); 1780 return (SET_ERROR(ENOENT)); 1781 } 1782 1783 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1784 sizeof (uint64_t)); 1785 zp_gen = zp_gen & gen_mask; 1786 if (zp_gen == 0) 1787 zp_gen = 1; 1788 if ((fid_gen == 0) && (zfsvfs->z_root == object)) 1789 fid_gen = zp_gen; 1790 if (zp->z_unlinked || zp_gen != fid_gen) { 1791 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen, 1792 fid_gen); 1793 zrele(zp); 1794 zfs_exit(zfsvfs, FTAG); 1795 return (SET_ERROR(ENOENT)); 1796 } 1797 1798 *ipp = ZTOI(zp); 1799 if (*ipp) 1800 zfs_znode_update_vfs(ITOZ(*ipp)); 1801 1802 zfs_exit(zfsvfs, FTAG); 1803 return (0); 1804 } 1805 1806 /* 1807 * Block out VFS ops and close zfsvfs_t 1808 * 1809 * Note, if successful, then we return with the 'z_teardown_lock' and 1810 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 1811 * dataset and objset intact so that they can be atomically handed off during 1812 * a subsequent rollback or recv operation and the resume thereafter. 1813 */ 1814 int 1815 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1816 { 1817 int error; 1818 1819 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1820 return (error); 1821 1822 return (0); 1823 } 1824 1825 /* 1826 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 1827 * is an invariant across any of the operations that can be performed while the 1828 * filesystem was suspended. Whether it succeeded or failed, the preconditions 1829 * are the same: the relevant objset and associated dataset are owned by 1830 * zfsvfs, held, and long held on entry. 1831 */ 1832 int 1833 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1834 { 1835 int err, err2; 1836 znode_t *zp; 1837 1838 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); 1839 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1840 1841 /* 1842 * We already own this, so just update the objset_t, as the one we 1843 * had before may have been evicted. 1844 */ 1845 objset_t *os; 1846 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1847 VERIFY(dsl_dataset_long_held(ds)); 1848 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1849 dsl_pool_config_enter(dp, FTAG); 1850 VERIFY0(dmu_objset_from_ds(ds, &os)); 1851 dsl_pool_config_exit(dp, FTAG); 1852 1853 err = zfsvfs_init(zfsvfs, os); 1854 if (err != 0) 1855 goto bail; 1856 1857 ds->ds_dir->dd_activity_cancelled = B_FALSE; 1858 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1859 1860 zfs_set_fuid_feature(zfsvfs); 1861 zfsvfs->z_rollback_time = jiffies; 1862 1863 /* 1864 * Attempt to re-establish all the active inodes with their 1865 * dbufs. If a zfs_rezget() fails, then we unhash the inode 1866 * and mark it stale. This prevents a collision if a new 1867 * inode/object is created which must use the same inode 1868 * number. The stale inode will be be released when the 1869 * VFS prunes the dentry holding the remaining references 1870 * on the stale inode. 1871 */ 1872 mutex_enter(&zfsvfs->z_znodes_lock); 1873 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1874 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1875 err2 = zfs_rezget(zp); 1876 if (err2) { 1877 zpl_d_drop_aliases(ZTOI(zp)); 1878 remove_inode_hash(ZTOI(zp)); 1879 } 1880 1881 /* see comment in zfs_suspend_fs() */ 1882 if (zp->z_suspended) { 1883 zfs_zrele_async(zp); 1884 zp->z_suspended = B_FALSE; 1885 } 1886 } 1887 mutex_exit(&zfsvfs->z_znodes_lock); 1888 1889 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) { 1890 /* 1891 * zfs_suspend_fs() could have interrupted freeing 1892 * of dnodes. We need to restart this freeing so 1893 * that we don't "leak" the space. 