1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/pathname.h> 33 #include <sys/vnode.h> 34 #include <sys/vfs.h> 35 #include <sys/mntent.h> 36 #include <sys/cmn_err.h> 37 #include <sys/zfs_znode.h> 38 #include <sys/zfs_vnops.h> 39 #include <sys/zfs_dir.h> 40 #include <sys/zil.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/dmu.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/dsl_dataset.h> 45 #include <sys/dsl_deleg.h> 46 #include <sys/spa.h> 47 #include <sys/zap.h> 48 #include <sys/sa.h> 49 #include <sys/sa_impl.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_ctldir.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/zfs_quota.h> 56 #include <sys/sunddi.h> 57 #include <sys/dmu_objset.h> 58 #include <sys/dsl_dir.h> 59 #include <sys/spa_boot.h> 60 #include <sys/objlist.h> 61 #include <sys/zpl.h> 62 #include <linux/vfs_compat.h> 63 #include "zfs_comutil.h" 64 65 enum { 66 TOKEN_RO, 67 TOKEN_RW, 68 TOKEN_SETUID, 69 TOKEN_NOSETUID, 70 TOKEN_EXEC, 71 TOKEN_NOEXEC, 72 TOKEN_DEVICES, 73 TOKEN_NODEVICES, 74 TOKEN_DIRXATTR, 75 TOKEN_SAXATTR, 76 TOKEN_XATTR, 77 TOKEN_NOXATTR, 78 TOKEN_ATIME, 79 TOKEN_NOATIME, 80 TOKEN_RELATIME, 81 TOKEN_NORELATIME, 82 TOKEN_NBMAND, 83 TOKEN_NONBMAND, 84 TOKEN_MNTPOINT, 85 TOKEN_LAST, 86 }; 87 88 static const match_table_t zpl_tokens = { 89 { TOKEN_RO, MNTOPT_RO }, 90 { TOKEN_RW, MNTOPT_RW }, 91 { TOKEN_SETUID, MNTOPT_SETUID }, 92 { TOKEN_NOSETUID, MNTOPT_NOSETUID }, 93 { TOKEN_EXEC, MNTOPT_EXEC }, 94 { TOKEN_NOEXEC, MNTOPT_NOEXEC }, 95 { TOKEN_DEVICES, MNTOPT_DEVICES }, 96 { TOKEN_NODEVICES, MNTOPT_NODEVICES }, 97 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR }, 98 { TOKEN_SAXATTR, MNTOPT_SAXATTR }, 99 { TOKEN_XATTR, MNTOPT_XATTR }, 100 { TOKEN_NOXATTR, MNTOPT_NOXATTR }, 101 { TOKEN_ATIME, MNTOPT_ATIME }, 102 { TOKEN_NOATIME, MNTOPT_NOATIME }, 103 { TOKEN_RELATIME, MNTOPT_RELATIME }, 104 { TOKEN_NORELATIME, MNTOPT_NORELATIME }, 105 { TOKEN_NBMAND, MNTOPT_NBMAND }, 106 { TOKEN_NONBMAND, MNTOPT_NONBMAND }, 107 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" }, 108 { TOKEN_LAST, NULL }, 109 }; 110 111 static void 112 zfsvfs_vfs_free(vfs_t *vfsp) 113 { 114 if (vfsp != NULL) { 115 if (vfsp->vfs_mntpoint != NULL) 116 kmem_strfree(vfsp->vfs_mntpoint); 117 118 kmem_free(vfsp, sizeof (vfs_t)); 119 } 120 } 121 122 static int 123 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp) 124 { 125 switch (token) { 126 case TOKEN_RO: 127 vfsp->vfs_readonly = B_TRUE; 128 vfsp->vfs_do_readonly = B_TRUE; 129 break; 130 case TOKEN_RW: 131 vfsp->vfs_readonly = B_FALSE; 132 vfsp->vfs_do_readonly = B_TRUE; 133 break; 134 case TOKEN_SETUID: 135 vfsp->vfs_setuid = B_TRUE; 136 vfsp->vfs_do_setuid = B_TRUE; 137 break; 138 case TOKEN_NOSETUID: 139 vfsp->vfs_setuid = B_FALSE; 140 vfsp->vfs_do_setuid = B_TRUE; 141 break; 142 case TOKEN_EXEC: 143 vfsp->vfs_exec = B_TRUE; 144 vfsp->vfs_do_exec = B_TRUE; 145 break; 146 case TOKEN_NOEXEC: 147 vfsp->vfs_exec = B_FALSE; 148 vfsp->vfs_do_exec = B_TRUE; 149 break; 150 case TOKEN_DEVICES: 151 vfsp->vfs_devices = B_TRUE; 152 vfsp->vfs_do_devices = B_TRUE; 153 break; 154 case TOKEN_NODEVICES: 155 vfsp->vfs_devices = B_FALSE; 156 vfsp->vfs_do_devices = B_TRUE; 157 break; 158 case TOKEN_DIRXATTR: 159 vfsp->vfs_xattr = ZFS_XATTR_DIR; 160 vfsp->vfs_do_xattr = B_TRUE; 161 break; 162 case TOKEN_SAXATTR: 163 vfsp->vfs_xattr = ZFS_XATTR_SA; 164 vfsp->vfs_do_xattr = B_TRUE; 165 break; 166 case TOKEN_XATTR: 167 vfsp->vfs_xattr = ZFS_XATTR_DIR; 168 vfsp->vfs_do_xattr = B_TRUE; 169 break; 170 case TOKEN_NOXATTR: 171 vfsp->vfs_xattr = ZFS_XATTR_OFF; 172 vfsp->vfs_do_xattr = B_TRUE; 173 break; 174 case TOKEN_ATIME: 175 vfsp->vfs_atime = B_TRUE; 176 vfsp->vfs_do_atime = B_TRUE; 177 break; 178 case TOKEN_NOATIME: 179 vfsp->vfs_atime = B_FALSE; 180 vfsp->vfs_do_atime = B_TRUE; 181 break; 182 case TOKEN_RELATIME: 183 vfsp->vfs_relatime = B_TRUE; 184 vfsp->vfs_do_relatime = B_TRUE; 185 break; 186 case TOKEN_NORELATIME: 187 vfsp->vfs_relatime = B_FALSE; 188 vfsp->vfs_do_relatime = B_TRUE; 189 break; 190 case TOKEN_NBMAND: 191 vfsp->vfs_nbmand = B_TRUE; 192 vfsp->vfs_do_nbmand = B_TRUE; 193 break; 194 case TOKEN_NONBMAND: 195 vfsp->vfs_nbmand = B_FALSE; 196 vfsp->vfs_do_nbmand = B_TRUE; 197 break; 198 case TOKEN_MNTPOINT: 199 vfsp->vfs_mntpoint = match_strdup(&args[0]); 200 if (vfsp->vfs_mntpoint == NULL) 201 return (SET_ERROR(ENOMEM)); 202 203 break; 204 default: 205 break; 206 } 207 208 return (0); 209 } 210 211 /* 212 * Parse the raw mntopts and return a vfs_t describing the options. 213 */ 214 static int 215 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp) 216 { 217 vfs_t *tmp_vfsp; 218 int error; 219 220 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP); 221 222 if (mntopts != NULL) { 223 substring_t args[MAX_OPT_ARGS]; 224 char *tmp_mntopts, *p, *t; 225 int token; 226 227 tmp_mntopts = t = kmem_strdup(mntopts); 228 if (tmp_mntopts == NULL) 229 return (SET_ERROR(ENOMEM)); 230 231 while ((p = strsep(&t, ",")) != NULL) { 232 if (!*p) 233 continue; 234 235 args[0].to = args[0].from = NULL; 236 token = match_token(p, zpl_tokens, args); 237 error = zfsvfs_parse_option(p, token, args, tmp_vfsp); 238 if (error) { 239 kmem_strfree(tmp_mntopts); 240 zfsvfs_vfs_free(tmp_vfsp); 241 return (error); 242 } 243 } 244 245 kmem_strfree(tmp_mntopts); 246 } 247 248 *vfsp = tmp_vfsp; 249 250 return (0); 251 } 252 253 boolean_t 254 zfs_is_readonly(zfsvfs_t *zfsvfs) 255 { 256 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY)); 257 } 258 259 /*ARGSUSED*/ 260 int 261 zfs_sync(struct super_block *sb, int wait, cred_t *cr) 262 { 263 zfsvfs_t *zfsvfs = sb->s_fs_info; 264 265 /* 266 * Semantically, the only requirement is that the sync be initiated. 267 * The DMU syncs out txgs frequently, so there's nothing to do. 268 */ 269 if (!wait) 270 return (0); 271 272 if (zfsvfs != NULL) { 273 /* 274 * Sync a specific filesystem. 275 */ 276 dsl_pool_t *dp; 277 278 ZFS_ENTER(zfsvfs); 279 dp = dmu_objset_pool(zfsvfs->z_os); 280 281 /* 282 * If the system is shutting down, then skip any 283 * filesystems which may exist on a suspended pool. 284 */ 285 if (spa_suspended(dp->dp_spa)) { 286 ZFS_EXIT(zfsvfs); 287 return (0); 288 } 289 290 if (zfsvfs->z_log != NULL) 291 zil_commit(zfsvfs->z_log, 0); 292 293 ZFS_EXIT(zfsvfs); 294 } else { 295 /* 296 * Sync all ZFS filesystems. This is what happens when you 297 * run sync(1). Unlike other filesystems, ZFS honors the 298 * request by waiting for all pools to commit all dirty data. 299 */ 300 spa_sync_allpools(); 301 } 302 303 return (0); 304 } 305 306 static void 307 atime_changed_cb(void *arg, uint64_t newval) 308 { 309 zfsvfs_t *zfsvfs = arg; 310 struct super_block *sb = zfsvfs->z_sb; 311 312 if (sb == NULL) 313 return; 314 /* 315 * Update SB_NOATIME bit in VFS super block. Since atime update is 316 * determined by atime_needs_update(), atime_needs_update() needs to 317 * return false if atime is turned off, and not unconditionally return 318 * false if atime is turned on. 319 */ 320 if (newval) 321 sb->s_flags &= ~SB_NOATIME; 322 else 323 sb->s_flags |= SB_NOATIME; 324 } 325 326 static void 327 relatime_changed_cb(void *arg, uint64_t newval) 328 { 329 ((zfsvfs_t *)arg)->z_relatime = newval; 330 } 331 332 static void 333 xattr_changed_cb(void *arg, uint64_t newval) 334 { 335 zfsvfs_t *zfsvfs = arg; 336 337 if (newval == ZFS_XATTR_OFF) { 338 zfsvfs->z_flags &= ~ZSB_XATTR; 339 } else { 340 zfsvfs->z_flags |= ZSB_XATTR; 341 342 if (newval == ZFS_XATTR_SA) 343 zfsvfs->z_xattr_sa = B_TRUE; 344 else 345 zfsvfs->z_xattr_sa = B_FALSE; 346 } 347 } 348 349 static void 350 acltype_changed_cb(void *arg, uint64_t newval) 351 { 352 zfsvfs_t *zfsvfs = arg; 353 354 switch (newval) { 355 case ZFS_ACLTYPE_NFSV4: 356 case ZFS_ACLTYPE_OFF: 357 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 358 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 359 break; 360 case ZFS_ACLTYPE_POSIX: 361 #ifdef CONFIG_FS_POSIX_ACL 362 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX; 363 zfsvfs->z_sb->s_flags |= SB_POSIXACL; 364 #else 365 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 366 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 367 #endif /* CONFIG_FS_POSIX_ACL */ 368 break; 369 default: 370 break; 371 } 372 } 373 374 static void 375 blksz_changed_cb(void *arg, uint64_t newval) 376 { 377 zfsvfs_t *zfsvfs = arg; 378 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 379 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 380 ASSERT(ISP2(newval)); 381 382 zfsvfs->z_max_blksz = newval; 383 } 384 385 static void 386 readonly_changed_cb(void *arg, uint64_t newval) 387 { 388 zfsvfs_t *zfsvfs = arg; 389 struct super_block *sb = zfsvfs->z_sb; 390 391 if (sb == NULL) 392 return; 393 394 if (newval) 395 sb->s_flags |= SB_RDONLY; 396 else 397 sb->s_flags &= ~SB_RDONLY; 398 } 399 400 static void 401 devices_changed_cb(void *arg, uint64_t newval) 402 { 403 } 404 405 static void 406 setuid_changed_cb(void *arg, uint64_t newval) 407 { 408 } 409 410 static void 411 exec_changed_cb(void *arg, uint64_t newval) 412 { 413 } 414 415 static void 416 nbmand_changed_cb(void *arg, uint64_t newval) 417 { 418 zfsvfs_t *zfsvfs = arg; 419 struct super_block *sb = zfsvfs->z_sb; 420 421 if (sb == NULL) 422 return; 423 424 if (newval == TRUE) 425 sb->s_flags |= SB_MANDLOCK; 426 else 427 sb->s_flags &= ~SB_MANDLOCK; 428 } 429 430 static void 431 snapdir_changed_cb(void *arg, uint64_t newval) 432 { 433 ((zfsvfs_t *)arg)->z_show_ctldir = newval; 434 } 435 436 static void 437 acl_mode_changed_cb(void *arg, uint64_t newval) 438 { 439 zfsvfs_t *zfsvfs = arg; 440 441 zfsvfs->z_acl_mode = newval; 442 } 443 444 static void 445 acl_inherit_changed_cb(void *arg, uint64_t newval) 446 { 447 ((zfsvfs_t *)arg)->z_acl_inherit = newval; 448 } 449 450 static int 451 zfs_register_callbacks(vfs_t *vfsp) 452 { 453 struct dsl_dataset *ds = NULL; 454 objset_t *os = NULL; 455 zfsvfs_t *zfsvfs = NULL; 456 int error = 0; 457 458 ASSERT(vfsp); 459 zfsvfs = vfsp->vfs_data; 460 ASSERT(zfsvfs); 461 os = zfsvfs->z_os; 462 463 /* 464 * The act of registering our callbacks will destroy any mount 465 * options we may have. In order to enable temporary overrides 466 * of mount options, we stash away the current values and 467 * restore them after we register the callbacks. 468 */ 469 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) { 470 vfsp->vfs_do_readonly = B_TRUE; 471 vfsp->vfs_readonly = B_TRUE; 472 } 473 474 /* 475 * Register property callbacks. 476 * 477 * It would probably be fine to just check for i/o error from 478 * the first prop_register(), but I guess I like to go 479 * overboard... 480 */ 481 ds = dmu_objset_ds(os); 482 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 483 error = dsl_prop_register(ds, 484 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 485 error = error ? error : dsl_prop_register(ds, 486 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs); 487 error = error ? error : dsl_prop_register(ds, 488 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 489 error = error ? error : dsl_prop_register(ds, 490 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 491 error = error ? error : dsl_prop_register(ds, 492 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 493 error = error ? error : dsl_prop_register(ds, 494 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 495 error = error ? error : dsl_prop_register(ds, 496 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 497 error = error ? error : dsl_prop_register(ds, 498 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 499 error = error ? error : dsl_prop_register(ds, 500 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 501 error = error ? error : dsl_prop_register(ds, 502 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs); 503 error = error ? error : dsl_prop_register(ds, 504 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 505 error = error ? error : dsl_prop_register(ds, 506 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 507 zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs); 510 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 511 if (error) 512 goto unregister; 513 514 /* 515 * Invoke our callbacks to restore temporary mount options. 516 */ 517 if (vfsp->vfs_do_readonly) 518 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly); 519 if (vfsp->vfs_do_setuid) 520 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid); 521 if (vfsp->vfs_do_exec) 522 exec_changed_cb(zfsvfs, vfsp->vfs_exec); 523 if (vfsp->vfs_do_devices) 524 devices_changed_cb(zfsvfs, vfsp->vfs_devices); 525 if (vfsp->vfs_do_xattr) 526 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr); 527 if (vfsp->vfs_do_atime) 528 atime_changed_cb(zfsvfs, vfsp->vfs_atime); 529 if (vfsp->vfs_do_relatime) 530 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime); 531 if (vfsp->vfs_do_nbmand) 532 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand); 533 534 return (0); 535 536 unregister: 537 dsl_prop_unregister_all(ds, zfsvfs); 538 return (error); 539 } 540 541 /* 542 * Takes a dataset, a property, a value and that value's setpoint as 543 * found in the ZAP. Checks if the property has been changed in the vfs. 544 * If so, val and setpoint will be overwritten with updated content. 545 * Otherwise, they are left unchanged. 546 */ 547 int 548 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val, 549 char *setpoint) 550 { 551 int error; 552 zfsvfs_t *zfvp; 553 vfs_t *vfsp; 554 objset_t *os; 555 uint64_t tmp = *val; 556 557 error = dmu_objset_from_ds(ds, &os); 558 if (error != 0) 559 return (error); 560 561 if (dmu_objset_type(os) != DMU_OST_ZFS) 562 return (EINVAL); 563 564 mutex_enter(&os->os_user_ptr_lock); 565 zfvp = dmu_objset_get_user(os); 566 mutex_exit(&os->os_user_ptr_lock); 567 if (zfvp == NULL) 568 return (ESRCH); 569 570 vfsp = zfvp->z_vfs; 571 572 switch (zfs_prop) { 573 case ZFS_PROP_ATIME: 574 if (vfsp->vfs_do_atime) 575 tmp = vfsp->vfs_atime; 576 break; 577 case ZFS_PROP_RELATIME: 578 if (vfsp->vfs_do_relatime) 579 tmp = vfsp->vfs_relatime; 580 break; 581 case ZFS_PROP_DEVICES: 582 if (vfsp->vfs_do_devices) 583 tmp = vfsp->vfs_devices; 584 break; 585 case ZFS_PROP_EXEC: 586 if (vfsp->vfs_do_exec) 587 tmp = vfsp->vfs_exec; 588 break; 589 case ZFS_PROP_SETUID: 590 if (vfsp->vfs_do_setuid) 591 tmp = vfsp->vfs_setuid; 592 break; 593 case ZFS_PROP_READONLY: 594 if (vfsp->vfs_do_readonly) 595 tmp = vfsp->vfs_readonly; 596 break; 597 case ZFS_PROP_XATTR: 598 if (vfsp->vfs_do_xattr) 599 tmp = vfsp->vfs_xattr; 600 break; 601 case ZFS_PROP_NBMAND: 602 if (vfsp->vfs_do_nbmand) 603 tmp = vfsp->vfs_nbmand; 604 break; 605 default: 606 return (ENOENT); 607 } 608 609 if (tmp != *val) { 610 (void) strcpy(setpoint, "temporary"); 611 *val = tmp; 612 } 613 return (0); 614 } 615 616 /* 617 * Associate this zfsvfs with the given objset, which must be owned. 618 * This will cache a bunch of on-disk state from the objset in the 619 * zfsvfs. 620 */ 621 static int 622 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) 623 { 624 int error; 625 uint64_t val; 626 627 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 628 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 629 zfsvfs->z_os = os; 630 631 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 632 if (error != 0) 633 return (error); 634 if (zfsvfs->z_version > 635 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 636 (void) printk("Can't mount a version %lld file system " 637 "on a version %lld pool\n. Pool must be upgraded to mount " 638 "this file system.