xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_vfsops.c (revision 1bb8b1d7e190d75597d31ab87364a058e8ef8c5b)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  */
26 
27 /* Portions Copyright 2010 Robert Milkowski */
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/mntent.h>
37 #include <sys/cmn_err.h>
38 #include <sys/zfs_znode.h>
39 #include <sys/zfs_vnops.h>
40 #include <sys/zfs_dir.h>
41 #include <sys/zil.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/dmu.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_deleg.h>
47 #include <sys/spa.h>
48 #include <sys/zap.h>
49 #include <sys/sa.h>
50 #include <sys/sa_impl.h>
51 #include <sys/policy.h>
52 #include <sys/atomic.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_ctldir.h>
55 #include <sys/zfs_fuid.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/sunddi.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/dsl_dir.h>
60 #include <sys/objlist.h>
61 #include <sys/zfeature.h>
62 #include <sys/zpl.h>
63 #include <linux/vfs_compat.h>
64 #include <linux/fs.h>
65 #include "zfs_comutil.h"
66 
67 enum {
68 	TOKEN_RO,
69 	TOKEN_RW,
70 	TOKEN_SETUID,
71 	TOKEN_NOSETUID,
72 	TOKEN_EXEC,
73 	TOKEN_NOEXEC,
74 	TOKEN_DEVICES,
75 	TOKEN_NODEVICES,
76 	TOKEN_DIRXATTR,
77 	TOKEN_SAXATTR,
78 	TOKEN_XATTR,
79 	TOKEN_NOXATTR,
80 	TOKEN_ATIME,
81 	TOKEN_NOATIME,
82 	TOKEN_RELATIME,
83 	TOKEN_NORELATIME,
84 	TOKEN_NBMAND,
85 	TOKEN_NONBMAND,
86 	TOKEN_MNTPOINT,
87 	TOKEN_LAST,
88 };
89 
90 static const match_table_t zpl_tokens = {
91 	{ TOKEN_RO,		MNTOPT_RO },
92 	{ TOKEN_RW,		MNTOPT_RW },
93 	{ TOKEN_SETUID,		MNTOPT_SETUID },
94 	{ TOKEN_NOSETUID,	MNTOPT_NOSETUID },
95 	{ TOKEN_EXEC,		MNTOPT_EXEC },
96 	{ TOKEN_NOEXEC,		MNTOPT_NOEXEC },
97 	{ TOKEN_DEVICES,	MNTOPT_DEVICES },
98 	{ TOKEN_NODEVICES,	MNTOPT_NODEVICES },
99 	{ TOKEN_DIRXATTR,	MNTOPT_DIRXATTR },
100 	{ TOKEN_SAXATTR,	MNTOPT_SAXATTR },
101 	{ TOKEN_XATTR,		MNTOPT_XATTR },
102 	{ TOKEN_NOXATTR,	MNTOPT_NOXATTR },
103 	{ TOKEN_ATIME,		MNTOPT_ATIME },
104 	{ TOKEN_NOATIME,	MNTOPT_NOATIME },
105 	{ TOKEN_RELATIME,	MNTOPT_RELATIME },
106 	{ TOKEN_NORELATIME,	MNTOPT_NORELATIME },
107 	{ TOKEN_NBMAND,		MNTOPT_NBMAND },
108 	{ TOKEN_NONBMAND,	MNTOPT_NONBMAND },
109 	{ TOKEN_MNTPOINT,	MNTOPT_MNTPOINT "=%s" },
110 	{ TOKEN_LAST,		NULL },
111 };
112 
113 static void
114 zfsvfs_vfs_free(vfs_t *vfsp)
115 {
116 	if (vfsp != NULL) {
117 		if (vfsp->vfs_mntpoint != NULL)
118 			kmem_strfree(vfsp->vfs_mntpoint);
119 		mutex_destroy(&vfsp->vfs_mntpt_lock);
120 		kmem_free(vfsp, sizeof (vfs_t));
121 	}
122 }
123 
124 static int
125 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
126 {
127 	switch (token) {
128 	case TOKEN_RO:
129 		vfsp->vfs_readonly = B_TRUE;
130 		vfsp->vfs_do_readonly = B_TRUE;
131 		break;
132 	case TOKEN_RW:
133 		vfsp->vfs_readonly = B_FALSE;
134 		vfsp->vfs_do_readonly = B_TRUE;
135 		break;
136 	case TOKEN_SETUID:
137 		vfsp->vfs_setuid = B_TRUE;
138 		vfsp->vfs_do_setuid = B_TRUE;
139 		break;
140 	case TOKEN_NOSETUID:
141 		vfsp->vfs_setuid = B_FALSE;
142 		vfsp->vfs_do_setuid = B_TRUE;
143 		break;
144 	case TOKEN_EXEC:
145 		vfsp->vfs_exec = B_TRUE;
146 		vfsp->vfs_do_exec = B_TRUE;
147 		break;
148 	case TOKEN_NOEXEC:
149 		vfsp->vfs_exec = B_FALSE;
150 		vfsp->vfs_do_exec = B_TRUE;
151 		break;
152 	case TOKEN_DEVICES:
153 		vfsp->vfs_devices = B_TRUE;
154 		vfsp->vfs_do_devices = B_TRUE;
155 		break;
156 	case TOKEN_NODEVICES:
157 		vfsp->vfs_devices = B_FALSE;
158 		vfsp->vfs_do_devices = B_TRUE;
159 		break;
160 	case TOKEN_DIRXATTR:
161 		vfsp->vfs_xattr = ZFS_XATTR_DIR;
162 		vfsp->vfs_do_xattr = B_TRUE;
163 		break;
164 	case TOKEN_SAXATTR:
165 		vfsp->vfs_xattr = ZFS_XATTR_SA;
166 		vfsp->vfs_do_xattr = B_TRUE;
167 		break;
168 	case TOKEN_XATTR:
169 		vfsp->vfs_xattr = ZFS_XATTR_SA;
170 		vfsp->vfs_do_xattr = B_TRUE;
171 		break;
172 	case TOKEN_NOXATTR:
173 		vfsp->vfs_xattr = ZFS_XATTR_OFF;
174 		vfsp->vfs_do_xattr = B_TRUE;
175 		break;
176 	case TOKEN_ATIME:
177 		vfsp->vfs_atime = B_TRUE;
178 		vfsp->vfs_do_atime = B_TRUE;
179 		break;
180 	case TOKEN_NOATIME:
181 		vfsp->vfs_atime = B_FALSE;
182 		vfsp->vfs_do_atime = B_TRUE;
183 		break;
184 	case TOKEN_RELATIME:
185 		vfsp->vfs_relatime = B_TRUE;
186 		vfsp->vfs_do_relatime = B_TRUE;
187 		break;
188 	case TOKEN_NORELATIME:
189 		vfsp->vfs_relatime = B_FALSE;
190 		vfsp->vfs_do_relatime = B_TRUE;
191 		break;
192 	case TOKEN_NBMAND:
193 		vfsp->vfs_nbmand = B_TRUE;
194 		vfsp->vfs_do_nbmand = B_TRUE;
195 		break;
196 	case TOKEN_NONBMAND:
197 		vfsp->vfs_nbmand = B_FALSE;
198 		vfsp->vfs_do_nbmand = B_TRUE;
199 		break;
200 	case TOKEN_MNTPOINT:
201 		if (vfsp->vfs_mntpoint != NULL)
202 			kmem_strfree(vfsp->vfs_mntpoint);
203 		vfsp->vfs_mntpoint = match_strdup(&args[0]);
204 		if (vfsp->vfs_mntpoint == NULL)
205 			return (SET_ERROR(ENOMEM));
206 		break;
207 	default:
208 		break;
209 	}
210 
211 	return (0);
212 }
213 
214 /*
215  * Parse the raw mntopts and return a vfs_t describing the options.
