xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c (revision 9b37d84c87e69dabc69d818aa4d2fea718bd8b74)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/mntent.h>
37 #include <sys/cmn_err.h>
38 #include <sys/zfs_znode.h>
39 #include <sys/zfs_vnops.h>
40 #include <sys/zfs_dir.h>
41 #include <sys/zil.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/dmu.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_deleg.h>
47 #include <sys/spa.h>
48 #include <sys/zap.h>
49 #include <sys/sa.h>
50 #include <sys/sa_impl.h>
51 #include <sys/policy.h>
52 #include <sys/atomic.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_ctldir.h>
55 #include <sys/zfs_fuid.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/sunddi.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/dsl_dir.h>
60 #include <sys/objlist.h>
61 #include <sys/zfeature.h>
62 #include <sys/zpl.h>
63 #include <linux/vfs_compat.h>
64 #include <linux/fs.h>
65 #include "zfs_comutil.h"
66 
67 enum {
68 	TOKEN_RO,
69 	TOKEN_RW,
70 	TOKEN_SETUID,
71 	TOKEN_NOSETUID,
72 	TOKEN_EXEC,
73 	TOKEN_NOEXEC,
74 	TOKEN_DEVICES,
75 	TOKEN_NODEVICES,
76 	TOKEN_DIRXATTR,
77 	TOKEN_SAXATTR,
78 	TOKEN_XATTR,
79 	TOKEN_NOXATTR,
80 	TOKEN_ATIME,
81 	TOKEN_NOATIME,
82 	TOKEN_RELATIME,
83 	TOKEN_NORELATIME,
84 	TOKEN_NBMAND,
85 	TOKEN_NONBMAND,
86 	TOKEN_MNTPOINT,
87 	TOKEN_LAST,
88 };
89 
90 static const match_table_t zpl_tokens = {
91 	{ TOKEN_RO,		MNTOPT_RO },
92 	{ TOKEN_RW,		MNTOPT_RW },
93 	{ TOKEN_SETUID,		MNTOPT_SETUID },
94 	{ TOKEN_NOSETUID,	MNTOPT_NOSETUID },
95 	{ TOKEN_EXEC,		MNTOPT_EXEC },
96 	{ TOKEN_NOEXEC,		MNTOPT_NOEXEC },
97 	{ TOKEN_DEVICES,	MNTOPT_DEVICES },
98 	{ TOKEN_NODEVICES,	MNTOPT_NODEVICES },
99 	{ TOKEN_DIRXATTR,	MNTOPT_DIRXATTR },
100 	{ TOKEN_SAXATTR,	MNTOPT_SAXATTR },
101 	{ TOKEN_XATTR,		MNTOPT_XATTR },
102 	{ TOKEN_NOXATTR,	MNTOPT_NOXATTR },
103 	{ TOKEN_ATIME,		MNTOPT_ATIME },
104 	{ TOKEN_NOATIME,	MNTOPT_NOATIME },
105 	{ TOKEN_RELATIME,	MNTOPT_RELATIME },
106 	{ TOKEN_NORELATIME,	MNTOPT_NORELATIME },
107 	{ TOKEN_NBMAND,		MNTOPT_NBMAND },
108 	{ TOKEN_NONBMAND,	MNTOPT_NONBMAND },
109 	{ TOKEN_MNTPOINT,	MNTOPT_MNTPOINT "=%s" },
110 	{ TOKEN_LAST,		NULL },
111 };
112 
113 static void
114 zfsvfs_vfs_free(vfs_t *vfsp)
115 {
116 	if (vfsp != NULL) {
117 		if (vfsp->vfs_mntpoint != NULL)
118 			kmem_strfree(vfsp->vfs_mntpoint);
119 		mutex_destroy(&vfsp->vfs_mntpt_lock);
120 		kmem_free(vfsp, sizeof (vfs_t));
121 	}
122 }
123 
124 static int
125 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
126 {
127 	switch (token) {
128 	case TOKEN_RO:
129 		vfsp->vfs_readonly = B_TRUE;
130 		vfsp->vfs_do_readonly = B_TRUE;
131 		break;
132 	case TOKEN_RW:
133 		vfsp->vfs_readonly = B_FALSE;
134 		vfsp->vfs_do_readonly = B_TRUE;
135 		break;
136 	case TOKEN_SETUID:
137 		vfsp->vfs_setuid = B_TRUE;
138 		vfsp->vfs_do_setuid = B_TRUE;
139 		break;
140 	case TOKEN_NOSETUID:
141 		vfsp->vfs_setuid = B_FALSE;
142 		vfsp->vfs_do_setuid = B_TRUE;
143 		break;
144 	case TOKEN_EXEC:
145 		vfsp->vfs_exec = B_TRUE;
146 		vfsp->vfs_do_exec = B_TRUE;
147 		break;
148 	case TOKEN_NOEXEC:
149 		vfsp->vfs_exec = B_FALSE;
150 		vfsp->vfs_do_exec = B_TRUE;
151 		break;
152 	case TOKEN_DEVICES:
153 		vfsp->vfs_devices = B_TRUE;
154 		vfsp->vfs_do_devices = B_TRUE;
155 		break;
156 	case TOKEN_NODEVICES:
157 		vfsp->vfs_devices = B_FALSE;
158 		vfsp->vfs_do_devices = B_TRUE;
159 		break;
160 	case TOKEN_DIRXATTR:
161 		vfsp->vfs_xattr = ZFS_XATTR_DIR;
162 		vfsp->vfs_do_xattr = B_TRUE;
163 		break;
164 	case TOKEN_SAXATTR:
165 		vfsp->vfs_xattr = ZFS_XATTR_SA;
166 		vfsp->vfs_do_xattr = B_TRUE;
167 		break;
168 	case TOKEN_XATTR:
169 		vfsp->vfs_xattr = ZFS_XATTR_SA;
170 		vfsp->vfs_do_xattr = B_TRUE;
171 		break;
172 	case TOKEN_NOXATTR:
173 		vfsp->vfs_xattr = ZFS_XATTR_OFF;
174 		vfsp->vfs_do_xattr = B_TRUE;
175 		break;
176 	case TOKEN_ATIME:
177 		vfsp->vfs_atime = B_TRUE;
178 		vfsp->vfs_do_atime = B_TRUE;
179 		break;
180 	case TOKEN_NOATIME:
181 		vfsp->vfs_atime = B_FALSE;
182 		vfsp->vfs_do_atime = B_TRUE;
183 		break;
184 	case TOKEN_RELATIME:
185 		vfsp->vfs_relatime = B_TRUE;
186 		vfsp->vfs_do_relatime = B_TRUE;
187 		break;
188 	case TOKEN_NORELATIME:
189 		vfsp->vfs_relatime = B_FALSE;
190 		vfsp->vfs_do_relatime = B_TRUE;
191 		break;
192 	case TOKEN_NBMAND:
193 		vfsp->vfs_nbmand = B_TRUE;
194 		vfsp->vfs_do_nbmand = B_TRUE;
195 		break;
196 	case TOKEN_NONBMAND:
197 		vfsp->vfs_nbmand = B_FALSE;
198 		vfsp->vfs_do_nbmand = B_TRUE;
199 		break;
200 	case TOKEN_MNTPOINT:
201 		if (vfsp->vfs_mntpoint != NULL)
202 			kmem_strfree(vfsp->vfs_mntpoint);
203 		vfsp->vfs_mntpoint = match_strdup(&args[0]);
204 		if (vfsp->vfs_mntpoint == NULL)
205 			return (SET_ERROR(ENOMEM));
206 		break;
207 	default:
208 		break;
209 	}
210 
211 	return (0);
212 }
213 
214 /*
215  * Parse the raw mntopts and return a vfs_t describing the options.
216  */
217 static int
218 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
219 {
220 	vfs_t *tmp_vfsp;
221 	int error;
222 
223 	tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
224 	mutex_init(&tmp_vfsp->vfs_mntpt_lock, NULL, MUTEX_DEFAULT, NULL);
225 
226 	if (mntopts != NULL) {
227 		substring_t args[MAX_OPT_ARGS];
228 		char *tmp_mntopts, *p, *t;
229 		int token;
230 
231 		tmp_mntopts = t = kmem_strdup(mntopts);
232 		if (tmp_mntopts == NULL)
233 			return (SET_ERROR(ENOMEM));
234 
235 		while ((p = strsep(&t, ",")) != NULL) {
236 			if (!*p)
237 				continue;
238 
239 			args[0].to = args[0].from = NULL;
240 			token = match_token(p, zpl_tokens, args);
241 			error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
242 			if (error) {
243 				kmem_strfree(tmp_mntopts);
244 				zfsvfs_vfs_free(tmp_vfsp);
245 				return (error);
246 			}
247 		}
248 
249 		kmem_strfree(tmp_mntopts);
250 	}
251 
252 	*vfsp = tmp_vfsp;
253 
254 	return (0);
255 }
256 
257 boolean_t
258 zfs_is_readonly(zfsvfs_t *zfsvfs)
259 {
260 	return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
261 }
262 
263 int
264 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
265 {
266 	(void) cr;
267 	zfsvfs_t *zfsvfs = sb->s_fs_info;
268 
269 	/*
270 	 * Semantically, the only requirement is that the sync be initiated.