1894 */ 1895 zfs_unlinked_drain(zfsvfs); 1896 } 1897 1898 /* 1899 * Most of the time zfs_suspend_fs is used for changing the contents 1900 * of the underlying dataset. ZFS rollback and receive operations 1901 * might create files for which negative dentries are present in 1902 * the cache. Since walking the dcache would require a lot of GPL-only 1903 * code duplication, it's much easier on these rather rare occasions 1904 * just to flush the whole dcache for the given dataset/filesystem. 1905 */ 1906 shrink_dcache_sb(zfsvfs->z_sb); 1907 1908 bail: 1909 if (err != 0) 1910 zfsvfs->z_unmounted = B_TRUE; 1911 1912 /* release the VFS ops */ 1913 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1914 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1915 1916 if (err != 0) { 1917 /* 1918 * Since we couldn't setup the sa framework, try to force 1919 * unmount this file system. 1920 */ 1921 if (zfsvfs->z_os) 1922 (void) zfs_umount(zfsvfs->z_sb); 1923 } 1924 return (err); 1925 } 1926 1927 /* 1928 * Release VOPs and unmount a suspended filesystem. 1929 */ 1930 int 1931 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1932 { 1933 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); 1934 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1935 1936 /* 1937 * We already own this, so just hold and rele it to update the 1938 * objset_t, as the one we had before may have been evicted. 1939 */ 1940 objset_t *os; 1941 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1942 VERIFY(dsl_dataset_long_held(ds)); 1943 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1944 dsl_pool_config_enter(dp, FTAG); 1945 VERIFY0(dmu_objset_from_ds(ds, &os)); 1946 dsl_pool_config_exit(dp, FTAG); 1947 zfsvfs->z_os = os; 1948 1949 /* release the VOPs */ 1950 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1951 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1952 1953 /* 1954 * Try to force unmount this file system. 1955 */ 1956 (void) zfs_umount(zfsvfs->z_sb); 1957 zfsvfs->z_unmounted = B_TRUE; 1958 return (0); 1959 } 1960 1961 /* 1962 * Automounted snapshots rely on periodic revalidation 1963 * to defer snapshots from being automatically unmounted. 1964 */ 1965 1966 inline void 1967 zfs_exit_fs(zfsvfs_t *zfsvfs) 1968 { 1969 if (!zfsvfs->z_issnap) 1970 return; 1971 1972 if (time_after(jiffies, zfsvfs->z_snap_defer_time + 1973 MAX(zfs_expire_snapshot * HZ / 2, HZ))) { 1974 zfsvfs->z_snap_defer_time = jiffies; 1975 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa, 1976 dmu_objset_id(zfsvfs->z_os), 1977 zfs_expire_snapshot); 1978 } 1979 } 1980 1981 int 1982 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 1983 { 1984 int error; 1985 objset_t *os = zfsvfs->z_os; 1986 dmu_tx_t *tx; 1987 1988 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1989 return (SET_ERROR(EINVAL)); 1990 1991 if (newvers < zfsvfs->z_version) 1992 return (SET_ERROR(EINVAL)); 1993 1994 if (zfs_spa_version_map(newvers) > 1995 spa_version(dmu_objset_spa(zfsvfs->z_os))) 1996 return (SET_ERROR(ENOTSUP)); 1997 1998 tx = dmu_tx_create(os); 1999 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2000 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2001 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2002 ZFS_SA_ATTRS); 2003 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2004 } 2005 error = dmu_tx_assign(tx, DMU_TX_WAIT); 2006 if (error) { 2007 dmu_tx_abort(tx); 2008 return (error); 2009 } 2010 2011 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2012 8, 1, &newvers, tx); 2013 2014 if (error) { 2015 dmu_tx_commit(tx); 2016 return (error); 2017 } 2018 2019 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2020 uint64_t sa_obj; 2021 2022 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2023 SPA_VERSION_SA); 2024 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2025 DMU_OT_NONE, 0, tx); 2026 2027 error = zap_add(os, MASTER_NODE_OBJ, 2028 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2029 