216  */
217 static int
218 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
219 {
220 	vfs_t *tmp_vfsp;
221 	int error;
222 
223 	tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
224 	mutex_init(&tmp_vfsp->vfs_mntpt_lock, NULL, MUTEX_DEFAULT, NULL);
225 
226 	if (mntopts != NULL) {
227 		substring_t args[MAX_OPT_ARGS];
228 		char *tmp_mntopts, *p, *t;
229 		int token;
230 
231 		tmp_mntopts = t = kmem_strdup(mntopts);
232 		if (tmp_mntopts == NULL)
233 			return (SET_ERROR(ENOMEM));
234 
235 		while ((p = strsep(&t, ",")) != NULL) {
236 			if (!*p)
237 				continue;
238 
239 			args[0].to = args[0].from = NULL;
240 			token = match_token(p, zpl_tokens, args);
241 			error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
242 			if (error) {
243 				kmem_strfree(tmp_mntopts);
244 				zfsvfs_vfs_free(tmp_vfsp);
245 				return (error);
246 			}
247 		}
248 
249 		kmem_strfree(tmp_mntopts);
250 	}
251 
252 	*vfsp = tmp_vfsp;
253 
254 	return (0);
255 }
256 
257 boolean_t
258 zfs_is_readonly(zfsvfs_t *zfsvfs)
259 {
260 	return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
261 }
262 
263 int
264 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
265 {
266 	(void) cr;
267 	zfsvfs_t *zfsvfs = sb->s_fs_info;
268 
269 	/*
270 	 * Semantically, the only requirement is that the sync be initiated.
271 	 * The DMU syncs out txgs frequently, so there's nothing to do.
272 	 */
273 	if (!wait)
274 		return (0);
275 
276 	if (zfsvfs != NULL) {
277 		/*
278 		 * Sync a specific filesystem.
279 		 */
280 		dsl_pool_t *dp;
281 		int error;
282 
283 		if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
284 			return (error);
285 		dp = dmu_objset_pool(zfsvfs->z_os);
286 
287 		/*
288 		 * If the system is shutting down, then skip any
289 		 * filesystems which may exist on a suspended pool.
290 		 */
291 		if (spa_suspended(dp->dp_spa)) {
292 			zfs_exit(zfsvfs, FTAG);
293 			return (0);
294 		}
295 
296 		if (zfsvfs->z_log != NULL)
297 			zil_commit(zfsvfs->z_log, 0);
298 
299 		zfs_exit(zfsvfs, FTAG);
300 	} else {
301 		/*
302 		 * Sync all ZFS filesystems.  This is what happens when you
303 		 * run sync(1).  Unlike other filesystems, ZFS honors the
304 		 * request by waiting for all pools to commit all dirty data.
305 		 */
306 		spa_sync_allpools();
307 	}
308 
309 	return (0);
310 }
311 
312 static void
313 atime_changed_cb(void *arg, uint64_t newval)
314 {
315 	zfsvfs_t *zfsvfs = arg;
316 	struct super_block *sb = zfsvfs->z_sb;
317 
318 	if (sb == NULL)
319 		return;
320 	/*
321 	 * Update SB_NOATIME bit in VFS super block.  Since atime update is
322 	 * determined by atime_needs_update(), atime_needs_update() needs to
323 	 * return false if atime is turned off, and not unconditionally return
324 	 * false if atime is turned on.
325 	 */
326 	if (newval)
327 		sb->s_flags &= ~SB_NOATIME;
328 	else
329 		sb->s_flags |= SB_NOATIME;
330 }
331 
332 static void
333 relatime_changed_cb(void *arg, uint64_t newval)
334 {
335 	((zfsvfs_t *)arg)->z_relatime = newval;
336 }
337 
338 static void
339 xattr_changed_cb(void *arg, uint64_t newval)
340 {
341 	zfsvfs_t *zfsvfs = arg;
342 
343 	if (newval == ZFS_XATTR_OFF) {
344 		zfsvfs->z_flags &= ~ZSB_XATTR;
345 	} else {
346 		zfsvfs->z_flags |= ZSB_XATTR;
347 
348 		if (newval == ZFS_XATTR_SA)
349 			zfsvfs->z_xattr_sa = B_TRUE;
350 		else
351 			zfsvfs->z_xattr_sa = B_FALSE;
352 	}
353 }
354 
355 static void
356 acltype_changed_cb(void *arg, uint64_t newval)
357 {
358 	zfsvfs_t *zfsvfs = arg;
359 
360 	switch (newval) {
361 	case ZFS_ACLTYPE_NFSV4:
362 	case ZFS_ACLTYPE_OFF:
363 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
364 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
365 		break;
366 	case ZFS_ACLTYPE_POSIX:
367 #ifdef CONFIG_FS_POSIX_ACL
368 		zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
369 		zfsvfs->z_sb->s_flags |= SB_POSIXACL;
370 #else
371 		zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
372 		zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
373 #endif /* CONFIG_FS_POSIX_ACL */
374 		break;
375 	default:
376 		break;
377 	}
378 }
379 
380 static void
381 blksz_changed_cb(void *arg, uint64_t newval)
382 {
383 	zfsvfs_t *zfsvfs = arg;
384 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
385 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
386 	ASSERT(ISP2(newval));
387 
388 	zfsvfs->z_max_blksz = newval;
389 }
390 
391 static void
392 readonly_changed_cb(void *arg, uint64_t newval)
393 {
394 	zfsvfs_t *zfsvfs = arg;
395 	struct super_block *sb = zfsvfs->z_sb;
396 
397 	if (sb == NULL)
398 		return;
399 
400 	if (newval)
401 		sb->s_flags |= SB_RDONLY;
402 	else
403 		sb->s_flags &= ~SB_RDONLY;
404 }
405 
406 static void
407 devices_changed_cb(void *arg, uint64_t newval)
408 {
409 }
410 
411 static void
412 setuid_changed_cb(void *arg, uint64_t newval)
413 {
414 }
415 
416 static void
417 exec_changed_cb(void *arg, uint64_t newval)
418 {
419 }
420 
421 static void
422 nbmand_changed_cb(void *arg, uint64_t newval)
423 {
424 	zfsvfs_t *zfsvfs = arg;
425 	struct super_block *sb = zfsvfs->z_sb;
426 
427 	if (sb == NULL)
428 		return;
429 
430 	if (newval == TRUE)
431 		sb->s_flags |= SB_MANDLOCK;
432 	else
433 		sb->s_flags &= ~SB_MANDLOCK;
434 }
435 
436 static void
437 snapdir_changed_cb(void *arg, uint64_t newval)
438 {
439 	((zfsvfs_t *)arg)->z_show_ctldir = newval;
440 }
441 
442 static void
443 acl_mode_changed_cb(void *arg, uint64_t newval)
444 {
445 	zfsvfs_t *zfsvfs = arg;
446 
447 	zfsvfs->z_acl_mode = newval;
448 }
449 
450 static void
451 acl_inherit_changed_cb(void *arg, uint64_t newval)
452 {
453 	((zfsvfs_t *)arg)->z_acl_inherit = newval;
454 }
455 
456 static void
457 longname_changed_cb(void *arg, uint64_t newval)
458 {
459 	((zfsvfs_t *)arg)->z_longname = newval;
460 }
461 
462 static int
463 zfs_register_callbacks(vfs_t *vfsp)
464 {
465 	struct dsl_dataset *ds = NULL;
466 	objset_t *os = NULL;
467 	zfsvfs_t *zfsvfs = NULL;
468 	int error = 0;
469 
470 	ASSERT(vfsp);
471 	zfsvfs = vfsp->vfs_data;
472 	ASSERT(zfsvfs);
473 	os = zfsvfs->z_os;
474 
475 	/*
476 	 * The act of registering our callbacks will destroy any mount
477 	 * options we may have.  In order to enable temporary overrides
478 	 * of mount options, we stash away the current values and
479 	 * restore them after we register the callbacks.