271 	 * The DMU syncs out txgs frequently, so there's nothing to do.
272 	 */
273 	if (!wait)
274 		return (0);
275 
276 	if (zfsvfs != NULL) {
277 		/*
278 		 * Sync a specific filesystem.
279 		 */
280 		dsl_pool_t *dp;
281 		int error;
282 
283 		if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
284 			return (error);
285 		dp = dmu_objset_pool(zfsvfs->z_os);
286 
287 		/*
288 		 * If the system is shutting down, then skip any
289 		 * filesystems which may exist on a suspended pool.
290 		 */
291 		if (spa_suspended(dp->dp_spa)) {
292 			zfs_exit(zfsvfs, FTAG);
293 			return (0);
294 		}
295 
296 		if (zfsvfs->z_log != NULL)
297 			zil_commit(zfsvfs->z_log, 0);
298 
299 		zfs_exit(zfsvfs, FTAG);
300 	} else {
301 		/*
302 		 * Sync all ZFS filesystems.  This is what happens when you
303 		 * run sync(1).  Unlike other filesystems, ZFS honors the
304 		 * request by waiting for all pools to commit all dirty data.
305 		 */
306 		spa_sync_allpools();
307 	}
308 
309 	return (0);
310 }
311 
312 static void
313 atime_changed_cb(void *arg, uint64_t newval)
314 {
315 	zfsvfs_t *zfsvfs = arg;
316 	struct super_block *sb = zfsvfs->z_sb;
317 
318 	if (sb == NULL)
319 		return;
320 	/*
321 	 * Update SB_NOATIME bit in VFS super block.  Since atime update is
322 	 * determined by atime_needs_update(), atime_needs_update() needs to
323 	 * return false if atime is turned off, and not unconditionally return
324 	 * false if atime is turned on.
325 	 */
326 	if (newval)
327 		sb->s_flags &= ~SB_NOATIME;
328 	else
329 		sb->s_flags |= SB_NOATIME;
330 }
331 
332 static void
333 relatime_changed_cb(void *arg, uint64_t newval)
334 {
335 	((zfsvfs_t *)arg)->z_relatime = newval;
336 }
337 
338 static void
339 xattr_changed_cb(void *arg, uint64_t newval)
340 {
341 	zfsvfs_t *zfsvfs = arg;
342 
343 	if (newval == ZFS_XATTR_OFF) {
344 		zfsvfs->z_flags &= ~ZSB_XATTR;
345 	} else {
346 		zfsvfs->z_flags |= ZSB_XATTR;
347 
348 		if (newval == ZFS_XATTR_SA)
349 			zfsvfs->z_xattr_sa = B_TRUE;
350 		else
351 			zfsvfs->z_xattr_sa = B_FALSE;
352 	}
353 }
354 
355 static void
356 acltype_changed_cb(void *arg, uint64_t newval)
357 {
358 	zfsvfs_t *zfsvfs = arg;
359 
360 	switch (newval) {
361 	case ZFS_ACLTYPE_NFSV4:
362 	case ZFS_ACLTYPE_OFF:
363 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
364 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
365 		break;
366 	case ZFS_ACLTYPE_POSIX:
367 #ifdef CONFIG_FS_POSIX_ACL
368 		zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
369 		zfsvfs->z_sb->s_flags |= SB_POSIXACL;
370 #else
371 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
372 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
373 #endif /* CONFIG_FS_POSIX_ACL */
374 		break;
375 	default:
376 		break;
377 	}
378 }
379 
380 static void
381 blksz_changed_cb(void *arg, uint64_t newval)
382 {
383 	zfsvfs_t *zfsvfs = arg;
384 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
385 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
386 	ASSERT(ISP2(newval));
387 
388 	zfsvfs->z_max_blksz = newval;
389 }
390 
391 static void
392 readonly_changed_cb(void *arg, uint64_t newval)
393 {
394 	zfsvfs_t *zfsvfs = arg;
395 	struct super_block *sb = zfsvfs->z_sb;
396 
397 	if (sb == NULL)
398 		return;
399 
400 	if (newval)
401 		sb->s_flags |= SB_RDONLY;
402 	else
403 		sb->s_flags &= ~SB_RDONLY;
404 }
405 
406 static void
407 devices_changed_cb(void *arg, uint64_t newval)
408 {
409 }
410 
411 static void
412 setuid_changed_cb(void *arg, uint64_t newval)
413 {
414 }
415 
416 static void
417 exec_changed_cb(void *arg, uint64_t newval)
418 {
419 }
420 
421 static void
422 nbmand_changed_cb(void *arg, uint64_t newval)
423 {
424 	zfsvfs_t *zfsvfs = arg;
425 	struct super_block *sb = zfsvfs->z_sb;
426 
427 	if (sb == NULL)
428 		return;
429 
430 	if (newval == TRUE)
431 		sb->s_flags |= SB_MANDLOCK;
432 	else
433 		sb->s_flags &= ~SB_MANDLOCK;
434 }
435 
436 static void
437 snapdir_changed_cb(void *arg, uint64_t newval)
438 {
439 	((zfsvfs_t *)arg)->z_show_ctldir = newval;
440 }
441 
442 static void
443 acl_mode_changed_cb(void *arg, uint64_t newval)
444 {
445 	zfsvfs_t *zfsvfs = arg;
446 
447 	zfsvfs->z_acl_mode = newval;
448 }
449 
450 static void
451 acl_inherit_changed_cb(void *arg, uint64_t newval)
452 {
453 	((zfsvfs_t *)arg)->z_acl_inherit = newval;
454 }
455 
456 static void
457 longname_changed_cb(void *arg, uint64_t newval)
458 {
459 	((zfsvfs_t *)arg)->z_longname = newval;
460 }
461 
462 static int
463 zfs_register_callbacks(vfs_t *vfsp)
464 {
465 	struct dsl_dataset *ds = NULL;
466 	objset_t *os = NULL;
467 	zfsvfs_t *zfsvfs = NULL;
468 	int error = 0;
469 
470 	ASSERT(vfsp);
471 	zfsvfs = vfsp->vfs_data;
472 	ASSERT(zfsvfs);
473 	os = zfsvfs->z_os;
474 
475 	/*
476 	 * The act of registering our callbacks will destroy any mount
477 	 * options we may have.  In order to enable temporary overrides
478 	 * of mount options, we stash away the current values and
479 	 * restore them after we register the callbacks.
480 	 */
481 	if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
482 		vfsp->vfs_do_readonly = B_TRUE;
483 		vfsp->vfs_readonly = B_TRUE;
484 	}
485 
486 	/*
487 	 * Register property callbacks.
488 	 *
489 	 * It would probably be fine to just check for i/o error from
490 	 * the first prop_register(), but I guess I like to go
491 	 * overboard...
492 	 */
493 	ds = dmu_objset_ds(os);
494 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
495 	error = dsl_prop_register(ds,
496 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
497 	error = error ? error : dsl_prop_register(ds,
498 	    zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
499 	error = error ? error : dsl_prop_register(ds,
500 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
501 	error = error ? error : dsl_prop_register(ds,
502 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
503 	error = error ? error : dsl_prop_register(ds,
504 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
505 	error = error ? error : dsl_prop_register(ds,
506 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
507 	error = error ? error : dsl_prop_register(ds,
508 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
509 	error = error ? error : dsl_prop_register(ds,
510 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
511 	error = error ? error : dsl_prop_register(ds,
512 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
513 	error = error ? error : dsl_prop_register(ds,
514 	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
515 	error = error ? error : dsl_prop_register(ds,
516 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
517 	error = error ? error : dsl_prop_register(ds,
518 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
519 	    zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    zfs_prop_to_name(ZFS_PROP_LONGNAME), longname_changed_cb, zfsvfs);
524 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
525 	if (error)
526 		goto unregister;
527 
528 	/*
529 	 * Invoke our callbacks to restore temporary mount options.
530 	 */
531 	if (vfsp->vfs_do_readonly)
532 		readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
533 	if (vfsp->vfs_do_setuid)
534 		setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
535 	if (vfsp->vfs_do_exec)
536 		exec_changed_cb(zfsvfs, vfsp->vfs_exec);
537 	if (vfsp->vfs_do_devices)
538 		devices_changed_cb(zfsvfs, vfsp->vfs_devices);
539 	if (vfsp->vfs_do_xattr)
540 		xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
541 	if (vfsp->vfs_do_atime)
542 		atime_changed_cb(zfsvfs, vfsp->vfs_atime);
543 	if (vfsp->vfs_do_relatime)
544 		relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
545 	if (vfsp->vfs_do_nbmand)
546 		nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
547 
548 	return (0);
549 
550 unregister:
551 	dsl_prop_unregister_all(ds, zfsvfs);
552 	return (error);
553 }
554 
555 /*
556  * Takes a dataset, a property, a value and that value's setpoint as
557  * found in the ZAP. Checks if the property has been changed in the vfs.