\n", (u_longlong_t)zfsvfs->z_version, 639 (u_longlong_t)spa_version(dmu_objset_spa(os))); 640 return (SET_ERROR(ENOTSUP)); 641 } 642 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); 643 if (error != 0) 644 return (error); 645 zfsvfs->z_norm = (int)val; 646 647 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); 648 if (error != 0) 649 return (error); 650 zfsvfs->z_utf8 = (val != 0); 651 652 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); 653 if (error != 0) 654 return (error); 655 zfsvfs->z_case = (uint_t)val; 656 657 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0) 658 return (error); 659 zfsvfs->z_acl_type = (uint_t)val; 660 661 /* 662 * Fold case on file systems that are always or sometimes case 663 * insensitive. 664 */ 665 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 666 zfsvfs->z_case == ZFS_CASE_MIXED) 667 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 668 669 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 670 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 671 672 uint64_t sa_obj = 0; 673 if (zfsvfs->z_use_sa) { 674 /* should either have both of these objects or none */ 675 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 676 &sa_obj); 677 if (error != 0) 678 return (error); 679 680 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val); 681 if ((error == 0) && (val == ZFS_XATTR_SA)) 682 zfsvfs->z_xattr_sa = B_TRUE; 683 } 684 685 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 686 &zfsvfs->z_root); 687 if (error != 0) 688 return (error); 689 ASSERT(zfsvfs->z_root != 0); 690 691 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 692 &zfsvfs->z_unlinkedobj); 693 if (error != 0) 694 return (error); 695 696 error = zap_lookup(os, MASTER_NODE_OBJ, 697 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 698 8, 1, &zfsvfs->z_userquota_obj); 699 if (error == ENOENT) 700 zfsvfs->z_userquota_obj = 0; 701 else if (error != 0) 702 return (error); 703 704 error = zap_lookup(os, MASTER_NODE_OBJ, 705 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 706 8, 1, &zfsvfs->z_groupquota_obj); 707 if (error == ENOENT) 708 zfsvfs->z_groupquota_obj = 0; 709 else if (error != 0) 710 return (error); 711 712 error = zap_lookup(os, MASTER_NODE_OBJ, 713 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 714 8, 1, &zfsvfs->z_projectquota_obj); 715 if (error == ENOENT) 716 zfsvfs->z_projectquota_obj = 0; 717 else if (error != 0) 718 return (error); 719 720 error = zap_lookup(os, MASTER_NODE_OBJ, 721 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 722 8, 1, &zfsvfs->z_userobjquota_obj); 723 if (error == ENOENT) 724 zfsvfs->z_userobjquota_obj = 0; 725 else if (error != 0) 726 return (error); 727 728 error = zap_lookup(os, MASTER_NODE_OBJ, 729 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 730 8, 1, &zfsvfs->z_groupobjquota_obj); 731 if (error == ENOENT) 732 zfsvfs->z_groupobjquota_obj = 0; 733 else if (error != 0) 734 return (error); 735 736 error = zap_lookup(os, MASTER_NODE_OBJ, 737 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 738 8, 1, &zfsvfs->z_projectobjquota_obj); 739 if (error == ENOENT) 740 zfsvfs->z_projectobjquota_obj = 0; 741 else if (error != 0) 742 return (error); 743 744 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 745 &zfsvfs->z_fuid_obj); 746 if (error == ENOENT) 747 zfsvfs->z_fuid_obj = 0; 748 else if (error != 0) 749 return (error); 750 751 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 752 &zfsvfs->z_shares_dir); 753 if (error == ENOENT) 754 zfsvfs->z_shares_dir = 0; 755 else if (error != 0) 756 return (error); 757 758 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 759 &zfsvfs->z_attr_table); 760 if (error != 0) 761 return (error); 762 763 if (zfsvfs->z_version >= ZPL_VERSION_SA) 764 sa_register_update_callback(os, zfs_sa_upgrade); 765 766 return (0); 767 } 768 769 int 770 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) 771 { 772 objset_t *os; 773 zfsvfs_t *zfsvfs; 774 int error; 775 boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); 776 777 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 778 779 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); 780 if (error != 0) { 781 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 782 return (error); 783 } 784 785 error = zfsvfs_create_impl(zfvp, zfsvfs, os); 786 if (error != 0) { 787 dmu_objset_disown(os, B_TRUE, zfsvfs); 788 } 789 return (error); 790 } 791 792 793 /* 794 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function 795 * on a failure. Do not pass in a statically allocated zfsvfs. 796 */ 797 int 798 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) 799 { 800 int error; 801 802 zfsvfs->z_vfs = NULL; 803 zfsvfs->z_sb = NULL; 804 zfsvfs->z_parent = zfsvfs; 805 806 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 807 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 808 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 809 offsetof(znode_t, z_link_node)); 810 ZFS_TEARDOWN_INIT(zfsvfs); 811 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 812 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 813 814 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1), 815 ZFS_OBJ_MTX_MAX); 816 zfsvfs->z_hold_size = size; 817 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, 818 KM_SLEEP); 819 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP); 820 for (int i = 0; i != size; i++) { 821 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare, 822 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node)); 823 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL); 824 } 825 826 error = zfsvfs_init(zfsvfs, os); 827 if (error != 0) { 828 *zfvp = NULL; 829 zfsvfs_free(zfsvfs); 830 return (error); 831 } 832 833 zfsvfs->z_drain_task = TASKQID_INVALID; 834 zfsvfs->z_draining = B_FALSE; 835 zfsvfs->z_drain_cancel = B_TRUE; 836 837 *zfvp = zfsvfs; 838 return (0); 839 } 840 841 static int 842 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 843 { 844 int error; 845 boolean_t readonly = zfs_is_readonly(zfsvfs); 846 847 error = zfs_register_callbacks(zfsvfs->z_vfs); 848 if (error) 849 return (error); 850 851 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 852 853 /* 854 * If we are not mounting (ie: online recv), then we don't 855 * have to worry about replaying the log as we blocked all 856 * operations out since we closed the ZIL. 857 */ 858 if (mounting) { 859 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL); 860 dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os); 861 862 /* 863 * During replay we remove the read only flag to 864 * allow replays to succeed. 865 */ 866 if (readonly != 0) { 867 readonly_changed_cb(zfsvfs, B_FALSE); 868 } else { 869 zap_stats_t zs; 870 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj, 871 &zs) == 0) { 872 dataset_kstats_update_nunlinks_kstat( 873 &zfsvfs->z_kstat, zs.zs_num_entries); 874 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 875 "num_entries in unlinked set: %llu", 876 zs.zs_num_entries); 877 } 878 zfs_unlinked_drain(zfsvfs); 879 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; 880 dd->dd_activity_cancelled = B_FALSE; 881 } 882 883 /* 884 * Parse and replay the intent log. 885 * 886 * Because of ziltest, this must be done after 887 * zfs_unlinked_drain(). (Further note: ziltest 888 * doesn't use readonly mounts, where 889 * zfs_unlinked_drain() isn't called.) This is because 890 * ziltest causes spa_sync() to think it's committed, 891 * but actually it is not, so the intent log contains 892 * many txg's worth of changes. 