480 	 */
481 	if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
482 		vfsp->vfs_do_readonly = B_TRUE;
483 		vfsp->vfs_readonly = B_TRUE;
484 	}
485 
486 	/*
487 	 * Register property callbacks.
488 	 *
489 	 * It would probably be fine to just check for i/o error from
490 	 * the first prop_register(), but I guess I like to go
491 	 * overboard...
492 	 */
493 	ds = dmu_objset_ds(os);
494 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
495 	error = dsl_prop_register(ds,
496 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
497 	error = error ? error : dsl_prop_register(ds,
498 	    zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
499 	error = error ? error : dsl_prop_register(ds,
500 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
501 	error = error ? error : dsl_prop_register(ds,
502 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
503 	error = error ? error : dsl_prop_register(ds,
504 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
505 	error = error ? error : dsl_prop_register(ds,
506 	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
507 	error = error ? error : dsl_prop_register(ds,
508 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
509 	error = error ? error : dsl_prop_register(ds,
510 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
511 	error = error ? error : dsl_prop_register(ds,
512 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
513 	error = error ? error : dsl_prop_register(ds,
514 	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
515 	error = error ? error : dsl_prop_register(ds,
516 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
517 	error = error ? error : dsl_prop_register(ds,
518 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
519 	    zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    zfs_prop_to_name(ZFS_PROP_LONGNAME), longname_changed_cb, zfsvfs);
524 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
525 	if (error)
526 		goto unregister;
527 
528 	/*
529 	 * Invoke our callbacks to restore temporary mount options.
530 	 */
531 	if (vfsp->vfs_do_readonly)
532 		readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
533 	if (vfsp->vfs_do_setuid)
534 		setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
535 	if (vfsp->vfs_do_exec)
536 		exec_changed_cb(zfsvfs, vfsp->vfs_exec);
537 	if (vfsp->vfs_do_devices)
538 		devices_changed_cb(zfsvfs, vfsp->vfs_devices);
539 	if (vfsp->vfs_do_xattr)
540 		xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
541 	if (vfsp->vfs_do_atime)
542 		atime_changed_cb(zfsvfs, vfsp->vfs_atime);
543 	if (vfsp->vfs_do_relatime)
544 		relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
545 	if (vfsp->vfs_do_nbmand)
546 		nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
547 
548 	return (0);
549 
550 unregister:
551 	dsl_prop_unregister_all(ds, zfsvfs);
552 	return (error);
553 }
554 
555 /*
556  * Takes a dataset, a property, a value and that value's setpoint as
557  * found in the ZAP. Checks if the property has been changed in the vfs.
558  * If so, val and setpoint will be overwritten with updated content.
559  * Otherwise, they are left unchanged.
560  */
561 int
562 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
563     char *setpoint)
564 {
565 	int error;
566 	zfsvfs_t *zfvp;
567 	vfs_t *vfsp;
568 	objset_t *os;
569 	uint64_t tmp = *val;
570 
571 	error = dmu_objset_from_ds(ds, &os);
572 	if (error != 0)
573 		return (error);
574 
575 	if (dmu_objset_type(os) != DMU_OST_ZFS)
576 		return (EINVAL);
577 
578 	mutex_enter(&os->os_user_ptr_lock);
579 	zfvp = dmu_objset_get_user(os);
580 	mutex_exit(&os->os_user_ptr_lock);
581 	if (zfvp == NULL)
582 		return (ESRCH);
583 
584 	vfsp = zfvp->z_vfs;
585 
586 	switch (zfs_prop) {
587 	case ZFS_PROP_ATIME:
588 		if (vfsp->vfs_do_atime)
589 			tmp = vfsp->vfs_atime;
590 		break;
591 	case ZFS_PROP_RELATIME:
592 		if (vfsp->vfs_do_relatime)
593 			tmp = vfsp->vfs_relatime;
594 		break;
595 	case ZFS_PROP_DEVICES:
596 		if (vfsp->vfs_do_devices)
597 			tmp = vfsp->vfs_devices;
598 		break;
599 	case ZFS_PROP_EXEC:
600 		if (vfsp->vfs_do_exec)
601 			tmp = vfsp->vfs_exec;
602 		break;
603 	case ZFS_PROP_SETUID:
604 		if (vfsp->vfs_do_setuid)
605 			tmp = vfsp->vfs_setuid;
606 		break;
607 	case ZFS_PROP_READONLY:
608 		if (vfsp->vfs_do_readonly)
609 			tmp = vfsp->vfs_readonly;
610 		break;
611 	case ZFS_PROP_XATTR:
612 		if (vfsp->vfs_do_xattr)
613 			tmp = vfsp->vfs_xattr;
614 		break;
615 	case ZFS_PROP_NBMAND:
616 		if (vfsp->vfs_do_nbmand)
617 			tmp = vfsp->vfs_nbmand;
618 		break;
619 	default:
620 		return (ENOENT);
621 	}
622 
623 	if (tmp != *val) {
624 		if (setpoint)
625 			(void) strcpy(setpoint, "temporary");
626 		*val = tmp;
627 	}
628 	return (0);
629 }
630 
631 /*
632  * Associate this zfsvfs with the given objset, which must be owned.
633  * This will cache a bunch of on-disk state from the objset in the
634  * zfsvfs.
635  */
636 static int
637 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
638 {
639 	int error;
640 	uint64_t val;
641 
642 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
643 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
644 	zfsvfs->z_os = os;
645 
646 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
647 	if (error != 0)
648 		return (error);
649 	if (zfsvfs->z_version >
650 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
651 		(void) printk("Can't mount a version %lld file system "
652 		    "on a version %lld pool\n. Pool must be upgraded to mount "
653 		    "this file system.\n", (u_longlong_t)zfsvfs->z_version,
654 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
655 		return (SET_ERROR(ENOTSUP));
656 	}
657 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
658 	if (error != 0)
659 		return (error);
660 	zfsvfs->z_norm = (int)val;
661 
662 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
663 	if (error != 0)
664 		return (error);
665 	zfsvfs->z_utf8 = (val != 0);
666 
667 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
668 	if (error != 0)
669 		return (error);
670 	zfsvfs->z_case = (uint_t)val;
671 
672 	if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
673 		return (error);
674 	zfsvfs->z_acl_type = (uint_t)val;
675 
676 	/*
677 	 * Fold case on file systems that are always or sometimes case
678 	 * insensitive.