558  * If so, val and setpoint will be overwritten with updated content.
559  * Otherwise, they are left unchanged.
560  */
561 int
562 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
563     char *setpoint)
564 {
565 	int error;
566 	zfsvfs_t *zfvp;
567 	vfs_t *vfsp;
568 	objset_t *os;
569 	uint64_t tmp = *val;
570 
571 	error = dmu_objset_from_ds(ds, &os);
572 	if (error != 0)
573 		return (error);
574 
575 	if (dmu_objset_type(os) != DMU_OST_ZFS)
576 		return (EINVAL);
577 
578 	mutex_enter(&os->os_user_ptr_lock);
579 	zfvp = dmu_objset_get_user(os);
580 	mutex_exit(&os->os_user_ptr_lock);
581 	if (zfvp == NULL)
582 		return (ESRCH);
583 
584 	vfsp = zfvp->z_vfs;
585 
586 	switch (zfs_prop) {
587 	case ZFS_PROP_ATIME:
588 		if (vfsp->vfs_do_atime)
589 			tmp = vfsp->vfs_atime;
590 		break;
591 	case ZFS_PROP_RELATIME:
592 		if (vfsp->vfs_do_relatime)
593 			tmp = vfsp->vfs_relatime;
594 		break;
595 	case ZFS_PROP_DEVICES:
596 		if (vfsp->vfs_do_devices)
597 			tmp = vfsp->vfs_devices;
598 		break;
599 	case ZFS_PROP_EXEC:
600 		if (vfsp->vfs_do_exec)
601 			tmp = vfsp->vfs_exec;
602 		break;
603 	case ZFS_PROP_SETUID:
604 		if (vfsp->vfs_do_setuid)
605 			tmp = vfsp->vfs_setuid;
606 		break;
607 	case ZFS_PROP_READONLY:
608 		if (vfsp->vfs_do_readonly)
609 			tmp = vfsp->vfs_readonly;
610 		break;
611 	case ZFS_PROP_XATTR:
612 		if (vfsp->vfs_do_xattr)
613 			tmp = vfsp->vfs_xattr;
614 		break;
615 	case ZFS_PROP_NBMAND:
616 		if (vfsp->vfs_do_nbmand)
617 			tmp = vfsp->vfs_nbmand;
618 		break;
619 	default:
620 		return (ENOENT);
621 	}
622 
623 	if (tmp != *val) {
624 		if (setpoint)
625 			(void) strcpy(setpoint, "temporary");
626 		*val = tmp;
627 	}
628 	return (0);
629 }
630 
631 /*
632  * Associate this zfsvfs with the given objset, which must be owned.
633  * This will cache a bunch of on-disk state from the objset in the
634  * zfsvfs.
635  */
636 static int
637 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
638 {
639 	int error;
640 	uint64_t val;
641 
642 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
643 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
644 	zfsvfs->z_os = os;
645 
646 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
647 	if (error != 0)
648 		return (error);
649 	if (zfsvfs->z_version >
650 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
651 		(void) printk("Can't mount a version %lld file system "
652 		    "on a version %lld pool\n. Pool must be upgraded to mount "
653 		    "this file system.\n", (u_longlong_t)zfsvfs->z_version,
654 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
655 		return (SET_ERROR(ENOTSUP));
656 	}
657 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
658 	if (error != 0)
659 		return (error);
660 	zfsvfs->z_norm = (int)val;
661 
662 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
663 	if (error != 0)
664 		return (error);
665 	zfsvfs->z_utf8 = (val != 0);
666 
667 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
668 	if (error != 0)
669 		return (error);
670 	zfsvfs->z_case = (uint_t)val;
671 
672 	if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
673 		return (error);
674 	zfsvfs->z_acl_type = (uint_t)val;
675 
676 	/*
677 	 * Fold case on file systems that are always or sometimes case
678 	 * insensitive.
679 	 */
680 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
681 	    zfsvfs->z_case == ZFS_CASE_MIXED)
682 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
683 
684 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
685 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
686 
687 	uint64_t sa_obj = 0;
688 	if (zfsvfs->z_use_sa) {
689 		/* should either have both of these objects or none */
690 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
691 		    &sa_obj);
692 		if (error != 0)
693 			return (error);
694 
695 		error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
696 		if ((error == 0) && (val == ZFS_XATTR_SA))
697 			zfsvfs->z_xattr_sa = B_TRUE;
698 	}
699 
700 	error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSERQUOTA,
701 	    &zfsvfs->z_defaultuserquota);
702 	if (error != 0)
703 		return (error);
704 
705 	error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPQUOTA,
706 	    &zfsvfs->z_defaultgroupquota);
707 	if (error != 0)
708 		return (error);
709 
710 	error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTQUOTA,
711 	    &zfsvfs->z_defaultprojectquota);
712 	if (error != 0)
713 		return (error);
714 
715 	error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSEROBJQUOTA,
716 	    &zfsvfs->z_defaultuserobjquota);
717 	if (error != 0)
718 		return (error);
719 
720 	error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPOBJQUOTA,
721 	    &zfsvfs->z_defaultgroupobjquota);
722 	if (error != 0)
723 		return (error);
724 
725 	error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTOBJQUOTA,
726 	    &zfsvfs->z_defaultprojectobjquota);
727 	if (error != 0)
728 		return (error);
729 
730 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
731 	    &zfsvfs->z_root);
732 	if (error != 0)
733 		return (error);
734 	ASSERT(zfsvfs->z_root != 0);
735 
736 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
737 	    &zfsvfs->z_unlinkedobj);
738 	if (error != 0)
739 		return (error);
740 
741 	error = zap_lookup(os, MASTER_NODE_OBJ,
742 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
743 	    8, 1, &zfsvfs->z_userquota_obj);
744 	if (error == ENOENT)
745 		zfsvfs->z_userquota_obj = 0;
746 	else if (error != 0)
747 		return (error);
748 
749 	error = zap_lookup(os, MASTER_NODE_OBJ,
750 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
751 	    8, 1, &zfsvfs->z_groupquota_obj);
752 	if (error == ENOENT)
753 		zfsvfs->z_groupquota_obj = 0;
754 	else if (error != 0)
755 		return (error);
756 
757 	error = zap_lookup(os, MASTER_NODE_OBJ,
758 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
759 	    8, 1, &zfsvfs->z_projectquota_obj);
760 	if (error == ENOENT)
761 		zfsvfs->z_projectquota_obj = 0;
762 	else if (error != 0)
763 		return (error);
764 
765 	error = zap_lookup(os, MASTER_NODE_OBJ,
766 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
767 	    8, 1, &zfsvfs->z_userobjquota_obj);
768 	if (error == ENOENT)
769 		zfsvfs->z_userobjquota_obj = 0;
770 	else if (error != 0)
771 		return (error);
772 
773 	error = zap_lookup(os, MASTER_NODE_OBJ,
774 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
775 	    8, 1, &zfsvfs->z_groupobjquota_obj);
776 	if (error == ENOENT)
777 		zfsvfs->z_groupobjquota_obj = 0;
778 	else if (error != 0)
779 		return (error);
780 
781 	error = zap_lookup(os, MASTER_NODE_OBJ,
782 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
783 	    8, 1, &zfsvfs->z_projectobjquota_obj);
784 	if (error == ENOENT)
785 		zfsvfs->z_projectobjquota_obj = 0;
786 	else if (error != 0)
787 		return (error);
788 
789 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
790 	    &zfsvfs->z_fuid_obj);
791 	if (error == ENOENT)
792 		zfsvfs->z_fuid_obj = 0;
793 	else if (error != 0)
794 		return (error);
795 
796 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
797 	    &zfsvfs->z_shares_dir);
798 	if (error == ENOENT)
799 		zfsvfs->z_shares_dir = 0;
800 	else if (error != 0)
801 		return (error);
802 
803 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
804 	    &zfsvfs->z_attr_table);
805 	if (error != 0)
806 		return (error);
807 
808 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
809 		sa_register_update_callback(os, zfs_sa_upgrade);
810 
811 	return (0);
812 }
813 
814 int
815 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
816 {
817 	objset_t *os;
818 	zfsvfs_t *zfsvfs;
819 	int error;
820 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
821 
822 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
823 
824 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
825 	if (error != 0) {
826 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
827 		return (error);
828 	}
829 
830 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
831 
832 	return (error);
833 }
834 
835 
836 /*
837  * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
838  * on a failure.  Do not pass in a statically allocated zfsvfs.