893 * 894 * In particular, if object N is in the unlinked set in 895 * the last txg to actually sync, then it could be 896 * actually freed in a later txg and then reallocated 897 * in a yet later txg. This would write a "create 898 * object N" record to the intent log. Normally, this 899 * would be fine because the spa_sync() would have 900 * written out the fact that object N is free, before 901 * we could write the "create object N" intent log 902 * record. 903 * 904 * But when we are in ziltest mode, we advance the "open 905 * txg" without actually spa_sync()-ing the changes to 906 * disk. So we would see that object N is still 907 * allocated and in the unlinked set, and there is an 908 * intent log record saying to allocate it. 909 */ 910 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 911 if (zil_replay_disable) { 912 zil_destroy(zfsvfs->z_log, B_FALSE); 913 } else { 914 zfsvfs->z_replay = B_TRUE; 915 zil_replay(zfsvfs->z_os, zfsvfs, 916 zfs_replay_vector); 917 zfsvfs->z_replay = B_FALSE; 918 } 919 } 920 921 /* restore readonly bit */ 922 if (readonly != 0) 923 readonly_changed_cb(zfsvfs, B_TRUE); 924 } 925 926 /* 927 * Set the objset user_ptr to track its zfsvfs. 928 */ 929 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 930 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 931 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 932 933 return (0); 934 } 935 936 void 937 zfsvfs_free(zfsvfs_t *zfsvfs) 938 { 939 int i, size = zfsvfs->z_hold_size; 940 941 zfs_fuid_destroy(zfsvfs); 942 943 mutex_destroy(&zfsvfs->z_znodes_lock); 944 mutex_destroy(&zfsvfs->z_lock); 945 list_destroy(&zfsvfs->z_all_znodes); 946 ZFS_TEARDOWN_DESTROY(zfsvfs); 947 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 948 rw_destroy(&zfsvfs->z_fuid_lock); 949 for (i = 0; i != size; i++) { 950 avl_destroy(&zfsvfs->z_hold_trees[i]); 951 mutex_destroy(&zfsvfs->z_hold_locks[i]); 952 } 953 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size); 954 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size); 955 zfsvfs_vfs_free(zfsvfs->z_vfs); 956 dataset_kstats_destroy(&zfsvfs->z_kstat); 957 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 958 } 959 960 static void 961 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 962 { 963 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 964 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 965 } 966 967 static void 968 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 969 { 970 objset_t *os = zfsvfs->z_os; 971 972 if (!dmu_objset_is_snapshot(os)) 973 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 974 } 975 976 #ifdef HAVE_MLSLABEL 977 /* 978 * Check that the hex label string is appropriate for the dataset being 979 * mounted into the global_zone proper. 980 * 981 * Return an error if the hex label string is not default or 982 * admin_low/admin_high. For admin_low labels, the corresponding 983 * dataset must be readonly. 984 */ 985 int 986 zfs_check_global_label(const char *dsname, const char *hexsl) 987 { 988 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 989 return (0); 990 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 991 return (0); 992 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 993 /* must be readonly */ 994 uint64_t rdonly; 995 996 if (dsl_prop_get_integer(dsname, 997 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 998 return (SET_ERROR(EACCES)); 999 return (rdonly ? 0 : SET_ERROR(EACCES)); 1000 } 1001 return (SET_ERROR(EACCES)); 1002 } 1003 #endif /* HAVE_MLSLABEL */ 1004 1005 static int 1006 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp, 1007 uint32_t bshift) 1008 { 1009 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 1010 uint64_t offset = DMU_OBJACCT_PREFIX_LEN; 1011 uint64_t quota; 1012 uint64_t used; 1013 int err; 1014 1015 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1); 1016 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, 1017 sizeof (buf) - offset, B_FALSE); 1018 if (err) 1019 return (err); 1020 1021 if (zfsvfs->z_projectquota_obj == 0) 1022 goto objs; 1023 1024 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj, 1025 buf + offset, 8, 1, "a); 1026 if (err == ENOENT) 1027 goto objs; 1028 else if (err) 1029 return (err); 1030 1031 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1032 buf + offset, 8, 1, &used); 1033 if (unlikely(err == ENOENT)) { 1034 uint32_t blksize; 1035 u_longlong_t nblocks; 1036 1037 /* 1038 * Quota accounting is async, so it is possible race case. 1039 * There is at least one object with the given project ID. 1040 */ 1041 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); 1042 if (unlikely(zp->z_blksz == 0)) 1043 blksize = zfsvfs->z_max_blksz; 1044 1045 used = blksize * nblocks; 1046 } else if (err) { 1047 return (err); 1048 } 1049 1050 statp->f_blocks = quota >> bshift; 1051 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0; 1052 statp->f_bavail = statp->f_bfree; 1053 1054 objs: 1055 if (zfsvfs->z_projectobjquota_obj == 0) 1056 return (0); 1057 1058 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj, 1059 buf + offset, 8, 1, "a); 1060 if (err == ENOENT) 1061 return (0); 1062 else if (err) 1063 return (err); 1064 1065 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1066 buf, 8, 1, &used); 1067 if (unlikely(err == ENOENT)) { 1068 /* 1069 * Quota accounting is async, so it is possible race case. 1070 * There is at least one object with the given project ID. 1071 */ 1072 used = 1; 1073 } else if (err) { 1074 return (err); 1075 } 1076 1077 statp->f_files = quota; 1078 statp->f_ffree = (quota > used) ? (quota - used) : 0; 1079 1080 return (0); 1081 } 1082 1083 int 1084 zfs_statvfs(struct inode *ip, struct kstatfs *statp) 1085 { 1086 zfsvfs_t *zfsvfs = ITOZSB(ip); 1087 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1088 int err = 0; 1089 1090 ZFS_ENTER(zfsvfs); 1091 1092 dmu_objset_space(zfsvfs->z_os, 1093 &refdbytes, &availbytes, &usedobjs, &availobjs); 1094 1095 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os); 1096 /* 1097 * The underlying storage pool actually uses multiple block 1098 * size. Under Solaris frsize (fragment size) is reported as 1099 * the smallest block size we support, and bsize (block size) 1100 * as the filesystem's maximum block size. Unfortunately, 1101 * under Linux the fragment size and block size are often used 1102 * interchangeably. Thus we are forced to report both of them 1103 * as the filesystem's maximum block size. 1104 */ 1105 statp->f_frsize = zfsvfs->z_max_blksz; 1106 statp->f_bsize = zfsvfs->z_max_blksz; 1107 uint32_t bshift = fls(statp->f_bsize) - 1; 1108 1109 /* 1110 * The following report "total" blocks of various kinds in 1111 * the file system, but reported in terms of f_bsize - the 1112 * "preferred" size. 1113 */ 1114 1115 /* Round up so we never have a filesystem using 0 blocks. */ 1116 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize); 1117 statp->f_blocks = (refdbytes + availbytes) >> bshift; 1118 statp->f_bfree = availbytes >> bshift; 1119 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1120 1121 /* 1122 * statvfs() should really be called statufs(), because it assumes 1123 * static metadata. ZFS doesn't preallocate files, so the best 1124 * we can do is report the max that could possibly fit in f_files, 1125 * and that minus the number actually used in f_ffree. 1126 * For f_ffree, report the smaller of the number of objects available 1127 * and the number of blocks (each object will take at least a block). 