ASSERT0(error); 2030 2031 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2032 sa_register_update_callback(os, zfs_sa_upgrade); 2033 } 2034 2035 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2036 "from %llu to %llu", zfsvfs->z_version, newvers); 2037 2038 dmu_tx_commit(tx); 2039 2040 zfsvfs->z_version = newvers; 2041 os->os_version = newvers; 2042 2043 zfs_set_fuid_feature(zfsvfs); 2044 2045 return (0); 2046 } 2047 2048 int 2049 zfs_set_default_quota(zfsvfs_t *zfsvfs, zfs_prop_t prop, uint64_t quota) 2050 { 2051 int error; 2052 objset_t *os = zfsvfs->z_os; 2053 const char *propstr = zfs_prop_to_name(prop); 2054 dmu_tx_t *tx; 2055 2056 tx = dmu_tx_create(os); 2057 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, propstr); 2058 error = dmu_tx_assign(tx, DMU_TX_WAIT); 2059 if (error) { 2060 dmu_tx_abort(tx); 2061 return (error); 2062 } 2063 2064 if (quota == 0) { 2065 error = zap_remove(os, MASTER_NODE_OBJ, propstr, tx); 2066 if (error == ENOENT) 2067 error = 0; 2068 } else { 2069 error = zap_update(os, MASTER_NODE_OBJ, propstr, 8, 1, 2070 "a, tx); 2071 } 2072 2073 if (error) 2074 goto out; 2075 2076 switch (prop) { 2077 case ZFS_PROP_DEFAULTUSERQUOTA: 2078 zfsvfs->z_defaultuserquota = quota; 2079 break; 2080 case ZFS_PROP_DEFAULTGROUPQUOTA: 2081 zfsvfs->z_defaultgroupquota = quota; 2082 break; 2083 case ZFS_PROP_DEFAULTPROJECTQUOTA: 2084 zfsvfs->z_defaultprojectquota = quota; 2085 break; 2086 case ZFS_PROP_DEFAULTUSEROBJQUOTA: 2087 zfsvfs->z_defaultuserobjquota = quota; 2088 break; 2089 case ZFS_PROP_DEFAULTGROUPOBJQUOTA: 2090 zfsvfs->z_defaultgroupobjquota = quota; 2091 break; 2092 case ZFS_PROP_DEFAULTPROJECTOBJQUOTA: 2093 zfsvfs->z_defaultprojectobjquota = quota; 2094 break; 2095 default: 2096 break; 2097 } 2098 2099 out: 2100 dmu_tx_commit(tx); 2101 return (error); 2102 } 2103 2104 /* 2105 * Return true if the corresponding vfs's unmounted flag is set. 2106 * Otherwise return false. 2107 * If this function returns true we know VFS unmount has been initiated. 2108 */ 2109 boolean_t 2110 zfs_get_vfs_flag_unmounted(objset_t *os) 2111 { 2112 zfsvfs_t *zfvp; 2113 boolean_t unmounted = B_FALSE; 2114 2115 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS); 2116 2117 mutex_enter(&os->os_user_ptr_lock); 2118 zfvp = dmu_objset_get_user(os); 2119 if (zfvp != NULL && zfvp->z_unmounted) 2120 unmounted = B_TRUE; 2121 mutex_exit(&os->os_user_ptr_lock); 2122 2123 return (unmounted); 2124 } 2125 2126 void 2127 zfsvfs_update_fromname(const char *oldname, const char *newname) 2128 { 2129 /* 2130 * We don't need to do anything here, the devname is always current by 2131 * virtue of zfsvfs->z_sb->s_op->show_devname. 2132 */ 2133 (void) oldname, (void) newname; 2134 } 2135 2136 void 2137 zfs_init(void) 2138 { 2139 zfsctl_init(); 2140 zfs_znode_init(); 2141 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info); 2142 register_filesystem(&zpl_fs_type); 2143 } 2144 2145 void 2146 zfs_fini(void) 2147 { 2148 /* 2149 * we don't use outstanding because zpl_posix_acl_free might add more. 2150 */ 2151 taskq_wait(system_delay_taskq); 2152 taskq_wait(system_taskq); 2153 unregister_filesystem(&zpl_fs_type); 2154 zfs_znode_fini(); 2155 zfsctl_fini(); 2156 } 2157 2158 #if defined(_KERNEL) 2159 EXPORT_SYMBOL(zfs_suspend_fs); 2160 EXPORT_SYMBOL(zfs_resume_fs); 2161 EXPORT_SYMBOL(zfs_set_version); 2162 EXPORT_SYMBOL(zfsvfs_create); 2163 EXPORT_SYMBOL(zfsvfs_free); 2164 EXPORT_SYMBOL(zfs_is_readonly); 2165 EXPORT_SYMBOL(zfs_domount); 2166 EXPORT_SYMBOL(zfs_preumount); 2167 EXPORT_SYMBOL(zfs_umount); 2168 EXPORT_SYMBOL(zfs_remount); 2169 EXPORT_SYMBOL(zfs_statvfs); 2170 EXPORT_SYMBOL(zfs_vget); 2171 EXPORT_SYMBOL(zfs_prune); 2172 EXPORT_SYMBOL(zfs_set_default_quota); 2173 #endif 2174