839  */
840 int
841 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
842 {
843 	int error;
844 
845 	zfsvfs->z_vfs = NULL;
846 	zfsvfs->z_sb = NULL;
847 	zfsvfs->z_parent = zfsvfs;
848 
849 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
850 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
851 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
852 	    offsetof(znode_t, z_link_node));
853 	ZFS_TEARDOWN_INIT(zfsvfs);
854 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
855 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
856 
857 	int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
858 	    ZFS_OBJ_MTX_MAX);
859 	zfsvfs->z_hold_size = size;
860 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
861 	    KM_SLEEP);
862 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
863 	for (int i = 0; i != size; i++) {
864 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
865 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
866 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
867 	}
868 
869 	error = zfsvfs_init(zfsvfs, os);
870 	if (error != 0) {
871 		dmu_objset_disown(os, B_TRUE, zfsvfs);
872 		*zfvp = NULL;
873 		zfsvfs_free(zfsvfs);
874 		return (error);
875 	}
876 
877 	zfsvfs->z_drain_task = TASKQID_INVALID;
878 	zfsvfs->z_draining = B_FALSE;
879 	zfsvfs->z_drain_cancel = B_TRUE;
880 
881 	*zfvp = zfsvfs;
882 	return (0);
883 }
884 
885 static int
886 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
887 {
888 	int error;
889 	boolean_t readonly = zfs_is_readonly(zfsvfs);
890 
891 	error = zfs_register_callbacks(zfsvfs->z_vfs);
892 	if (error)
893 		return (error);
894 
895 	/*
896 	 * If we are not mounting (ie: online recv), then we don't
897 	 * have to worry about replaying the log as we blocked all
898 	 * operations out since we closed the ZIL.
899 	 */
900 	if (mounting) {
901 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
902 		error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
903 		if (error)
904 			return (error);
905 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
906 		    &zfsvfs->z_kstat.dk_zil_sums);
907 
908 		/*
909 		 * During replay we remove the read only flag to
910 		 * allow replays to succeed.
911 		 */
912 		if (readonly != 0) {
913 			readonly_changed_cb(zfsvfs, B_FALSE);
914 		} else {
915 			zap_stats_t zs;
916 			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
917 			    &zs) == 0) {
918 				dataset_kstats_update_nunlinks_kstat(
919 				    &zfsvfs->z_kstat, zs.zs_num_entries);
920 				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
921 				    "num_entries in unlinked set: %llu",
922 				    zs.zs_num_entries);
923 			}
924 			zfs_unlinked_drain(zfsvfs);
925 			dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
926 			dd->dd_activity_cancelled = B_FALSE;
927 		}
928 
929 		/*
930 		 * Parse and replay the intent log.
931 		 *
932 		 * Because of ziltest, this must be done after
933 		 * zfs_unlinked_drain().  (Further note: ziltest
934 		 * doesn't use readonly mounts, where
935 		 * zfs_unlinked_drain() isn't called.)  This is because
936 		 * ziltest causes spa_sync() to think it's committed,
937 		 * but actually it is not, so the intent log contains
938 		 * many txg's worth of changes.
939 		 *
940 		 * In particular, if object N is in the unlinked set in
941 		 * the last txg to actually sync, then it could be
942 		 * actually freed in a later txg and then reallocated
943 		 * in a yet later txg.  This would write a "create
944 		 * object N" record to the intent log.  Normally, this
945 		 * would be fine because the spa_sync() would have
946 		 * written out the fact that object N is free, before
947 		 * we could write the "create object N" intent log
948 		 * record.
949 		 *
950 		 * But when we are in ziltest mode, we advance the "open
951 		 * txg" without actually spa_sync()-ing the changes to
952 		 * disk.  So we would see that object N is still
953 		 * allocated and in the unlinked set, and there is an
954 		 * intent log record saying to allocate it.
955 		 */
956 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
957 			if (zil_replay_disable) {
958 				zil_destroy(zfsvfs->z_log, B_FALSE);
959 			} else {
960 				zfsvfs->z_replay = B_TRUE;
961 				zil_replay(zfsvfs->z_os, zfsvfs,
962 				    zfs_replay_vector);
963 				zfsvfs->z_replay = B_FALSE;
964 			}
965 		}
966 
967 		/* restore readonly bit */
968 		if (readonly != 0)
969 			readonly_changed_cb(zfsvfs, B_TRUE);
970 	} else {
971 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
972 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
973 		    &zfsvfs->z_kstat.dk_zil_sums);
974 	}
975 
976 	/*
977 	 * Set the objset user_ptr to track its zfsvfs.
978 	 */
979 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
980 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
981 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
982 
983 	return (0);
984 }
985 
986 void
987 zfsvfs_free(zfsvfs_t *zfsvfs)
988 {
989 	int i, size = zfsvfs->z_hold_size;
990 
991 	zfs_fuid_destroy(zfsvfs);
992 
993 	mutex_destroy(&zfsvfs->z_znodes_lock);
994 	mutex_destroy(&zfsvfs->z_lock);
995 	list_destroy(&zfsvfs->z_all_znodes);
996 	ZFS_TEARDOWN_DESTROY(zfsvfs);
997 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
998 	rw_destroy(&zfsvfs->z_fuid_lock);
999 	for (i = 0; i != size; i++) {
1000 		avl_destroy(&zfsvfs->z_hold_trees[i]);
1001 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
1002 	}
1003 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
1004 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
1005 	zfsvfs_vfs_free(zfsvfs->z_vfs);
1006 	dataset_kstats_destroy(&zfsvfs->z_kstat);
1007 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1008 }
1009 
1010 static void
1011 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1012 {
1013 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1014 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1015 }
1016 
1017 static void
1018 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1019 {
1020 	objset_t *os = zfsvfs->z_os;
1021 
1022 	if (!dmu_objset_is_snapshot(os))
1023 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1024 }
1025 
1026 #ifdef HAVE_MLSLABEL
1027 /*
1028  * Check that the hex label string is appropriate for the dataset being
1029  * mounted into the global_zone proper.
1030  *
1031  * Return an error if the hex label string is not default or
1032  * admin_low/admin_high.  For admin_low labels, the corresponding
1033  * dataset must be readonly.
1034  */
1035 int
1036 zfs_check_global_label(const char *dsname, const char *hexsl)
1037 {
1038 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1039 		return (0);
1040 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1041 		return (0);
1042 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1043 		/* must be readonly */
1044 		uint64_t rdonly;
1045 
1046 		if (dsl_prop_get_integer(dsname,
1047 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1048 			return (SET_ERROR(EACCES));
1049 		return (rdonly ? 0 : SET_ERROR(EACCES));
1050 	}
1051 	return (SET_ERROR(EACCES));
1052 }
1053 #endif /* HAVE_MLSLABEL */
1054 
1055 static int
1056 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1057     uint32_t bshift)
1058 {
1059 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1060 	uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1061 	uint64_t quota;
1062 	uint64_t used;
1063 	int err;
1064 
1065 	strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1066 	err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1067 	    sizeof (buf) - offset, B_FALSE);
1068 	if (err)
1069 		return (err);
1070 
1071 	if (zfsvfs->z_projectquota_obj == 0) {
1072 		if (zfsvfs->z_defaultprojectquota == 0)
1073 			goto objs;
1074 		quota = zfsvfs->z_defaultprojectquota;
1075 	} else {
1076 		err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1077 		    buf + offset, 8, 1, &quota);
1078 		if (err && (quota = zfsvfs->z_defaultprojectquota) == 0) {
1079 			if (err == ENOENT)
1080 				goto objs;
1081 			return (err);
1082 		}
1083 	}
1084 
1085 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1086 	    buf + offset, 8, 1, &used);
1087 	if (unlikely(err == ENOENT)) {
1088 		uint32_t blksize;
1089 		u_longlong_t nblocks;
1090 
1091 		/*
1092 		 * Quota accounting is async, so it is possible race case.
1093 		 * There is at least one object with the given project ID.
1094 		 */
1095 		sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1096 		if (unlikely(zp->z_blksz == 0))
1097 			blksize = zfsvfs->z_max_blksz;
1098 
1099 		used = blksize * nblocks;
1100 	} else if (err) {
1101 		return (err);
1102 	}
1103 
1104 	statp->f_blocks = quota >> bshift;
1105 	statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1106 	statp->f_bavail = statp->f_bfree;
1107 
1108 objs:
1109 
1110 	if (zfsvfs->z_projectobjquota_obj == 0) {
1111 		if (zfsvfs->z_defaultprojectobjquota == 0)
1112 			return (0);
1113 		quota = zfsvfs->z_defaultprojectobjquota;
1114 	} else {
1115 		err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1116 		    buf + offset, 8, 1, &quota);
1117 		if (err && (quota = zfsvfs->z_defaultprojectobjquota) == 0) {
1118 			if (err == ENOENT)
1119 				return (0);
1120 			return (err);
1121 		}
1122 	}
1123 
1124 
1125 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1126 	    buf, 8, 1, &used);
1127 	if (unlikely(err == ENOENT)) {
1128 		/*
1129 		 * Quota accounting is async, so it is possible race case.