679 	 */
680 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
681 	    zfsvfs->z_case == ZFS_CASE_MIXED)
682 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
683 
684 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
685 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
686 
687 	uint64_t sa_obj = 0;
688 	if (zfsvfs->z_use_sa) {
689 		/* should either have both of these objects or none */
690 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
691 		    &sa_obj);
692 		if (error != 0)
693 			return (error);
694 
695 		error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
696 		if ((error == 0) && (val == ZFS_XATTR_SA))
697 			zfsvfs->z_xattr_sa = B_TRUE;
698 	}
699 
700 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
701 	    &zfsvfs->z_root);
702 	if (error != 0)
703 		return (error);
704 	ASSERT(zfsvfs->z_root != 0);
705 
706 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
707 	    &zfsvfs->z_unlinkedobj);
708 	if (error != 0)
709 		return (error);
710 
711 	error = zap_lookup(os, MASTER_NODE_OBJ,
712 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
713 	    8, 1, &zfsvfs->z_userquota_obj);
714 	if (error == ENOENT)
715 		zfsvfs->z_userquota_obj = 0;
716 	else if (error != 0)
717 		return (error);
718 
719 	error = zap_lookup(os, MASTER_NODE_OBJ,
720 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
721 	    8, 1, &zfsvfs->z_groupquota_obj);
722 	if (error == ENOENT)
723 		zfsvfs->z_groupquota_obj = 0;
724 	else if (error != 0)
725 		return (error);
726 
727 	error = zap_lookup(os, MASTER_NODE_OBJ,
728 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
729 	    8, 1, &zfsvfs->z_projectquota_obj);
730 	if (error == ENOENT)
731 		zfsvfs->z_projectquota_obj = 0;
732 	else if (error != 0)
733 		return (error);
734 
735 	error = zap_lookup(os, MASTER_NODE_OBJ,
736 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
737 	    8, 1, &zfsvfs->z_userobjquota_obj);
738 	if (error == ENOENT)
739 		zfsvfs->z_userobjquota_obj = 0;
740 	else if (error != 0)
741 		return (error);
742 
743 	error = zap_lookup(os, MASTER_NODE_OBJ,
744 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
745 	    8, 1, &zfsvfs->z_groupobjquota_obj);
746 	if (error == ENOENT)
747 		zfsvfs->z_groupobjquota_obj = 0;
748 	else if (error != 0)
749 		return (error);
750 
751 	error = zap_lookup(os, MASTER_NODE_OBJ,
752 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
753 	    8, 1, &zfsvfs->z_projectobjquota_obj);
754 	if (error == ENOENT)
755 		zfsvfs->z_projectobjquota_obj = 0;
756 	else if (error != 0)
757 		return (error);
758 
759 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
760 	    &zfsvfs->z_fuid_obj);
761 	if (error == ENOENT)
762 		zfsvfs->z_fuid_obj = 0;
763 	else if (error != 0)
764 		return (error);
765 
766 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
767 	    &zfsvfs->z_shares_dir);
768 	if (error == ENOENT)
769 		zfsvfs->z_shares_dir = 0;
770 	else if (error != 0)
771 		return (error);
772 
773 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
774 	    &zfsvfs->z_attr_table);
775 	if (error != 0)
776 		return (error);
777 
778 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
779 		sa_register_update_callback(os, zfs_sa_upgrade);
780 
781 	return (0);
782 }
783 
784 int
785 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
786 {
787 	objset_t *os;
788 	zfsvfs_t *zfsvfs;
789 	int error;
790 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
791 
792 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
793 
794 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
795 	if (error != 0) {
796 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
797 		return (error);
798 	}
799 
800 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
801 
802 	return (error);
803 }
804 
805 
806 /*
807  * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
808  * on a failure.  Do not pass in a statically allocated zfsvfs.
809  */
810 int
811 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
812 {
813 	int error;
814 
815 	zfsvfs->z_vfs = NULL;
816 	zfsvfs->z_sb = NULL;
817 	zfsvfs->z_parent = zfsvfs;
818 
819 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
820 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
821 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
822 	    offsetof(znode_t, z_link_node));
823 	ZFS_TEARDOWN_INIT(zfsvfs);
824 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
825 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
826 
827 	int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
828 	    ZFS_OBJ_MTX_MAX);
829 	zfsvfs->z_hold_size = size;
830 	zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
831 	    KM_SLEEP);
832 	zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
833 	for (int i = 0; i != size; i++) {
834 		avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
835 		    sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
836 		mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
837 	}
838 
839 	error = zfsvfs_init(zfsvfs, os);
840 	if (error != 0) {
841 		dmu_objset_disown(os, B_TRUE, zfsvfs);
842 		*zfvp = NULL;
843 		zfsvfs_free(zfsvfs);
844 		return (error);
845 	}
846 
847 	zfsvfs->z_drain_task = TASKQID_INVALID;
848 	zfsvfs->z_draining = B_FALSE;
849 	zfsvfs->z_drain_cancel = B_TRUE;
850 
851 	*zfvp = zfsvfs;
852 	return (0);
853 }
854 
855 static int
856 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
857 {
858 	int error;
859 	boolean_t readonly = zfs_is_readonly(zfsvfs);
860 
861 	error = zfs_register_callbacks(zfsvfs->z_vfs);
862 	if (error)
863 		return (error);
864 
865 	/*
866 	 * If we are not mounting (ie: online recv), then we don't
867 	 * have to worry about replaying the log as we blocked all
868 	 * operations out since we closed the ZIL.
869 	 */
870 	if (mounting) {
871 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
872 		error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
873 		if (error)
874 			return (error);
875 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
876 		    &zfsvfs->z_kstat.dk_zil_sums);
877 
878 		/*
879 		 * During replay we remove the read only flag to
880 		 * allow replays to succeed.
881 		 */
882 		if (readonly != 0) {
883 			readonly_changed_cb(zfsvfs, B_FALSE);
884 		} else {
885 			zap_stats_t zs;
886 			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
887 			    &zs) == 0) {
888 				dataset_kstats_update_nunlinks_kstat(
889 				    &zfsvfs->z_kstat, zs.zs_num_entries);
890 				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
891 				    "num_entries in unlinked set: %llu",
892 				    zs.zs_num_entries);
893 			}
894 			zfs_unlinked_drain(zfsvfs);
895 			dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
896 			dd->dd_activity_cancelled = B_FALSE;
897 		}
898 
899 		/*
900 		 * Parse and replay the intent log.
901 		 *
902 		 * Because of ziltest, this must be done after
903 		 * zfs_unlinked_drain().  (Further note: ziltest
904 		 * doesn't use readonly mounts, where
905 		 * zfs_unlinked_drain() isn't called.)  This is because
906 		 * ziltest causes spa_sync() to think it's committed,
907 		 * but actually it is not, so the intent log contains
908 		 * many txg's worth of changes.
909 		 *
910 		 * In particular, if object N is in the unlinked set in
911 		 * the last txg to actually sync, then it could be
912 		 * actually freed in a later txg and then reallocated
913 		 * in a yet later txg.  This would write a "create
914 		 * object N" record to the intent log.  Normally, this
915 		 * would be fine because the spa_sync() would have
916 		 * written out the fact that object N is free, before
917 		 * we could write the "create object N" intent log
918 		 * record.
919 		 *
920 		 * But when we are in ziltest mode, we advance the "open
921 		 * txg" without actually spa_sync()-ing the changes to
922 		 * disk.  So we would see that object N is still
923 		 * allocated and in the unlinked set, and there is an
924 		 * intent log record saying to allocate it.