1128 */ 1129 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT); 1130 statp->f_files = statp->f_ffree + usedobjs; 1131 statp->f_fsid.val[0] = (uint32_t)fsid; 1132 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32); 1133 statp->f_type = ZFS_SUPER_MAGIC; 1134 statp->f_namelen = MAXNAMELEN - 1; 1135 1136 /* 1137 * We have all of 40 characters to stuff a string here. 1138 * Is there anything useful we could/should provide? 1139 */ 1140 bzero(statp->f_spare, sizeof (statp->f_spare)); 1141 1142 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) && 1143 dmu_objset_projectquota_present(zfsvfs->z_os)) { 1144 znode_t *zp = ITOZ(ip); 1145 1146 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid && 1147 zpl_is_valid_projid(zp->z_projid)) 1148 err = zfs_statfs_project(zfsvfs, zp, statp, bshift); 1149 } 1150 1151 ZFS_EXIT(zfsvfs); 1152 return (err); 1153 } 1154 1155 static int 1156 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp) 1157 { 1158 znode_t *rootzp; 1159 int error; 1160 1161 ZFS_ENTER(zfsvfs); 1162 1163 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1164 if (error == 0) 1165 *ipp = ZTOI(rootzp); 1166 1167 ZFS_EXIT(zfsvfs); 1168 return (error); 1169 } 1170 1171 /* 1172 * Linux kernels older than 3.1 do not support a per-filesystem shrinker. 1173 * To accommodate this we must improvise and manually walk the list of znodes 1174 * attempting to prune dentries in order to be able to drop the inodes. 1175 * 1176 * To avoid scanning the same znodes multiple times they are always rotated 1177 * to the end of the z_all_znodes list. New znodes are inserted at the 1178 * end of the list so we're always scanning the oldest znodes first. 1179 */ 1180 static int 1181 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan) 1182 { 1183 znode_t **zp_array, *zp; 1184 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *)); 1185 int objects = 0; 1186 int i = 0, j = 0; 1187 1188 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP); 1189 1190 mutex_enter(&zfsvfs->z_znodes_lock); 1191 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) { 1192 1193 if ((i++ > nr_to_scan) || (j >= max_array)) 1194 break; 1195 1196 ASSERT(list_link_active(&zp->z_link_node)); 1197 list_remove(&zfsvfs->z_all_znodes, zp); 1198 list_insert_tail(&zfsvfs->z_all_znodes, zp); 1199 1200 /* Skip active znodes and .zfs entries */ 1201 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir) 1202 continue; 1203 1204 if (igrab(ZTOI(zp)) == NULL) 1205 continue; 1206 1207 zp_array[j] = zp; 1208 j++; 1209 } 1210 mutex_exit(&zfsvfs->z_znodes_lock); 1211 1212 for (i = 0; i < j; i++) { 1213 zp = zp_array[i]; 1214 1215 ASSERT3P(zp, !=, NULL); 1216 d_prune_aliases(ZTOI(zp)); 1217 1218 if (atomic_read(&ZTOI(zp)->i_count) == 1) 1219 objects++; 1220 1221 zrele(zp); 1222 } 1223 1224 kmem_free(zp_array, max_array * sizeof (znode_t *)); 1225 1226 return (objects); 1227 } 1228 1229 /* 1230 * The ARC has requested that the filesystem drop entries from the dentry 1231 * and inode caches. This can occur when the ARC needs to free meta data 1232 * blocks but can't because they are all pinned by entries in these caches. 1233 */ 1234 int 1235 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects) 1236 { 1237 zfsvfs_t *zfsvfs = sb->s_fs_info; 1238 int error = 0; 1239 struct shrinker *shrinker = &sb->s_shrink; 1240 struct shrink_control sc = { 1241 .nr_to_scan = nr_to_scan, 1242 .gfp_mask = GFP_KERNEL, 1243 }; 1244 1245 ZFS_ENTER(zfsvfs); 1246 1247 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \ 1248 defined(SHRINK_CONTROL_HAS_NID) && \ 1249 defined(SHRINKER_NUMA_AWARE) 1250 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) { 1251 *objects = 0; 1252 for_each_online_node(sc.nid) { 1253 *objects += (*shrinker->scan_objects)(shrinker, &sc); 1254 /* 1255 * reset sc.nr_to_scan, modified by 1256 * scan_objects == super_cache_scan 1257 */ 1258 sc.nr_to_scan = nr_to_scan; 1259 } 1260 } else { 1261 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1262 } 1263 1264 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK) 1265 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1266 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK) 1267 *objects = (*shrinker->shrink)(shrinker, &sc); 1268 #elif defined(HAVE_D_PRUNE_ALIASES) 1269 #define D_PRUNE_ALIASES_IS_DEFAULT 1270 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); 1271 #else 1272 #error "No available dentry and inode cache pruning mechanism." 1273 #endif 1274 1275 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT) 1276 #undef D_PRUNE_ALIASES_IS_DEFAULT 1277 /* 1278 * Fall back to zfs_prune_aliases if the kernel's per-superblock 1279 * shrinker couldn't free anything, possibly due to the inodes being 1280 * allocated in a different memcg. 1281 */ 1282 if (*objects == 0) 1283 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); 1284 #endif 1285 1286 ZFS_EXIT(zfsvfs); 1287 1288 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 1289 "pruning, nr_to_scan=%lu objects=%d error=%d\n", 1290 nr_to_scan, *objects, error); 1291 1292 return (error); 1293 } 1294 1295 /* 1296 * Teardown the zfsvfs_t. 1297 * 1298 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' 1299 * and 'z_teardown_inactive_lock' held. 1300 */ 1301 static int 1302 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1303 { 1304 znode_t *zp; 1305 1306 zfs_unlinked_drain_stop_wait(zfsvfs); 1307 1308 /* 1309 * If someone has not already unmounted this file system, 1310 * drain the zrele_taskq to ensure all active references to the 1311 * zfsvfs_t have been handled only then can it be safely destroyed. 1312 */ 1313 if (zfsvfs->z_os) { 1314 /* 1315 * If we're unmounting we have to wait for the list to 1316 * drain completely. 1317 * 1318 * If we're not unmounting there's no guarantee the list 1319 * will drain completely, but iputs run from the taskq 1320 * may add the parents of dir-based xattrs to the taskq 1321 * so we want to wait for these. 1322 * 1323 * We can safely read z_nr_znodes without locking because the 1324 * VFS has already blocked operations which add to the 1325 * z_all_znodes list and thus increment z_nr_znodes. 1326 */ 1327 int round = 0; 1328 while (zfsvfs->z_nr_znodes > 0) { 1329 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1330 dmu_objset_pool(zfsvfs->z_os)), 0); 1331 if (++round > 1 && !unmounting) 1332 break; 1333 } 1334 } 1335 1336 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); 1337 1338 if (!unmounting) { 1339 /* 1340 * We purge the parent filesystem's super block as the 1341 * parent filesystem and all of its snapshots have their 1342 * inode's super block set to the parent's filesystem's 1343 * super block. Note, 'z_parent' is self referential 1344 * for non-snapshots. 1345 */ 1346 shrink_dcache_sb(zfsvfs->z_parent->z_sb); 1347 } 1348 1349 /* 1350 * Close the zil. NB: Can't close the zil while zfs_inactive 1351 * threads are blocked as zil_close can call zfs_inactive. 1352 */ 1353 if (zfsvfs->z_log) { 1354 zil_close(zfsvfs->z_log); 1355 zfsvfs->z_log = NULL; 1356 } 1357 1358 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1359 1360 /* 1361 * If we are not unmounting (ie: online recv) and someone already 1362 * unmounted this file system while we were doing the switcheroo, 1363 * or a reopen of z_os failed then just bail out now. 1364 */ 1365 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1366 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1367 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1368 return (SET_ERROR(EIO)); 1369 } 1370 1371 /* 1372 * At this point there are no VFS ops active, and any new VFS ops 1373 * will fail with EIO since we have z_teardown_lock for writer (only 1374 * relevant for forced unmount). 