1130 		 * There is at least one object with the given project ID.
1131 		 */
1132 		used = 1;
1133 	} else if (err) {
1134 		return (err);
1135 	}
1136 
1137 	statp->f_files = quota;
1138 	statp->f_ffree = (quota > used) ? (quota - used) : 0;
1139 
1140 	return (0);
1141 }
1142 
1143 int
1144 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1145 {
1146 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1147 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1148 	int err = 0;
1149 
1150 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1151 		return (err);
1152 
1153 	dmu_objset_space(zfsvfs->z_os,
1154 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1155 
1156 	uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1157 	/*
1158 	 * The underlying storage pool actually uses multiple block
1159 	 * size.  Under Solaris frsize (fragment size) is reported as
1160 	 * the smallest block size we support, and bsize (block size)
1161 	 * as the filesystem's maximum block size.  Unfortunately,
1162 	 * under Linux the fragment size and block size are often used
1163 	 * interchangeably.  Thus we are forced to report both of them
1164 	 * as the filesystem's maximum block size.
1165 	 */
1166 	statp->f_frsize = zfsvfs->z_max_blksz;
1167 	statp->f_bsize = zfsvfs->z_max_blksz;
1168 	uint32_t bshift = fls(statp->f_bsize) - 1;
1169 
1170 	/*
1171 	 * The following report "total" blocks of various kinds in
1172 	 * the file system, but reported in terms of f_bsize - the
1173 	 * "preferred" size.
1174 	 */
1175 
1176 	/* Round up so we never have a filesystem using 0 blocks. */
1177 	refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1178 	statp->f_blocks = (refdbytes + availbytes) >> bshift;
1179 	statp->f_bfree = availbytes >> bshift;
1180 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1181 
1182 	/*
1183 	 * statvfs() should really be called statufs(), because it assumes
1184 	 * static metadata.  ZFS doesn't preallocate files, so the best
1185 	 * we can do is report the max that could possibly fit in f_files,
1186 	 * and that minus the number actually used in f_ffree.
1187 	 * For f_ffree, report the smaller of the number of objects available
1188 	 * and the number of blocks (each object will take at least a block).
1189 	 */
1190 	statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1191 	statp->f_files = statp->f_ffree + usedobjs;
1192 	statp->f_fsid.val[0] = (uint32_t)fsid;
1193 	statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1194 	statp->f_type = ZFS_SUPER_MAGIC;
1195 	statp->f_namelen =
1196 	    zfsvfs->z_longname ? (ZAP_MAXNAMELEN_NEW - 1) : (MAXNAMELEN - 1);
1197 
1198 	/*
1199 	 * We have all of 40 characters to stuff a string here.
1200 	 * Is there anything useful we could/should provide?
1201 	 */
1202 	memset(statp->f_spare, 0, sizeof (statp->f_spare));
1203 
1204 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1205 	    dmu_objset_projectquota_present(zfsvfs->z_os)) {
1206 		znode_t *zp = ITOZ(ip);
1207 
1208 		if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1209 		    zpl_is_valid_projid(zp->z_projid))
1210 			err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1211 	}
1212 
1213 	zfs_exit(zfsvfs, FTAG);
1214 	return (err);
1215 }
1216 
1217 static int
1218 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1219 {
1220 	znode_t *rootzp;
1221 	int error;
1222 
1223 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1224 		return (error);
1225 
1226 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1227 	if (error == 0)
1228 		*ipp = ZTOI(rootzp);
1229 
1230 	zfs_exit(zfsvfs, FTAG);
1231 	return (error);
1232 }
1233 
1234 /*
1235  * The ARC has requested that the filesystem drop entries from the dentry
1236  * and inode caches.  This can occur when the ARC needs to free meta data
1237  * blocks but can't because they are all pinned by entries in these caches.
1238  */
1239 #if defined(HAVE_SUPER_BLOCK_S_SHRINK)
1240 #define	S_SHRINK(sb)	(&(sb)->s_shrink)
1241 #elif defined(HAVE_SUPER_BLOCK_S_SHRINK_PTR)
1242 #define	S_SHRINK(sb)	((sb)->s_shrink)
1243 #endif
1244 
1245 int
1246 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1247 {
1248 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1249 	int error = 0;
1250 	struct shrinker *shrinker = S_SHRINK(sb);
1251 	struct shrink_control sc = {
1252 		.nr_to_scan = nr_to_scan,
1253 		.gfp_mask = GFP_KERNEL,
1254 	};
1255 
1256 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1257 		return (error);
1258 
1259 #ifdef SHRINKER_NUMA_AWARE
1260 	if (shrinker->flags & SHRINKER_NUMA_AWARE) {
1261 		long tc = 1;
1262 		for_each_online_node(sc.nid) {
1263 			long c = shrinker->count_objects(shrinker, &sc);
1264 			if (c  == 0 || c == SHRINK_EMPTY)
1265 				continue;
1266 			tc += c;
1267 		}
1268 		*objects = 0;
1269 		for_each_online_node(sc.nid) {
1270 			long c = shrinker->count_objects(shrinker, &sc);
1271 			if (c  == 0 || c == SHRINK_EMPTY)
1272 				continue;
1273 			if (c > tc)
1274 				tc = c;
1275 			sc.nr_to_scan = mult_frac(nr_to_scan, c, tc) + 1;
1276 			*objects += (*shrinker->scan_objects)(shrinker, &sc);
1277 		}
1278 	} else {
1279 			*objects = (*shrinker->scan_objects)(shrinker, &sc);
1280 	}
1281 #else
1282 	*objects = (*shrinker->scan_objects)(shrinker, &sc);
1283 #endif
1284 
1285 	zfs_exit(zfsvfs, FTAG);
1286 
1287 	dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1288 	    "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1289 	    nr_to_scan, *objects, error);
1290 
1291 	return (error);
1292 }
1293 
1294 /*
1295  * Teardown the zfsvfs_t.
1296  *
1297  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1298  * and 'z_teardown_inactive_lock' held.
1299  */
1300 static int
1301 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1302 {
1303 	znode_t	*zp;
1304 
1305 	zfs_unlinked_drain_stop_wait(zfsvfs);
1306 
1307 	/*
1308 	 * If someone has not already unmounted this file system,
1309 	 * drain the zrele_taskq to ensure all active references to the
1310 	 * zfsvfs_t have been handled only then can it be safely destroyed.
1311 	 */
1312 	if (zfsvfs->z_os) {
1313 		/*
1314 		 * If we're unmounting we have to wait for the list to
1315 		 * drain completely.
1316 		 *
1317 		 * If we're not unmounting there's no guarantee the list
1318 		 * will drain completely, but iputs run from the taskq
1319 		 * may add the parents of dir-based xattrs to the taskq
1320 		 * so we want to wait for these.
1321 		 *
1322 		 * We can safely check z_all_znodes for being empty because the
1323 		 * VFS has already blocked operations which add to it.
1324 		 */
1325 		int round = 0;
1326 		while (!list_is_empty(&zfsvfs->z_all_znodes)) {
1327 			taskq_wait_outstanding(dsl_pool_zrele_taskq(
1328 			    dmu_objset_pool(zfsvfs->z_os)), 0);
1329 			if (++round > 1 && !unmounting)
1330 				break;
1331 		}
1332 	}
1333 
1334 	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1335 
1336 	if (!unmounting) {
1337 		/*
1338 		 * We purge the parent filesystem's super block as the
1339 		 * parent filesystem and all of its snapshots have their
1340 		 * inode's super block set to the parent's filesystem's
1341 		 * super block.  Note,  'z_parent' is self referential
1342 		 * for non-snapshots.
1343 		 */
1344 		shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1345 	}
1346 
1347 	/*
1348 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1349 	 * threads are blocked as zil_close can call zfs_inactive.
1350 	 */
1351 	if (zfsvfs->z_log) {
1352 		zil_close(zfsvfs->z_log);
1353 		zfsvfs->z_log = NULL;
1354 	}
1355 
1356 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1357 
1358 	/*
1359 	 * If we are not unmounting (ie: online recv) and someone already
1360 	 * unmounted this file system while we were doing the switcheroo,
1361 	 * or a reopen of z_os failed then just bail out now.
1362 	 */
1363 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1364 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1365 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1366 		return (SET_ERROR(EIO));
1367 	}
1368 
1369 	/*
1370 	 * At this point there are no VFS ops active, and any new VFS ops
1371 	 * will fail with EIO since we have z_teardown_lock for writer (only
1372 	 * relevant for forced unmount).