925 		 */
926 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
927 			if (zil_replay_disable) {
928 				zil_destroy(zfsvfs->z_log, B_FALSE);
929 			} else {
930 				zfsvfs->z_replay = B_TRUE;
931 				zil_replay(zfsvfs->z_os, zfsvfs,
932 				    zfs_replay_vector);
933 				zfsvfs->z_replay = B_FALSE;
934 			}
935 		}
936 
937 		/* restore readonly bit */
938 		if (readonly != 0)
939 			readonly_changed_cb(zfsvfs, B_TRUE);
940 	} else {
941 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
942 		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
943 		    &zfsvfs->z_kstat.dk_zil_sums);
944 	}
945 
946 	/*
947 	 * Set the objset user_ptr to track its zfsvfs.
948 	 */
949 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
950 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
951 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
952 
953 	return (0);
954 }
955 
956 void
957 zfsvfs_free(zfsvfs_t *zfsvfs)
958 {
959 	int i, size = zfsvfs->z_hold_size;
960 
961 	zfs_fuid_destroy(zfsvfs);
962 
963 	mutex_destroy(&zfsvfs->z_znodes_lock);
964 	mutex_destroy(&zfsvfs->z_lock);
965 	list_destroy(&zfsvfs->z_all_znodes);
966 	ZFS_TEARDOWN_DESTROY(zfsvfs);
967 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
968 	rw_destroy(&zfsvfs->z_fuid_lock);
969 	for (i = 0; i != size; i++) {
970 		avl_destroy(&zfsvfs->z_hold_trees[i]);
971 		mutex_destroy(&zfsvfs->z_hold_locks[i]);
972 	}
973 	vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
974 	vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
975 	zfsvfs_vfs_free(zfsvfs->z_vfs);
976 	dataset_kstats_destroy(&zfsvfs->z_kstat);
977 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
978 }
979 
980 static void
981 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
982 {
983 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
984 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
985 }
986 
987 static void
988 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
989 {
990 	objset_t *os = zfsvfs->z_os;
991 
992 	if (!dmu_objset_is_snapshot(os))
993 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
994 }
995 
996 #ifdef HAVE_MLSLABEL
997 /*
998  * Check that the hex label string is appropriate for the dataset being
999  * mounted into the global_zone proper.
1000  *
1001  * Return an error if the hex label string is not default or
1002  * admin_low/admin_high.  For admin_low labels, the corresponding
1003  * dataset must be readonly.
1004  */
1005 int
1006 zfs_check_global_label(const char *dsname, const char *hexsl)
1007 {
1008 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1009 		return (0);
1010 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1011 		return (0);
1012 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1013 		/* must be readonly */
1014 		uint64_t rdonly;
1015 
1016 		if (dsl_prop_get_integer(dsname,
1017 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1018 			return (SET_ERROR(EACCES));
1019 		return (rdonly ? 0 : SET_ERROR(EACCES));
1020 	}
1021 	return (SET_ERROR(EACCES));
1022 }
1023 #endif /* HAVE_MLSLABEL */
1024 
1025 static int
1026 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1027     uint32_t bshift)
1028 {
1029 	char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1030 	uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1031 	uint64_t quota;
1032 	uint64_t used;
1033 	int err;
1034 
1035 	strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1036 	err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1037 	    sizeof (buf) - offset, B_FALSE);
1038 	if (err)
1039 		return (err);
1040 
1041 	if (zfsvfs->z_projectquota_obj == 0)
1042 		goto objs;
1043 
1044 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1045 	    buf + offset, 8, 1, &quota);
1046 	if (err == ENOENT)
1047 		goto objs;
1048 	else if (err)
1049 		return (err);
1050 
1051 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1052 	    buf + offset, 8, 1, &used);
1053 	if (unlikely(err == ENOENT)) {
1054 		uint32_t blksize;
1055 		u_longlong_t nblocks;
1056 
1057 		/*
1058 		 * Quota accounting is async, so it is possible race case.
1059 		 * There is at least one object with the given project ID.
1060 		 */
1061 		sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1062 		if (unlikely(zp->z_blksz == 0))
1063 			blksize = zfsvfs->z_max_blksz;
1064 
1065 		used = blksize * nblocks;
1066 	} else if (err) {
1067 		return (err);
1068 	}
1069 
1070 	statp->f_blocks = quota >> bshift;
1071 	statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1072 	statp->f_bavail = statp->f_bfree;
1073 
1074 objs:
1075 	if (zfsvfs->z_projectobjquota_obj == 0)
1076 		return (0);
1077 
1078 	err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1079 	    buf + offset, 8, 1, &quota);
1080 	if (err == ENOENT)
1081 		return (0);
1082 	else if (err)
1083 		return (err);
1084 
1085 	err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1086 	    buf, 8, 1, &used);
1087 	if (unlikely(err == ENOENT)) {
1088 		/*
1089 		 * Quota accounting is async, so it is possible race case.
1090 		 * There is at least one object with the given project ID.
1091 		 */
1092 		used = 1;
1093 	} else if (err) {
1094 		return (err);
1095 	}
1096 
1097 	statp->f_files = quota;
1098 	statp->f_ffree = (quota > used) ? (quota - used) : 0;
1099 
1100 	return (0);
1101 }
1102 
1103 int
1104 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1105 {
1106 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1107 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1108 	int err = 0;
1109 
1110 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1111 		return (err);
1112 
1113 	dmu_objset_space(zfsvfs->z_os,
1114 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1115 
1116 	uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1117 	/*
1118 	 * The underlying storage pool actually uses multiple block
1119 	 * size.  Under Solaris frsize (fragment size) is reported as
1120 	 * the smallest block size we support, and bsize (block size)
1121 	 * as the filesystem's maximum block size.  Unfortunately,
1122 	 * under Linux the fragment size and block size are often used
1123 	 * interchangeably.  Thus we are forced to report both of them
1124 	 * as the filesystem's maximum block size.
1125 	 */
1126 	statp->f_frsize = zfsvfs->z_max_blksz;
1127 	statp->f_bsize = zfsvfs->z_max_blksz;
1128 	uint32_t bshift = fls(statp->f_bsize) - 1;
1129 
1130 	/*
1131 	 * The following report "total" blocks of various kinds in
1132 	 * the file system, but reported in terms of f_bsize - the
1133 	 * "preferred" size.
1134 	 */
1135 
1136 	/* Round up so we never have a filesystem using 0 blocks. */
1137 	refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1138 	statp->f_blocks = (refdbytes + availbytes) >> bshift;
1139 	statp->f_bfree = availbytes >> bshift;
1140 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1141 
1142 	/*
1143 	 * statvfs() should really be called statufs(), because it assumes
1144 	 * static metadata.  ZFS doesn't preallocate files, so the best
1145 	 * we can do is report the max that could possibly fit in f_files,
1146 	 * and that minus the number actually used in f_ffree.
1147 	 * For f_ffree, report the smaller of the number of objects available
1148 	 * and the number of blocks (each object will take at least a block).
1149 	 */
1150 	statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1151 	statp->f_files = statp->f_ffree + usedobjs;
1152 	statp->f_fsid.val[0] = (uint32_t)fsid;
1153 	statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1154 	statp->f_type = ZFS_SUPER_MAGIC;
1155 	statp->f_namelen =
1156 	    zfsvfs->z_longname ? (ZAP_MAXNAMELEN_NEW - 1) : (MAXNAMELEN - 1);
1157 
1158 	/*
1159 	 * We have all of 40 characters to stuff a string here.
1160 	 * Is there anything useful we could/should provide?