1375 * 1376 * Release all holds on dbufs. We also grab an extra reference to all 1377 * the remaining inodes so that the kernel does not attempt to free 1378 * any inodes of a suspended fs. This can cause deadlocks since the 1379 * zfs_resume_fs() process may involve starting threads, which might 1380 * attempt to free unreferenced inodes to free up memory for the new 1381 * thread. 1382 */ 1383 if (!unmounting) { 1384 mutex_enter(&zfsvfs->z_znodes_lock); 1385 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1386 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1387 if (zp->z_sa_hdl) 1388 zfs_znode_dmu_fini(zp); 1389 if (igrab(ZTOI(zp)) != NULL) 1390 zp->z_suspended = B_TRUE; 1391 1392 } 1393 mutex_exit(&zfsvfs->z_znodes_lock); 1394 } 1395 1396 /* 1397 * If we are unmounting, set the unmounted flag and let new VFS ops 1398 * unblock. zfs_inactive will have the unmounted behavior, and all 1399 * other VFS ops will fail with EIO. 1400 */ 1401 if (unmounting) { 1402 zfsvfs->z_unmounted = B_TRUE; 1403 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1404 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1405 } 1406 1407 /* 1408 * z_os will be NULL if there was an error in attempting to reopen 1409 * zfsvfs, so just return as the properties had already been 1410 * 1411 * unregistered and cached data had been evicted before. 1412 */ 1413 if (zfsvfs->z_os == NULL) 1414 return (0); 1415 1416 /* 1417 * Unregister properties. 1418 */ 1419 zfs_unregister_callbacks(zfsvfs); 1420 1421 /* 1422 * Evict cached data. We must write out any dirty data before 1423 * disowning the dataset. 1424 */ 1425 objset_t *os = zfsvfs->z_os; 1426 boolean_t os_dirty = B_FALSE; 1427 for (int t = 0; t < TXG_SIZE; t++) { 1428 if (dmu_objset_is_dirty(os, t)) { 1429 os_dirty = B_TRUE; 1430 break; 1431 } 1432 } 1433 if (!zfs_is_readonly(zfsvfs) && os_dirty) { 1434 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1435 } 1436 dmu_objset_evict_dbufs(zfsvfs->z_os); 1437 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 1438 dsl_dir_cancel_waiters(dd); 1439 1440 return (0); 1441 } 1442 1443 #if defined(HAVE_SUPER_SETUP_BDI_NAME) 1444 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0); 1445 #endif 1446 1447 int 1448 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent) 1449 { 1450 const char *osname = zm->mnt_osname; 1451 struct inode *root_inode = NULL; 1452 uint64_t recordsize; 1453 int error = 0; 1454 zfsvfs_t *zfsvfs = NULL; 1455 vfs_t *vfs = NULL; 1456 1457 ASSERT(zm); 1458 ASSERT(osname); 1459 1460 error = zfsvfs_parse_options(zm->mnt_data, &vfs); 1461 if (error) 1462 return (error); 1463 1464 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs); 1465 if (error) { 1466 zfsvfs_vfs_free(vfs); 1467 goto out; 1468 } 1469 1470 if ((error = dsl_prop_get_integer(osname, "recordsize", 1471 &recordsize, NULL))) { 1472 zfsvfs_vfs_free(vfs); 1473 goto out; 1474 } 1475 1476 vfs->vfs_data = zfsvfs; 1477 zfsvfs->z_vfs = vfs; 1478 zfsvfs->z_sb = sb; 1479 sb->s_fs_info = zfsvfs; 1480 sb->s_magic = ZFS_SUPER_MAGIC; 1481 sb->s_maxbytes = MAX_LFS_FILESIZE; 1482 sb->s_time_gran = 1; 1483 sb->s_blocksize = recordsize; 1484 sb->s_blocksize_bits = ilog2(recordsize); 1485 1486 error = -zpl_bdi_setup(sb, "zfs"); 1487 if (error) 1488 goto out; 1489 1490 sb->s_bdi->ra_pages = 0; 1491 1492 /* Set callback operations for the file system. */ 1493 sb->s_op = &zpl_super_operations; 1494 sb->s_xattr = zpl_xattr_handlers; 1495 sb->s_export_op = &zpl_export_operations; 1496 sb->s_d_op = &zpl_dentry_operations; 1497 1498 /* Set features for file system. */ 1499 zfs_set_fuid_feature(zfsvfs); 1500 1501 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1502 uint64_t pval; 1503 1504 atime_changed_cb(zfsvfs, B_FALSE); 1505 readonly_changed_cb(zfsvfs, B_TRUE); 1506 if ((error = dsl_prop_get_integer(osname, 1507 "xattr", &pval, NULL))) 1508 goto out; 1509 xattr_changed_cb(zfsvfs, pval); 1510 if ((error = dsl_prop_get_integer(osname, 1511 "acltype", &pval, NULL))) 1512 goto out; 1513 acltype_changed_cb(zfsvfs, pval); 1514 zfsvfs->z_issnap = B_TRUE; 1515 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1516 zfsvfs->z_snap_defer_time = jiffies; 1517 1518 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1519 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1520 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1521 } else { 1522 if ((error = zfsvfs_setup(zfsvfs, B_TRUE))) 1523 goto out; 1524 } 1525 1526 /* Allocate a root inode for the filesystem. */ 1527 error = zfs_root(zfsvfs, &root_inode); 1528 if (error) { 1529 (void) zfs_umount(sb); 1530 goto out; 1531 } 1532 1533 /* Allocate a root dentry for the filesystem */ 1534 sb->s_root = d_make_root(root_inode); 1535 if (sb->s_root == NULL) { 1536 (void) zfs_umount(sb); 1537 error = SET_ERROR(ENOMEM); 1538 goto out; 1539 } 1540 1541 if (!zfsvfs->z_issnap) 1542 zfsctl_create(zfsvfs); 1543 1544 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb); 1545 out: 1546 if (error) { 1547 if (zfsvfs != NULL) { 1548 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); 1549 zfsvfs_free(zfsvfs); 1550 } 1551 /* 1552 * make sure we don't have dangling sb->s_fs_info which 1553 * zfs_preumount will use. 1554 */ 1555 sb->s_fs_info = NULL; 1556 } 1557 1558 return (error); 1559 } 1560 1561 /* 1562 * Called when an unmount is requested and certain sanity checks have 1563 * already passed. At this point no dentries or inodes have been reclaimed 1564 * from their respective caches. We drop the extra reference on the .zfs 1565 * control directory to allow everything to be reclaimed. All snapshots 1566 * must already have been unmounted to reach this point. 1567 */ 1568 void 1569 zfs_preumount(struct super_block *sb) 1570 { 1571 zfsvfs_t *zfsvfs = sb->s_fs_info; 1572 1573 /* zfsvfs is NULL when zfs_domount fails during mount */ 1574 if (zfsvfs) { 1575 zfs_unlinked_drain_stop_wait(zfsvfs); 1576 zfsctl_destroy(sb->s_fs_info); 1577 /* 1578 * Wait for zrele_async before entering evict_inodes in 1579 * generic_shutdown_super. The reason we must finish before 1580 * evict_inodes is when lazytime is on, or when zfs_purgedir 1581 * calls zfs_zget, zrele would bump i_count from 0 to 1. This 1582 * would race with the i_count check in evict_inodes. This means 1583 * it could destroy the inode while we are still using it. 1584 * 1585 * We wait for two passes. xattr directories in the first pass 1586 * may add xattr entries in zfs_purgedir, so in the second pass 1587 * we wait for them. We don't use taskq_wait here because it is 1588 * a pool wide taskq. Other mounted filesystems can constantly 1589 * do zrele_async and there's no guarantee when taskq will be 1590 * empty. 1591 */ 1592 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1593 dmu_objset_pool(zfsvfs->z_os)), 0); 1594 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1595 dmu_objset_pool(zfsvfs->z_os)), 0); 1596 } 1597 } 1598 1599 /* 1600 * Called once all other unmount released tear down has occurred. 1601 * It is our responsibility to release any remaining infrastructure. 1602 */ 1603 /*ARGSUSED*/ 1604 int 1605 zfs_umount(struct super_block *sb) 1606 { 1607 zfsvfs_t *zfsvfs = sb->s_fs_info; 1608 objset_t *os; 1609 1610 if (zfsvfs->z_arc_prune != NULL) 1611 arc_remove_prune_callback(zfsvfs->z_arc_prune); 1612 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1613 os = zfsvfs->z_os; 1614 zpl_bdi_destroy(sb); 1615 1616 /* 1617 * z_os will be NULL if there was an error in 1618 * attempting to reopen zfsvfs. 