1373 	 *
1374 	 * Release all holds on dbufs. We also grab an extra reference to all
1375 	 * the remaining inodes so that the kernel does not attempt to free
1376 	 * any inodes of a suspended fs. This can cause deadlocks since the
1377 	 * zfs_resume_fs() process may involve starting threads, which might
1378 	 * attempt to free unreferenced inodes to free up memory for the new
1379 	 * thread.
1380 	 */
1381 	if (!unmounting) {
1382 		mutex_enter(&zfsvfs->z_znodes_lock);
1383 		for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1384 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1385 			if (zp->z_sa_hdl)
1386 				zfs_znode_dmu_fini(zp);
1387 			if (igrab(ZTOI(zp)) != NULL)
1388 				zp->z_suspended = B_TRUE;
1389 
1390 		}
1391 		mutex_exit(&zfsvfs->z_znodes_lock);
1392 	}
1393 
1394 	/*
1395 	 * If we are unmounting, set the unmounted flag and let new VFS ops
1396 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1397 	 * other VFS ops will fail with EIO.
1398 	 */
1399 	if (unmounting) {
1400 		zfsvfs->z_unmounted = B_TRUE;
1401 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1402 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1403 	}
1404 
1405 	/*
1406 	 * z_os will be NULL if there was an error in attempting to reopen
1407 	 * zfsvfs, so just return as the properties had already been
1408 	 *
1409 	 * unregistered and cached data had been evicted before.
1410 	 */
1411 	if (zfsvfs->z_os == NULL)
1412 		return (0);
1413 
1414 	/*
1415 	 * Unregister properties.
1416 	 */
1417 	zfs_unregister_callbacks(zfsvfs);
1418 
1419 	/*
1420 	 * Evict cached data. We must write out any dirty data before
1421 	 * disowning the dataset.
1422 	 */
1423 	objset_t *os = zfsvfs->z_os;
1424 	boolean_t os_dirty = B_FALSE;
1425 	for (int t = 0; t < TXG_SIZE; t++) {
1426 		if (dmu_objset_is_dirty(os, t)) {
1427 			os_dirty = B_TRUE;
1428 			break;
1429 		}
1430 	}
1431 	if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1432 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1433 	}
1434 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1435 	dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1436 	dsl_dir_cancel_waiters(dd);
1437 
1438 	return (0);
1439 }
1440 
1441 static atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1442 
1443 int
1444 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1445 {
1446 	const char *osname = zm->mnt_osname;
1447 	struct inode *root_inode = NULL;
1448 	uint64_t recordsize;
1449 	int error = 0;
1450 	zfsvfs_t *zfsvfs = NULL;
1451 	vfs_t *vfs = NULL;
1452 	int canwrite;
1453 	int dataset_visible_zone;
1454 
1455 	ASSERT(zm);
1456 	ASSERT(osname);
1457 
1458 	dataset_visible_zone = zone_dataset_visible(osname, &canwrite);
1459 
1460 	/*
1461 	 * Refuse to mount a filesystem if we are in a namespace and the
1462 	 * dataset is not visible or writable in that namespace.
1463 	 */
1464 	if (!INGLOBALZONE(curproc) &&
1465 	    (!dataset_visible_zone || !canwrite)) {
1466 		return (SET_ERROR(EPERM));
1467 	}
1468 
1469 	error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1470 	if (error)
1471 		return (error);
1472 
1473 	/*
1474 	 * If a non-writable filesystem is being mounted without the
1475 	 * read-only flag, pretend it was set, as done for snapshots.
1476 	 */
1477 	if (!canwrite)
1478 		vfs->vfs_readonly = B_TRUE;
1479 
1480 	error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1481 	if (error) {
1482 		zfsvfs_vfs_free(vfs);
1483 		goto out;
1484 	}
1485 
1486 	if ((error = dsl_prop_get_integer(osname, "recordsize",
1487 	    &recordsize, NULL))) {
1488 		zfsvfs_vfs_free(vfs);
1489 		goto out;
1490 	}
1491 
1492 	vfs->vfs_data = zfsvfs;
1493 	zfsvfs->z_vfs = vfs;
1494 	zfsvfs->z_sb = sb;
1495 	sb->s_fs_info = zfsvfs;
1496 	sb->s_magic = ZFS_SUPER_MAGIC;
1497 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1498 	sb->s_time_gran = 1;
1499 	sb->s_blocksize = recordsize;
1500 	sb->s_blocksize_bits = ilog2(recordsize);
1501 
1502 	error = -super_setup_bdi_name(sb, "%.28s-%ld", "zfs",
1503 	    atomic_long_inc_return(&zfs_bdi_seq));
1504 	if (error)
1505 		goto out;
1506 
1507 	sb->s_bdi->ra_pages = 0;
1508 
1509 	/* Set callback operations for the file system. */
1510 	sb->s_op = &zpl_super_operations;
1511 	sb->s_xattr = zpl_xattr_handlers;
1512 	sb->s_export_op = &zpl_export_operations;
1513 
1514 	/* Set features for file system. */
1515 	zfs_set_fuid_feature(zfsvfs);
1516 
1517 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1518 		uint64_t pval;
1519 
1520 		atime_changed_cb(zfsvfs, B_FALSE);
1521 		readonly_changed_cb(zfsvfs, B_TRUE);
1522 		if ((error = dsl_prop_get_integer(osname,
1523 		    "xattr", &pval, NULL)))
1524 			goto out;
1525 		xattr_changed_cb(zfsvfs, pval);
1526 		if ((error = dsl_prop_get_integer(osname,
1527 		    "acltype", &pval, NULL)))
1528 			goto out;
1529 		acltype_changed_cb(zfsvfs, pval);
1530 		zfsvfs->z_issnap = B_TRUE;
1531 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1532 		zfsvfs->z_snap_defer_time = jiffies;
1533 
1534 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1535 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1536 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1537 	} else {
1538 		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1539 			goto out;
1540 	}
1541 
1542 	/* Allocate a root inode for the filesystem. */
1543 	error = zfs_root(zfsvfs, &root_inode);
1544 	if (error) {
1545 		(void) zfs_umount(sb);
1546 		zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1547 		goto out;
1548 	}
1549 
1550 	/* Allocate a root dentry for the filesystem */
1551 	sb->s_root = d_make_root(root_inode);
1552 	if (sb->s_root == NULL) {
1553 		(void) zfs_umount(sb);
1554 		zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1555 		error = SET_ERROR(ENOMEM);
1556 		goto out;
1557 	}
1558 
1559 	if (!zfsvfs->z_issnap)
1560 		zfsctl_create(zfsvfs);
1561 
1562 	zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1563 out:
1564 	if (error) {
1565 		if (zfsvfs != NULL) {
1566 			dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1567 			zfsvfs_free(zfsvfs);
1568 		}
1569 		/*
1570 		 * make sure we don't have dangling sb->s_fs_info which
1571 		 * zfs_preumount will use.
1572 		 */
1573 		sb->s_fs_info = NULL;
1574 	}
1575 
1576 	return (error);
1577 }
1578 
1579 /*
1580  * Called when an unmount is requested and certain sanity checks have
1581  * already passed.  At this point no dentries or inodes have been reclaimed
1582  * from their respective caches.  We drop the extra reference on the .zfs
1583  * control directory to allow everything to be reclaimed.  All snapshots
1584  * must already have been unmounted to reach this point.
1585  */
1586 void
1587 zfs_preumount(struct super_block *sb)
1588 {
1589 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1590 
1591 	/* zfsvfs is NULL when zfs_domount fails during mount */
1592 	if (zfsvfs) {
1593 		zfs_unlinked_drain_stop_wait(zfsvfs);
1594 		zfsctl_destroy(sb->s_fs_info);
1595 		/*
1596 		 * Wait for zrele_async before entering evict_inodes in
1597 		 * generic_shutdown_super. The reason we must finish before
1598 		 * evict_inodes is when lazytime is on, or when zfs_purgedir
1599 		 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1600 		 * would race with the i_count check in evict_inodes. This means
1601 		 * it could destroy the inode while we are still using it.
1602 		 *
1603 		 * We wait for two passes. xattr directories in the first pass
1604 		 * may add xattr entries in zfs_purgedir, so in the second pass
1605 		 * we wait for them. We don't use taskq_wait here because it is
1606 		 * a pool wide taskq. Other mounted filesystems can constantly
1607 		 * do zrele_async and there's no guarantee when taskq will be
1608 		 * empty.
1609 		 */
1610 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1611 		    dmu_objset_pool(zfsvfs->z_os)), 0);
1612 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1613 		    dmu_objset_pool(zfsvfs->z_os)), 0);
1614 	}
1615 }
1616 
1617 /*
1618  * Called once all other unmount released tear down has occurred.
1619  * It is our responsibility to release any remaining infrastructure.