1161 	 */
1162 	memset(statp->f_spare, 0, sizeof (statp->f_spare));
1163 
1164 	if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1165 	    dmu_objset_projectquota_present(zfsvfs->z_os)) {
1166 		znode_t *zp = ITOZ(ip);
1167 
1168 		if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1169 		    zpl_is_valid_projid(zp->z_projid))
1170 			err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1171 	}
1172 
1173 	zfs_exit(zfsvfs, FTAG);
1174 	return (err);
1175 }
1176 
1177 static int
1178 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1179 {
1180 	znode_t *rootzp;
1181 	int error;
1182 
1183 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1184 		return (error);
1185 
1186 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1187 	if (error == 0)
1188 		*ipp = ZTOI(rootzp);
1189 
1190 	zfs_exit(zfsvfs, FTAG);
1191 	return (error);
1192 }
1193 
1194 /*
1195  * The ARC has requested that the filesystem drop entries from the dentry
1196  * and inode caches.  This can occur when the ARC needs to free meta data
1197  * blocks but can't because they are all pinned by entries in these caches.
1198  */
1199 #if defined(HAVE_SUPER_BLOCK_S_SHRINK)
1200 #define	S_SHRINK(sb)	(&(sb)->s_shrink)
1201 #elif defined(HAVE_SUPER_BLOCK_S_SHRINK_PTR)
1202 #define	S_SHRINK(sb)	((sb)->s_shrink)
1203 #endif
1204 
1205 int
1206 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1207 {
1208 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1209 	int error = 0;
1210 	struct shrinker *shrinker = S_SHRINK(sb);
1211 	struct shrink_control sc = {
1212 		.nr_to_scan = nr_to_scan,
1213 		.gfp_mask = GFP_KERNEL,
1214 	};
1215 
1216 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1217 		return (error);
1218 
1219 #ifdef SHRINKER_NUMA_AWARE
1220 	if (shrinker->flags & SHRINKER_NUMA_AWARE) {
1221 		long tc = 1;
1222 		for_each_online_node(sc.nid) {
1223 			long c = shrinker->count_objects(shrinker, &sc);
1224 			if (c  == 0 || c == SHRINK_EMPTY)
1225 				continue;
1226 			tc += c;
1227 		}
1228 		*objects = 0;
1229 		for_each_online_node(sc.nid) {
1230 			long c = shrinker->count_objects(shrinker, &sc);
1231 			if (c  == 0 || c == SHRINK_EMPTY)
1232 				continue;
1233 			if (c > tc)
1234 				tc = c;
1235 			sc.nr_to_scan = mult_frac(nr_to_scan, c, tc) + 1;
1236 			*objects += (*shrinker->scan_objects)(shrinker, &sc);
1237 		}
1238 	} else {
1239 			*objects = (*shrinker->scan_objects)(shrinker, &sc);
1240 	}
1241 #else
1242 	*objects = (*shrinker->scan_objects)(shrinker, &sc);
1243 #endif
1244 
1245 	zfs_exit(zfsvfs, FTAG);
1246 
1247 	dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1248 	    "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1249 	    nr_to_scan, *objects, error);
1250 
1251 	return (error);
1252 }
1253 
1254 /*
1255  * Teardown the zfsvfs_t.
1256  *
1257  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1258  * and 'z_teardown_inactive_lock' held.
1259  */
1260 static int
1261 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1262 {
1263 	znode_t	*zp;
1264 
1265 	zfs_unlinked_drain_stop_wait(zfsvfs);
1266 
1267 	/*
1268 	 * If someone has not already unmounted this file system,
1269 	 * drain the zrele_taskq to ensure all active references to the
1270 	 * zfsvfs_t have been handled only then can it be safely destroyed.
1271 	 */
1272 	if (zfsvfs->z_os) {
1273 		/*
1274 		 * If we're unmounting we have to wait for the list to
1275 		 * drain completely.
1276 		 *
1277 		 * If we're not unmounting there's no guarantee the list
1278 		 * will drain completely, but iputs run from the taskq
1279 		 * may add the parents of dir-based xattrs to the taskq
1280 		 * so we want to wait for these.
1281 		 *
1282 		 * We can safely check z_all_znodes for being empty because the
1283 		 * VFS has already blocked operations which add to it.
1284 		 */
1285 		int round = 0;
1286 		while (!list_is_empty(&zfsvfs->z_all_znodes)) {
1287 			taskq_wait_outstanding(dsl_pool_zrele_taskq(
1288 			    dmu_objset_pool(zfsvfs->z_os)), 0);
1289 			if (++round > 1 && !unmounting)
1290 				break;
1291 		}
1292 	}
1293 
1294 	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1295 
1296 	if (!unmounting) {
1297 		/*
1298 		 * We purge the parent filesystem's super block as the
1299 		 * parent filesystem and all of its snapshots have their
1300 		 * inode's super block set to the parent's filesystem's
1301 		 * super block.  Note,  'z_parent' is self referential
1302 		 * for non-snapshots.
1303 		 */
1304 		shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1305 	}
1306 
1307 	/*
1308 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1309 	 * threads are blocked as zil_close can call zfs_inactive.
1310 	 */
1311 	if (zfsvfs->z_log) {
1312 		zil_close(zfsvfs->z_log);
1313 		zfsvfs->z_log = NULL;
1314 	}
1315 
1316 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1317 
1318 	/*
1319 	 * If we are not unmounting (ie: online recv) and someone already
1320 	 * unmounted this file system while we were doing the switcheroo,
1321 	 * or a reopen of z_os failed then just bail out now.
1322 	 */
1323 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1324 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1325 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1326 		return (SET_ERROR(EIO));
1327 	}
1328 
1329 	/*
1330 	 * At this point there are no VFS ops active, and any new VFS ops
1331 	 * will fail with EIO since we have z_teardown_lock for writer (only
1332 	 * relevant for forced unmount).
1333 	 *
1334 	 * Release all holds on dbufs. We also grab an extra reference to all
1335 	 * the remaining inodes so that the kernel does not attempt to free
1336 	 * any inodes of a suspended fs. This can cause deadlocks since the
1337 	 * zfs_resume_fs() process may involve starting threads, which might
1338 	 * attempt to free unreferenced inodes to free up memory for the new
1339 	 * thread.
1340 	 */
1341 	if (!unmounting) {
1342 		mutex_enter(&zfsvfs->z_znodes_lock);
1343 		for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1344 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1345 			if (zp->z_sa_hdl)
1346 				zfs_znode_dmu_fini(zp);
1347 			if (igrab(ZTOI(zp)) != NULL)
1348 				zp->z_suspended = B_TRUE;
1349 
1350 		}
1351 		mutex_exit(&zfsvfs->z_znodes_lock);
1352 	}
1353 
1354 	/*
1355 	 * If we are unmounting, set the unmounted flag and let new VFS ops
1356 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1357 	 * other VFS ops will fail with EIO.
1358 	 */
1359 	if (unmounting) {
1360 		zfsvfs->z_unmounted = B_TRUE;
1361 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1362 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1363 	}
1364 
1365 	/*
1366 	 * z_os will be NULL if there was an error in attempting to reopen
1367 	 * zfsvfs, so just return as the properties had already been
1368 	 *
1369 	 * unregistered and cached data had been evicted before.
1370 	 */
1371 	if (zfsvfs->z_os == NULL)
1372 		return (0);
1373 
1374 	/*
1375 	 * Unregister properties.