1619 */ 1620 if (os != NULL) { 1621 /* 1622 * Unset the objset user_ptr. 1623 */ 1624 mutex_enter(&os->os_user_ptr_lock); 1625 dmu_objset_set_user(os, NULL); 1626 mutex_exit(&os->os_user_ptr_lock); 1627 1628 /* 1629 * Finally release the objset 1630 */ 1631 dmu_objset_disown(os, B_TRUE, zfsvfs); 1632 } 1633 1634 zfsvfs_free(zfsvfs); 1635 return (0); 1636 } 1637 1638 int 1639 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm) 1640 { 1641 zfsvfs_t *zfsvfs = sb->s_fs_info; 1642 vfs_t *vfsp; 1643 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os); 1644 int error; 1645 1646 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) && 1647 !(*flags & SB_RDONLY)) { 1648 *flags |= SB_RDONLY; 1649 return (EROFS); 1650 } 1651 1652 error = zfsvfs_parse_options(zm->mnt_data, &vfsp); 1653 if (error) 1654 return (error); 1655 1656 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY)) 1657 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1658 1659 zfs_unregister_callbacks(zfsvfs); 1660 zfsvfs_vfs_free(zfsvfs->z_vfs); 1661 1662 vfsp->vfs_data = zfsvfs; 1663 zfsvfs->z_vfs = vfsp; 1664 if (!issnap) 1665 (void) zfs_register_callbacks(vfsp); 1666 1667 return (error); 1668 } 1669 1670 int 1671 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp) 1672 { 1673 zfsvfs_t *zfsvfs = sb->s_fs_info; 1674 znode_t *zp; 1675 uint64_t object = 0; 1676 uint64_t fid_gen = 0; 1677 uint64_t gen_mask; 1678 uint64_t zp_gen; 1679 int i, err; 1680 1681 *ipp = NULL; 1682 1683 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1684 zfid_short_t *zfid = (zfid_short_t *)fidp; 1685 1686 for (i = 0; i < sizeof (zfid->zf_object); i++) 1687 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1688 1689 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1690 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1691 } else { 1692 return (SET_ERROR(EINVAL)); 1693 } 1694 1695 /* LONG_FID_LEN means snapdirs */ 1696 if (fidp->fid_len == LONG_FID_LEN) { 1697 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1698 uint64_t objsetid = 0; 1699 uint64_t setgen = 0; 1700 1701 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1702 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1703 1704 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1705 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1706 1707 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) { 1708 dprintf("snapdir fid: objsetid (%llu) != " 1709 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n", 1710 objsetid, ZFSCTL_INO_SNAPDIRS, object); 1711 1712 return (SET_ERROR(EINVAL)); 1713 } 1714 1715 if (fid_gen > 1 || setgen != 0) { 1716 dprintf("snapdir fid: fid_gen (%llu) and setgen " 1717 "(%llu)\n", fid_gen, setgen); 1718 return (SET_ERROR(EINVAL)); 1719 } 1720 1721 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp)); 1722 } 1723 1724 ZFS_ENTER(zfsvfs); 1725 /* A zero fid_gen means we are in the .zfs control directories */ 1726 if (fid_gen == 0 && 1727 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1728 *ipp = zfsvfs->z_ctldir; 1729 ASSERT(*ipp != NULL); 1730 if (object == ZFSCTL_INO_SNAPDIR) { 1731 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, 1732 0, kcred, NULL, NULL) == 0); 1733 } else { 1734 /* 1735 * Must have an existing ref, so igrab() 1736 * cannot return NULL 1737 */ 1738 VERIFY3P(igrab(*ipp), !=, NULL); 1739 } 1740 ZFS_EXIT(zfsvfs); 1741 return (0); 1742 } 1743 1744 gen_mask = -1ULL >> (64 - 8 * i); 1745 1746 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask); 1747 if ((err = zfs_zget(zfsvfs, object, &zp))) { 1748 ZFS_EXIT(zfsvfs); 1749 return (err); 1750 } 1751 1752 /* Don't export xattr stuff */ 1753 if (zp->z_pflags & ZFS_XATTR) { 1754 zrele(zp); 1755 ZFS_EXIT(zfsvfs); 1756 return (SET_ERROR(ENOENT)); 1757 } 1758 1759 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1760 sizeof (uint64_t)); 1761 zp_gen = zp_gen & gen_mask; 1762 if (zp_gen == 0) 1763 zp_gen = 1; 1764 if ((fid_gen == 0) && (zfsvfs->z_root == object)) 1765 fid_gen = zp_gen; 1766 if (zp->z_unlinked || zp_gen != fid_gen) { 1767 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen, 1768 fid_gen); 1769 zrele(zp); 1770 ZFS_EXIT(zfsvfs); 1771 return (SET_ERROR(ENOENT)); 1772 } 1773 1774 *ipp = ZTOI(zp); 1775 if (*ipp) 1776 zfs_znode_update_vfs(ITOZ(*ipp)); 1777 1778 ZFS_EXIT(zfsvfs); 1779 return (0); 1780 } 1781 1782 /* 1783 * Block out VFS ops and close zfsvfs_t 1784 * 1785 * Note, if successful, then we return with the 'z_teardown_lock' and 1786 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 1787 * dataset and objset intact so that they can be atomically handed off during 1788 * a subsequent rollback or recv operation and the resume thereafter. 1789 */ 1790 int 1791 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1792 { 1793 int error; 1794 1795 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1796 return (error); 1797 1798 return (0); 1799 } 1800 1801 /* 1802 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 1803 * is an invariant across any of the operations that can be performed while the 1804 * filesystem was suspended. Whether it succeeded or failed, the preconditions 1805 * are the same: the relevant objset and associated dataset are owned by 1806 * zfsvfs, held, and long held on entry. 1807 */ 1808 int 1809 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1810 { 1811 int err, err2; 1812 znode_t *zp; 1813 1814 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); 1815 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1816 1817 /* 1818 * We already own this, so just update the objset_t, as the one we 1819 * had before may have been evicted. 1820 */ 1821 objset_t *os; 1822 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1823 VERIFY(dsl_dataset_long_held(ds)); 1824 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1825 dsl_pool_config_enter(dp, FTAG); 1826 VERIFY0(dmu_objset_from_ds(ds, &os)); 1827 dsl_pool_config_exit(dp, FTAG); 1828 1829 err = zfsvfs_init(zfsvfs, os); 1830 if (err != 0) 1831 goto bail; 1832 1833 ds->ds_dir->dd_activity_cancelled = B_FALSE; 1834 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1835 1836 zfs_set_fuid_feature(zfsvfs); 1837 zfsvfs->z_rollback_time = jiffies; 1838 1839 /* 1840 * Attempt to re-establish all the active inodes with their 1841 * dbufs. If a zfs_rezget() fails, then we unhash the inode 1842 * and mark it stale. This prevents a collision if a new 1843 * inode/object is created which must use the same inode 1844 * number. The stale inode will be be released when the 1845 * VFS prunes the dentry holding the remaining references 1846 * on the stale inode. 1847 */ 1848 mutex_enter(&zfsvfs->z_znodes_lock); 1849 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1850 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1851 err2 = zfs_rezget(zp); 1852 if (err2) { 1853 remove_inode_hash(ZTOI(zp)); 1854 zp->z_is_stale = B_TRUE; 1855 } 1856 1857 /* see comment in zfs_suspend_fs() */ 1858 if (zp->z_suspended) { 1859 zfs_zrele_async(zp); 1860 zp->z_suspended = B_FALSE; 1861 } 1862 } 1863 mutex_exit(&zfsvfs->z_znodes_lock); 1864 1865 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) { 1866 /* 1867 * zfs_suspend_fs() could have interrupted freeing 1868 * of dnodes. We need to restart this freeing so 1869 * that we don't "leak" the space. 1870 */ 1871 zfs_unlinked_drain(zfsvfs); 1872 } 1873 1874 /* 1875 * Most of the time zfs_suspend_fs is used for changing the contents 1876 * of the underlying dataset. ZFS rollback and receive operations 1877 * might create files for which negative dentries are present in 1878 * the cache. Since walking the dcache would require a lot of GPL-only 1879 * code duplication, it's much easier on these rather rare occasions 1880 * just to flush the whole dcache for the given dataset/filesystem. 