1620  */
1621 int
1622 zfs_umount(struct super_block *sb)
1623 {
1624 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1625 	objset_t *os;
1626 
1627 	if (zfsvfs->z_arc_prune != NULL)
1628 		arc_remove_prune_callback(zfsvfs->z_arc_prune);
1629 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1630 	os = zfsvfs->z_os;
1631 
1632 	/*
1633 	 * z_os will be NULL if there was an error in
1634 	 * attempting to reopen zfsvfs.
1635 	 */
1636 	if (os != NULL) {
1637 		/*
1638 		 * Unset the objset user_ptr.
1639 		 */
1640 		mutex_enter(&os->os_user_ptr_lock);
1641 		dmu_objset_set_user(os, NULL);
1642 		mutex_exit(&os->os_user_ptr_lock);
1643 
1644 		/*
1645 		 * Finally release the objset
1646 		 */
1647 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1648 	}
1649 
1650 	zfsvfs_free(zfsvfs);
1651 	sb->s_fs_info = NULL;
1652 	return (0);
1653 }
1654 
1655 int
1656 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1657 {
1658 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1659 	vfs_t *vfsp;
1660 	boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1661 	int error;
1662 
1663 	if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1664 	    !(*flags & SB_RDONLY)) {
1665 		*flags |= SB_RDONLY;
1666 		return (EROFS);
1667 	}
1668 
1669 	error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1670 	if (error)
1671 		return (error);
1672 
1673 	if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1674 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1675 
1676 	zfs_unregister_callbacks(zfsvfs);
1677 	zfsvfs_vfs_free(zfsvfs->z_vfs);
1678 
1679 	vfsp->vfs_data = zfsvfs;
1680 	zfsvfs->z_vfs = vfsp;
1681 	if (!issnap)
1682 		(void) zfs_register_callbacks(vfsp);
1683 
1684 	return (error);
1685 }
1686 
1687 int
1688 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1689 {
1690 	zfsvfs_t	*zfsvfs = sb->s_fs_info;
1691 	znode_t		*zp;
1692 	uint64_t	object = 0;
1693 	uint64_t	fid_gen = 0;
1694 	uint64_t	gen_mask;
1695 	uint64_t	zp_gen;
1696 	int		i, err;
1697 
1698 	*ipp = NULL;
1699 
1700 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1701 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1702 
1703 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1704 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1705 
1706 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1707 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1708 	} else {
1709 		return (SET_ERROR(EINVAL));
1710 	}
1711 
1712 	/* LONG_FID_LEN means snapdirs */
1713 	if (fidp->fid_len == LONG_FID_LEN) {
1714 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1715 		uint64_t	objsetid = 0;
1716 		uint64_t	setgen = 0;
1717 
1718 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1719 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1720 
1721 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1722 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1723 
1724 		if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1725 			dprintf("snapdir fid: objsetid (%llu) != "
1726 			    "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1727 			    objsetid, ZFSCTL_INO_SNAPDIRS, object);
1728 
1729 			return (SET_ERROR(EINVAL));
1730 		}
1731 
1732 		if (fid_gen > 1 || setgen != 0) {
1733 			dprintf("snapdir fid: fid_gen (%llu) and setgen "
1734 			    "(%llu)\n", fid_gen, setgen);
1735 			return (SET_ERROR(EINVAL));
1736 		}
1737 
1738 		return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1739 	}
1740 
1741 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1742 		return (err);
1743 	/* A zero fid_gen means we are in the .zfs control directories */
1744 	if (fid_gen == 0 &&
1745 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1746 		if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) {
1747 			zfs_exit(zfsvfs, FTAG);
1748 			return (SET_ERROR(ENOENT));
1749 		}
1750 
1751 		*ipp = zfsvfs->z_ctldir;
1752 		ASSERT(*ipp != NULL);
1753 
1754 		if (object == ZFSCTL_INO_SNAPDIR) {
1755 			VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1756 			    0, kcred, NULL, NULL) == 0);
1757 		} else {
1758 			/*
1759 			 * Must have an existing ref, so igrab()
1760 			 * cannot return NULL
1761 			 */
1762 			VERIFY3P(igrab(*ipp), !=, NULL);
1763 		}
1764 		zfs_exit(zfsvfs, FTAG);
1765 		return (0);
1766 	}
1767 
1768 	gen_mask = -1ULL >> (64 - 8 * i);
1769 
1770 	dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1771 	if ((err = zfs_zget(zfsvfs, object, &zp))) {
1772 		zfs_exit(zfsvfs, FTAG);
1773 		return (err);
1774 	}
1775 
1776 	/* Don't export xattr stuff */
1777 	if (zp->z_pflags & ZFS_XATTR) {
1778 		zrele(zp);
1779 		zfs_exit(zfsvfs, FTAG);
1780 		return (SET_ERROR(ENOENT));
1781 	}
1782 
1783 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1784 	    sizeof (uint64_t));
1785 	zp_gen = zp_gen & gen_mask;
1786 	if (zp_gen == 0)
1787 		zp_gen = 1;
1788 	if ((fid_gen == 0) && (zfsvfs->z_root == object))
1789 		fid_gen = zp_gen;
1790 	if (zp->z_unlinked || zp_gen != fid_gen) {
1791 		dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1792 		    fid_gen);
1793 		zrele(zp);
1794 		zfs_exit(zfsvfs, FTAG);
1795 		return (SET_ERROR(ENOENT));
1796 	}
1797 
1798 	*ipp = ZTOI(zp);
1799 	if (*ipp)
1800 		zfs_znode_update_vfs(ITOZ(*ipp));
1801 
1802 	zfs_exit(zfsvfs, FTAG);
1803 	return (0);
1804 }
1805 
1806 /*
1807  * Block out VFS ops and close zfsvfs_t
1808  *
1809  * Note, if successful, then we return with the 'z_teardown_lock' and
1810  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
1811  * dataset and objset intact so that they can be atomically handed off during
1812  * a subsequent rollback or recv operation and the resume thereafter.
1813  */
1814 int
1815 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1816 {
1817 	int error;
1818 
1819 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1820 		return (error);
1821 
1822 	return (0);
1823 }
1824 
1825 /*
1826  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
1827  * is an invariant across any of the operations that can be performed while the
1828  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
1829  * are the same: the relevant objset and associated dataset are owned by
1830  * zfsvfs, held, and long held on entry.
1831  */
1832 int
1833 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1834 {
1835 	int err, err2;
1836 	znode_t *zp;
1837 
1838 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1839 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1840 
1841 	/*
1842 	 * We already own this, so just update the objset_t, as the one we
1843 	 * had before may have been evicted.
1844 	 */
1845 	objset_t *os;
1846 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1847 	VERIFY(dsl_dataset_long_held(ds));
1848 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1849 	dsl_pool_config_enter(dp, FTAG);
1850 	VERIFY0(dmu_objset_from_ds(ds, &os));
1851 	dsl_pool_config_exit(dp, FTAG);
1852 
1853 	err = zfsvfs_init(zfsvfs, os);
1854 	if (err != 0)
1855 		goto bail;
1856 
1857 	ds->ds_dir->dd_activity_cancelled = B_FALSE;
1858 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1859 
1860 	zfs_set_fuid_feature(zfsvfs);
1861 	zfsvfs->z_rollback_time = jiffies;
1862 
1863 	/*
1864 	 * Attempt to re-establish all the active inodes with their
1865 	 * dbufs.  If a zfs_rezget() fails, then we unhash the inode
1866 	 * and mark it stale.  This prevents a collision if a new
1867 	 * inode/object is created which must use the same inode
1868 	 * number.  The stale inode will be be released when the
1869 	 * VFS prunes the dentry holding the remaining references
1870 	 * on the stale inode.
1871 	 */
1872 	mutex_enter(&zfsvfs->z_znodes_lock);
1873 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1874 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1875 		err2 = zfs_rezget(zp);
1876 		if (err2) {
1877 			zpl_d_drop_aliases(ZTOI(zp));
1878 			remove_inode_hash(ZTOI(zp));
1879 		}
1880 
1881 		/* see comment in zfs_suspend_fs() */
1882 		if (zp->z_suspended) {
1883 			zfs_zrele_async(zp);
1884 			zp->z_suspended = B_FALSE;
1885 		}
1886 	}
1887 	mutex_exit(&zfsvfs->z_znodes_lock);
1888 
1889 	if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1890 		/*
1891 		 * zfs_suspend_fs() could have interrupted freeing
1892 		 * of dnodes. We need to restart this freeing so
1893 		 * that we don't "leak" the space.
1894 		 */
1895 		zfs_unlinked_drain(zfsvfs);
1896 	}
1897 
1898 	/*
1899 	 * Most of the time zfs_suspend_fs is used for changing the contents
1900 	 * of the underlying dataset. ZFS rollback and receive operations
1901 	 * might create files for which negative dentries are present in
1902 	 * the cache. Since walking the dcache would require a lot of GPL-only
1903 	 * code duplication, it's much easier on these rather rare occasions
1904 	 * just to flush the whole dcache for the given dataset/filesystem.