1376 	 */
1377 	zfs_unregister_callbacks(zfsvfs);
1378 
1379 	/*
1380 	 * Evict cached data. We must write out any dirty data before
1381 	 * disowning the dataset.
1382 	 */
1383 	objset_t *os = zfsvfs->z_os;
1384 	boolean_t os_dirty = B_FALSE;
1385 	for (int t = 0; t < TXG_SIZE; t++) {
1386 		if (dmu_objset_is_dirty(os, t)) {
1387 			os_dirty = B_TRUE;
1388 			break;
1389 		}
1390 	}
1391 	if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1392 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1393 	}
1394 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1395 	dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1396 	dsl_dir_cancel_waiters(dd);
1397 
1398 	return (0);
1399 }
1400 
1401 static atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1402 
1403 int
1404 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1405 {
1406 	const char *osname = zm->mnt_osname;
1407 	struct inode *root_inode = NULL;
1408 	uint64_t recordsize;
1409 	int error = 0;
1410 	zfsvfs_t *zfsvfs = NULL;
1411 	vfs_t *vfs = NULL;
1412 	int canwrite;
1413 	int dataset_visible_zone;
1414 
1415 	ASSERT(zm);
1416 	ASSERT(osname);
1417 
1418 	dataset_visible_zone = zone_dataset_visible(osname, &canwrite);
1419 
1420 	/*
1421 	 * Refuse to mount a filesystem if we are in a namespace and the
1422 	 * dataset is not visible or writable in that namespace.
1423 	 */
1424 	if (!INGLOBALZONE(curproc) &&
1425 	    (!dataset_visible_zone || !canwrite)) {
1426 		return (SET_ERROR(EPERM));
1427 	}
1428 
1429 	error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1430 	if (error)
1431 		return (error);
1432 
1433 	/*
1434 	 * If a non-writable filesystem is being mounted without the
1435 	 * read-only flag, pretend it was set, as done for snapshots.
1436 	 */
1437 	if (!canwrite)
1438 		vfs->vfs_readonly = B_TRUE;
1439 
1440 	error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1441 	if (error) {
1442 		zfsvfs_vfs_free(vfs);
1443 		goto out;
1444 	}
1445 
1446 	if ((error = dsl_prop_get_integer(osname, "recordsize",
1447 	    &recordsize, NULL))) {
1448 		zfsvfs_vfs_free(vfs);
1449 		goto out;
1450 	}
1451 
1452 	vfs->vfs_data = zfsvfs;
1453 	zfsvfs->z_vfs = vfs;
1454 	zfsvfs->z_sb = sb;
1455 	sb->s_fs_info = zfsvfs;
1456 	sb->s_magic = ZFS_SUPER_MAGIC;
1457 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1458 	sb->s_time_gran = 1;
1459 	sb->s_blocksize = recordsize;
1460 	sb->s_blocksize_bits = ilog2(recordsize);
1461 
1462 	error = -super_setup_bdi_name(sb, "%.28s-%ld", "zfs",
1463 	    atomic_long_inc_return(&zfs_bdi_seq));
1464 	if (error)
1465 		goto out;
1466 
1467 	sb->s_bdi->ra_pages = 0;
1468 
1469 	/* Set callback operations for the file system. */
1470 	sb->s_op = &zpl_super_operations;
1471 	sb->s_xattr = zpl_xattr_handlers;
1472 	sb->s_export_op = &zpl_export_operations;
1473 
1474 	/* Set features for file system. */
1475 	zfs_set_fuid_feature(zfsvfs);
1476 
1477 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1478 		uint64_t pval;
1479 
1480 		atime_changed_cb(zfsvfs, B_FALSE);
1481 		readonly_changed_cb(zfsvfs, B_TRUE);
1482 		if ((error = dsl_prop_get_integer(osname,
1483 		    "xattr", &pval, NULL)))
1484 			goto out;
1485 		xattr_changed_cb(zfsvfs, pval);
1486 		if ((error = dsl_prop_get_integer(osname,
1487 		    "acltype", &pval, NULL)))
1488 			goto out;
1489 		acltype_changed_cb(zfsvfs, pval);
1490 		zfsvfs->z_issnap = B_TRUE;
1491 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1492 		zfsvfs->z_snap_defer_time = jiffies;
1493 
1494 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1495 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1496 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1497 	} else {
1498 		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1499 			goto out;
1500 	}
1501 
1502 	/* Allocate a root inode for the filesystem. */
1503 	error = zfs_root(zfsvfs, &root_inode);
1504 	if (error) {
1505 		(void) zfs_umount(sb);
1506 		zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1507 		goto out;
1508 	}
1509 
1510 	/* Allocate a root dentry for the filesystem */
1511 	sb->s_root = d_make_root(root_inode);
1512 	if (sb->s_root == NULL) {
1513 		(void) zfs_umount(sb);
1514 		zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1515 		error = SET_ERROR(ENOMEM);
1516 		goto out;
1517 	}
1518 
1519 	if (!zfsvfs->z_issnap)
1520 		zfsctl_create(zfsvfs);
1521 
1522 	zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1523 out:
1524 	if (error) {
1525 		if (zfsvfs != NULL) {
1526 			dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1527 			zfsvfs_free(zfsvfs);
1528 		}
1529 		/*
1530 		 * make sure we don't have dangling sb->s_fs_info which
1531 		 * zfs_preumount will use.
1532 		 */
1533 		sb->s_fs_info = NULL;
1534 	}
1535 
1536 	return (error);
1537 }
1538 
1539 /*
1540  * Called when an unmount is requested and certain sanity checks have
1541  * already passed.  At this point no dentries or inodes have been reclaimed
1542  * from their respective caches.  We drop the extra reference on the .zfs
1543  * control directory to allow everything to be reclaimed.  All snapshots
1544  * must already have been unmounted to reach this point.
1545  */
1546 void
1547 zfs_preumount(struct super_block *sb)
1548 {
1549 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1550 
1551 	/* zfsvfs is NULL when zfs_domount fails during mount */
1552 	if (zfsvfs) {
1553 		zfs_unlinked_drain_stop_wait(zfsvfs);
1554 		zfsctl_destroy(sb->s_fs_info);
1555 		/*
1556 		 * Wait for zrele_async before entering evict_inodes in
1557 		 * generic_shutdown_super. The reason we must finish before
1558 		 * evict_inodes is when lazytime is on, or when zfs_purgedir
1559 		 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1560 		 * would race with the i_count check in evict_inodes. This means
1561 		 * it could destroy the inode while we are still using it.
1562 		 *
1563 		 * We wait for two passes. xattr directories in the first pass
1564 		 * may add xattr entries in zfs_purgedir, so in the second pass
1565 		 * we wait for them. We don't use taskq_wait here because it is
1566 		 * a pool wide taskq. Other mounted filesystems can constantly
1567 		 * do zrele_async and there's no guarantee when taskq will be
1568 		 * empty.
1569 		 */
1570 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1571 		    dmu_objset_pool(zfsvfs->z_os)), 0);
1572 		taskq_wait_outstanding(dsl_pool_zrele_taskq(
1573 		    dmu_objset_pool(zfsvfs->z_os)), 0);
1574 	}
1575 }
1576 
1577 /*
1578  * Called once all other unmount released tear down has occurred.
1579  * It is our responsibility to release any remaining infrastructure.