1881 */ 1882 shrink_dcache_sb(zfsvfs->z_sb); 1883 1884 bail: 1885 if (err != 0) 1886 zfsvfs->z_unmounted = B_TRUE; 1887 1888 /* release the VFS ops */ 1889 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1890 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1891 1892 if (err != 0) { 1893 /* 1894 * Since we couldn't setup the sa framework, try to force 1895 * unmount this file system. 1896 */ 1897 if (zfsvfs->z_os) 1898 (void) zfs_umount(zfsvfs->z_sb); 1899 } 1900 return (err); 1901 } 1902 1903 /* 1904 * Release VOPs and unmount a suspended filesystem. 1905 */ 1906 int 1907 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1908 { 1909 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); 1910 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1911 1912 /* 1913 * We already own this, so just hold and rele it to update the 1914 * objset_t, as the one we had before may have been evicted. 1915 */ 1916 objset_t *os; 1917 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1918 VERIFY(dsl_dataset_long_held(ds)); 1919 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1920 dsl_pool_config_enter(dp, FTAG); 1921 VERIFY0(dmu_objset_from_ds(ds, &os)); 1922 dsl_pool_config_exit(dp, FTAG); 1923 zfsvfs->z_os = os; 1924 1925 /* release the VOPs */ 1926 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1927 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1928 1929 /* 1930 * Try to force unmount this file system. 1931 */ 1932 (void) zfs_umount(zfsvfs->z_sb); 1933 zfsvfs->z_unmounted = B_TRUE; 1934 return (0); 1935 } 1936 1937 /* 1938 * Automounted snapshots rely on periodic revalidation 1939 * to defer snapshots from being automatically unmounted. 1940 */ 1941 1942 inline void 1943 zfs_exit_fs(zfsvfs_t *zfsvfs) 1944 { 1945 if (!zfsvfs->z_issnap) 1946 return; 1947 1948 if (time_after(jiffies, zfsvfs->z_snap_defer_time + 1949 MAX(zfs_expire_snapshot * HZ / 2, HZ))) { 1950 zfsvfs->z_snap_defer_time = jiffies; 1951 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa, 1952 dmu_objset_id(zfsvfs->z_os), 1953 zfs_expire_snapshot); 1954 } 1955 } 1956 1957 int 1958 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 1959 { 1960 int error; 1961 objset_t *os = zfsvfs->z_os; 1962 dmu_tx_t *tx; 1963 1964 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1965 return (SET_ERROR(EINVAL)); 1966 1967 if (newvers < zfsvfs->z_version) 1968 return (SET_ERROR(EINVAL)); 1969 1970 if (zfs_spa_version_map(newvers) > 1971 spa_version(dmu_objset_spa(zfsvfs->z_os))) 1972 return (SET_ERROR(ENOTSUP)); 1973 1974 tx = dmu_tx_create(os); 1975 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 1976 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 1977 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 1978 ZFS_SA_ATTRS); 1979 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1980 } 1981 error = dmu_tx_assign(tx, TXG_WAIT); 1982 if (error) { 1983 dmu_tx_abort(tx); 1984 return (error); 1985 } 1986 1987 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1988 8, 1, &newvers, tx); 1989 1990 if (error) { 1991 dmu_tx_commit(tx); 1992 return (error); 1993 } 1994 1995 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 1996 uint64_t sa_obj; 1997 1998 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 1999 SPA_VERSION_SA); 2000 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2001 DMU_OT_NONE, 0, tx); 2002 2003 error = zap_add(os, MASTER_NODE_OBJ, 2004 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2005 ASSERT0(error); 2006 2007 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2008 sa_register_update_callback(os, zfs_sa_upgrade); 2009 } 2010 2011 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2012 "from %llu to %llu", zfsvfs->z_version, newvers); 2013 2014 dmu_tx_commit(tx); 2015 2016 zfsvfs->z_version = newvers; 2017 os->os_version = newvers; 2018 2019 zfs_set_fuid_feature(zfsvfs); 2020 2021 return (0); 2022 } 2023 2024 /* 2025 * Read a property stored within the master node. 2026 */ 2027 int 2028 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2029 { 2030 uint64_t *cached_copy = NULL; 2031 2032 /* 2033 * Figure out where in the objset_t the cached copy would live, if it 2034 * is available for the requested property. 2035 */ 2036 if (os != NULL) { 2037 switch (prop) { 2038 case ZFS_PROP_VERSION: 2039 cached_copy = &os->os_version; 2040 break; 2041 case ZFS_PROP_NORMALIZE: 2042 cached_copy = &os->os_normalization; 2043 break; 2044 case ZFS_PROP_UTF8ONLY: 2045 cached_copy = &os->os_utf8only; 2046 break; 2047 case ZFS_PROP_CASE: 2048 cached_copy = &os->os_casesensitivity; 2049 break; 2050 default: 2051 break; 2052 } 2053 } 2054 if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) { 2055 *value = *cached_copy; 2056 return (0); 2057 } 2058 2059 /* 2060 * If the property wasn't cached, look up the file system's value for 2061 * the property. For the version property, we look up a slightly 2062 * different string. 2063 */ 2064 const char *pname; 2065 int error = ENOENT; 2066 if (prop == ZFS_PROP_VERSION) 2067 pname = ZPL_VERSION_STR; 2068 else 2069 pname = zfs_prop_to_name(prop); 2070 2071 if (os != NULL) { 2072 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); 2073 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2074 } 2075 2076 if (error == ENOENT) { 2077 /* No value set, use the default value */ 2078 switch (prop) { 2079 case ZFS_PROP_VERSION: 2080 *value = ZPL_VERSION; 2081 break; 2082 case ZFS_PROP_NORMALIZE: 2083 case ZFS_PROP_UTF8ONLY: 2084 *value = 0; 2085 break; 2086 case ZFS_PROP_CASE: 2087 *value = ZFS_CASE_SENSITIVE; 2088 break; 2089 case ZFS_PROP_ACLTYPE: 2090 *value = ZFS_ACLTYPE_OFF; 2091 break; 2092 default: 2093 return (error); 2094 } 2095 error = 0; 2096 } 2097 2098 /* 2099 * If one of the methods for getting the property value above worked, 2100 * copy it into the objset_t's cache. 2101 */ 2102 if (error == 0 && cached_copy != NULL) { 2103 *cached_copy = *value; 2104 } 2105 2106 return (error); 2107 } 2108 2109 /* 2110 * Return true if the corresponding vfs's unmounted flag is set. 2111 * Otherwise return false. 2112 * If this function returns true we know VFS unmount has been initiated. 2113 */ 2114 boolean_t 2115 zfs_get_vfs_flag_unmounted(objset_t *os) 2116 { 2117 zfsvfs_t *zfvp; 2118 boolean_t unmounted = B_FALSE; 2119 2120 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS); 2121 2122 mutex_enter(&os->os_user_ptr_lock); 2123 zfvp = dmu_objset_get_user(os); 2124 if (zfvp != NULL && zfvp->z_unmounted) 2125 unmounted = B_TRUE; 2126 mutex_exit(&os->os_user_ptr_lock); 2127 2128 return (unmounted); 2129 } 2130 2131 /*ARGSUSED*/ 2132 void 2133 zfsvfs_update_fromname(const char *oldname, const char *newname) 2134 { 2135 /* 2136 * We don't need to do anything here, the devname is always current by 2137 * virtue of zfsvfs->z_sb->s_op->show_devname. 2138 */ 2139 } 2140 2141 void 2142 zfs_init(void) 2143 { 2144 zfsctl_init(); 2145 zfs_znode_init(); 2146 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info); 2147 register_filesystem(&zpl_fs_type); 2148 } 2149 2150 void 2151 zfs_fini(void) 2152 { 2153 /* 2154 * we don't use outstanding because zpl_posix_acl_free might add more. 2155 */ 2156 taskq_wait(system_delay_taskq); 2157 taskq_wait(system_taskq); 2158 unregister_filesystem(&zpl_fs_type); 2159 zfs_znode_fini(); 2160 zfsctl_fini(); 2161 } 2162 2163 #if defined(_KERNEL) 2164 EXPORT_SYMBOL(zfs_suspend_fs); 2165 EXPORT_SYMBOL(zfs_resume_fs); 2166 EXPORT_SYMBOL(zfs_set_version); 2167 EXPORT_SYMBOL(zfsvfs_create); 2168 EXPORT_SYMBOL(zfsvfs_free); 2169 EXPORT_SYMBOL(zfs_is_readonly); 2170 EXPORT_SYMBOL(zfs_domount); 2171 EXPORT_SYMBOL(zfs_preumount); 2172 EXPORT_SYMBOL(zfs_umount); 2173 EXPORT_SYMBOL(zfs_remount); 2174 EXPORT_SYMBOL(zfs_statvfs); 2175 EXPORT_SYMBOL(zfs_vget); 2176 EXPORT_SYMBOL(zfs_prune); 2177 #endif 2178