1905 	 */
1906 	shrink_dcache_sb(zfsvfs->z_sb);
1907 
1908 bail:
1909 	if (err != 0)
1910 		zfsvfs->z_unmounted = B_TRUE;
1911 
1912 	/* release the VFS ops */
1913 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1914 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1915 
1916 	if (err != 0) {
1917 		/*
1918 		 * Since we couldn't setup the sa framework, try to force
1919 		 * unmount this file system.
1920 		 */
1921 		if (zfsvfs->z_os)
1922 			(void) zfs_umount(zfsvfs->z_sb);
1923 	}
1924 	return (err);
1925 }
1926 
1927 /*
1928  * Release VOPs and unmount a suspended filesystem.
1929  */
1930 int
1931 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1932 {
1933 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1934 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1935 
1936 	/*
1937 	 * We already own this, so just hold and rele it to update the
1938 	 * objset_t, as the one we had before may have been evicted.
1939 	 */
1940 	objset_t *os;
1941 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1942 	VERIFY(dsl_dataset_long_held(ds));
1943 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1944 	dsl_pool_config_enter(dp, FTAG);
1945 	VERIFY0(dmu_objset_from_ds(ds, &os));
1946 	dsl_pool_config_exit(dp, FTAG);
1947 	zfsvfs->z_os = os;
1948 
1949 	/* release the VOPs */
1950 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1951 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1952 
1953 	/*
1954 	 * Try to force unmount this file system.
1955 	 */
1956 	(void) zfs_umount(zfsvfs->z_sb);
1957 	zfsvfs->z_unmounted = B_TRUE;
1958 	return (0);
1959 }
1960 
1961 /*
1962  * Automounted snapshots rely on periodic revalidation
1963  * to defer snapshots from being automatically unmounted.
1964  */
1965 
1966 inline void
1967 zfs_exit_fs(zfsvfs_t *zfsvfs)
1968 {
1969 	if (!zfsvfs->z_issnap)
1970 		return;
1971 
1972 	if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1973 	    MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1974 		zfsvfs->z_snap_defer_time = jiffies;
1975 		zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1976 		    dmu_objset_id(zfsvfs->z_os),
1977 		    zfs_expire_snapshot);
1978 	}
1979 }
1980 
1981 int
1982 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1983 {
1984 	int error;
1985 	objset_t *os = zfsvfs->z_os;
1986 	dmu_tx_t *tx;
1987 
1988 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1989 		return (SET_ERROR(EINVAL));
1990 
1991 	if (newvers < zfsvfs->z_version)
1992 		return (SET_ERROR(EINVAL));
1993 
1994 	if (zfs_spa_version_map(newvers) >
1995 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
1996 		return (SET_ERROR(ENOTSUP));
1997 
1998 	tx = dmu_tx_create(os);
1999 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2000 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2001 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2002 		    ZFS_SA_ATTRS);
2003 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2004 	}
2005 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
2006 	if (error) {
2007 		dmu_tx_abort(tx);
2008 		return (error);
2009 	}
2010 
2011 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2012 	    8, 1, &newvers, tx);
2013 
2014 	if (error) {
2015 		dmu_tx_commit(tx);
2016 		return (error);
2017 	}
2018 
2019 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2020 		uint64_t sa_obj;
2021 
2022 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2023 		    SPA_VERSION_SA);
2024 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2025 		    DMU_OT_NONE, 0, tx);
2026 
2027 		error = zap_add(os, MASTER_NODE_OBJ,
2028 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2029 		ASSERT0(error);
2030 
2031 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2032 		sa_register_update_callback(os, zfs_sa_upgrade);
2033 	}
2034 
2035 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2036 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2037 
2038 	dmu_tx_commit(tx);
2039 
2040 	zfsvfs->z_version = newvers;
2041 	os->os_version = newvers;
2042 
2043 	zfs_set_fuid_feature(zfsvfs);
2044 
2045 	return (0);
2046 }
2047 
2048 int
2049 zfs_set_default_quota(zfsvfs_t *zfsvfs, zfs_prop_t prop, uint64_t quota)
2050 {
2051 	int error;
2052 	objset_t *os = zfsvfs->z_os;
2053 	const char *propstr = zfs_prop_to_name(prop);
2054 	dmu_tx_t *tx;
2055 
2056 	tx = dmu_tx_create(os);
2057 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, propstr);
2058 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
2059 	if (error) {
2060 		dmu_tx_abort(tx);
2061 		return (error);
2062 	}
2063 
2064 	if (quota == 0) {
2065 		error = zap_remove(os, MASTER_NODE_OBJ, propstr, tx);
2066 		if (error == ENOENT)
2067 			error = 0;
2068 	} else {
2069 		error = zap_update(os, MASTER_NODE_OBJ, propstr, 8, 1,
2070 		    &quota, tx);
2071 	}
2072 
2073 	if (error)
2074 		goto out;
2075 
2076 	switch (prop) {
2077 	case ZFS_PROP_DEFAULTUSERQUOTA:
2078 		zfsvfs->z_defaultuserquota = quota;
2079 		break;
2080 	case ZFS_PROP_DEFAULTGROUPQUOTA:
2081 		zfsvfs->z_defaultgroupquota = quota;
2082 		break;
2083 	case ZFS_PROP_DEFAULTPROJECTQUOTA:
2084 		zfsvfs->z_defaultprojectquota = quota;
2085 		break;
2086 	case ZFS_PROP_DEFAULTUSEROBJQUOTA:
2087 		zfsvfs->z_defaultuserobjquota = quota;
2088 		break;
2089 	case ZFS_PROP_DEFAULTGROUPOBJQUOTA:
2090 		zfsvfs->z_defaultgroupobjquota = quota;
2091 		break;
2092 	case ZFS_PROP_DEFAULTPROJECTOBJQUOTA:
2093 		zfsvfs->z_defaultprojectobjquota = quota;
2094 		break;
2095 	default:
2096 		break;
2097 	}
2098 
2099 out:
2100 	dmu_tx_commit(tx);
2101 	return (error);
2102 }
2103 
2104 /*
2105  * Return true if the corresponding vfs's unmounted flag is set.
2106  * Otherwise return false.
2107  * If this function returns true we know VFS unmount has been initiated.
2108  */
2109 boolean_t
2110 zfs_get_vfs_flag_unmounted(objset_t *os)
2111 {
2112 	zfsvfs_t *zfvp;
2113 	boolean_t unmounted = B_FALSE;
2114 
2115 	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2116 
2117 	mutex_enter(&os->os_user_ptr_lock);
2118 	zfvp = dmu_objset_get_user(os);
2119 	if (zfvp != NULL && zfvp->z_unmounted)
2120 		unmounted = B_TRUE;
2121 	mutex_exit(&os->os_user_ptr_lock);
2122 
2123 	return (unmounted);
2124 }
2125 
2126 void
2127 zfsvfs_update_fromname(const char *oldname, const char *newname)
2128 {
2129 	/*
2130 	 * We don't need to do anything here, the devname is always current by
2131 	 * virtue of zfsvfs->z_sb->s_op->show_devname.
2132 	 */
2133 	(void) oldname, (void) newname;
2134 }
2135 
2136 void
2137 zfs_init(void)
2138 {
2139 	zfsctl_init();
2140 	zfs_znode_init();
2141 	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2142 	register_filesystem(&zpl_fs_type);
2143 }
2144 
2145 void
2146 zfs_fini(void)
2147 {
2148 	/*
2149 	 * we don't use outstanding because zpl_posix_acl_free might add more.
2150 	 */
2151 	taskq_wait(system_delay_taskq);
2152 	taskq_wait(system_taskq);
2153 	unregister_filesystem(&zpl_fs_type);
2154 	zfs_znode_fini();
2155 	zfsctl_fini();
2156 }
2157 
2158 #if defined(_KERNEL)
2159 EXPORT_SYMBOL(zfs_suspend_fs);
2160 EXPORT_SYMBOL(zfs_resume_fs);
2161 EXPORT_SYMBOL(zfs_set_version);
2162 EXPORT_SYMBOL(zfsvfs_create);
2163 EXPORT_SYMBOL(zfsvfs_free);
2164 EXPORT_SYMBOL(zfs_is_readonly);
2165 EXPORT_SYMBOL(zfs_domount);
2166 EXPORT_SYMBOL(zfs_preumount);
2167 EXPORT_SYMBOL(zfs_umount);
2168 EXPORT_SYMBOL(zfs_remount);
2169 EXPORT_SYMBOL(zfs_statvfs);
2170 EXPORT_SYMBOL(zfs_vget);
2171 EXPORT_SYMBOL(zfs_prune);
2172 EXPORT_SYMBOL(zfs_set_default_quota);
2173 #endif
2174