1580  */
1581 int
1582 zfs_umount(struct super_block *sb)
1583 {
1584 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1585 	objset_t *os;
1586 
1587 	if (zfsvfs->z_arc_prune != NULL)
1588 		arc_remove_prune_callback(zfsvfs->z_arc_prune);
1589 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1590 	os = zfsvfs->z_os;
1591 
1592 	/*
1593 	 * z_os will be NULL if there was an error in
1594 	 * attempting to reopen zfsvfs.
1595 	 */
1596 	if (os != NULL) {
1597 		/*
1598 		 * Unset the objset user_ptr.
1599 		 */
1600 		mutex_enter(&os->os_user_ptr_lock);
1601 		dmu_objset_set_user(os, NULL);
1602 		mutex_exit(&os->os_user_ptr_lock);
1603 
1604 		/*
1605 		 * Finally release the objset
1606 		 */
1607 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1608 	}
1609 
1610 	zfsvfs_free(zfsvfs);
1611 	sb->s_fs_info = NULL;
1612 	return (0);
1613 }
1614 
1615 int
1616 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1617 {
1618 	zfsvfs_t *zfsvfs = sb->s_fs_info;
1619 	vfs_t *vfsp;
1620 	boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1621 	int error;
1622 
1623 	if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1624 	    !(*flags & SB_RDONLY)) {
1625 		*flags |= SB_RDONLY;
1626 		return (EROFS);
1627 	}
1628 
1629 	error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1630 	if (error)
1631 		return (error);
1632 
1633 	if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1634 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1635 
1636 	zfs_unregister_callbacks(zfsvfs);
1637 	zfsvfs_vfs_free(zfsvfs->z_vfs);
1638 
1639 	vfsp->vfs_data = zfsvfs;
1640 	zfsvfs->z_vfs = vfsp;
1641 	if (!issnap)
1642 		(void) zfs_register_callbacks(vfsp);
1643 
1644 	return (error);
1645 }
1646 
1647 int
1648 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1649 {
1650 	zfsvfs_t	*zfsvfs = sb->s_fs_info;
1651 	znode_t		*zp;
1652 	uint64_t	object = 0;
1653 	uint64_t	fid_gen = 0;
1654 	uint64_t	gen_mask;
1655 	uint64_t	zp_gen;
1656 	int		i, err;
1657 
1658 	*ipp = NULL;
1659 
1660 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1661 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1662 
1663 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1664 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1665 
1666 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1667 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1668 	} else {
1669 		return (SET_ERROR(EINVAL));
1670 	}
1671 
1672 	/* LONG_FID_LEN means snapdirs */
1673 	if (fidp->fid_len == LONG_FID_LEN) {
1674 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1675 		uint64_t	objsetid = 0;
1676 		uint64_t	setgen = 0;
1677 
1678 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1679 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1680 
1681 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1682 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1683 
1684 		if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1685 			dprintf("snapdir fid: objsetid (%llu) != "
1686 			    "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1687 			    objsetid, ZFSCTL_INO_SNAPDIRS, object);
1688 
1689 			return (SET_ERROR(EINVAL));
1690 		}
1691 
1692 		if (fid_gen > 1 || setgen != 0) {
1693 			dprintf("snapdir fid: fid_gen (%llu) and setgen "
1694 			    "(%llu)\n", fid_gen, setgen);
1695 			return (SET_ERROR(EINVAL));
1696 		}
1697 
1698 		return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1699 	}
1700 
1701 	if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1702 		return (err);
1703 	/* A zero fid_gen means we are in the .zfs control directories */
1704 	if (fid_gen == 0 &&
1705 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1706 		if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) {
1707 			zfs_exit(zfsvfs, FTAG);
1708 			return (SET_ERROR(ENOENT));
1709 		}
1710 
1711 		*ipp = zfsvfs->z_ctldir;
1712 		ASSERT(*ipp != NULL);
1713 
1714 		if (object == ZFSCTL_INO_SNAPDIR) {
1715 			VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1716 			    0, kcred, NULL, NULL) == 0);
1717 		} else {
1718 			/*
1719 			 * Must have an existing ref, so igrab()
1720 			 * cannot return NULL
1721 			 */
1722 			VERIFY3P(igrab(*ipp), !=, NULL);
1723 		}
1724 		zfs_exit(zfsvfs, FTAG);
1725 		return (0);
1726 	}
1727 
1728 	gen_mask = -1ULL >> (64 - 8 * i);
1729 
1730 	dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1731 	if ((err = zfs_zget(zfsvfs, object, &zp))) {
1732 		zfs_exit(zfsvfs, FTAG);
1733 		return (err);
1734 	}
1735 
1736 	/* Don't export xattr stuff */
1737 	if (zp->z_pflags & ZFS_XATTR) {
1738 		zrele(zp);
1739 		zfs_exit(zfsvfs, FTAG);
1740 		return (SET_ERROR(ENOENT));
1741 	}
1742 
1743 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1744 	    sizeof (uint64_t));
1745 	zp_gen = zp_gen & gen_mask;
1746 	if (zp_gen == 0)
1747 		zp_gen = 1;
1748 	if ((fid_gen == 0) && (zfsvfs->z_root == object))
1749 		fid_gen = zp_gen;
1750 	if (zp->z_unlinked || zp_gen != fid_gen) {
1751 		dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1752 		    fid_gen);
1753 		zrele(zp);
1754 		zfs_exit(zfsvfs, FTAG);
1755 		return (SET_ERROR(ENOENT));
1756 	}
1757 
1758 	*ipp = ZTOI(zp);
1759 	if (*ipp)
1760 		zfs_znode_update_vfs(ITOZ(*ipp));
1761 
1762 	zfs_exit(zfsvfs, FTAG);
1763 	return (0);
1764 }
1765 
1766 /*
1767  * Block out VFS ops and close zfsvfs_t
1768  *
1769  * Note, if successful, then we return with the 'z_teardown_lock' and
1770  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
1771  * dataset and objset intact so that they can be atomically handed off during
1772  * a subsequent rollback or recv operation and the resume thereafter.
1773  */
1774 int
1775 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1776 {
1777 	int error;
1778 
1779 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1780 		return (error);
1781 
1782 	return (0);
1783 }
1784 
1785 /*
1786  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
1787  * is an invariant across any of the operations that can be performed while the
1788  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
1789  * are the same: the relevant objset and associated dataset are owned by
1790  * zfsvfs, held, and long held on entry.
1791  */
1792 int
1793 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1794 {
1795 	int err, err2;
1796 	znode_t *zp;
1797 
1798 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1799 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1800 
1801 	/*
1802 	 * We already own this, so just update the objset_t, as the one we
1803 	 * had before may have been evicted.
1804 	 */
1805 	objset_t *os;
1806 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1807 	VERIFY(dsl_dataset_long_held(ds));
1808 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1809 	dsl_pool_config_enter(dp, FTAG);
1810 	VERIFY0(dmu_objset_from_ds(ds, &os));
1811 	dsl_pool_config_exit(dp, FTAG);
1812 
1813 	err = zfsvfs_init(zfsvfs, os);
1814 	if (err != 0)
1815 		goto bail;
1816 
1817 	ds->ds_dir->dd_activity_cancelled = B_FALSE;
1818 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1819 
1820 	zfs_set_fuid_feature(zfsvfs);
1821 	zfsvfs->z_rollback_time = jiffies;
1822 
1823 	/*
1824 	 * Attempt to re-establish all the active inodes with their
1825 	 * dbufs.  If a zfs_rezget() fails, then we unhash the inode
1826 	 * and mark it stale.  This prevents a collision if a new
1827 	 * inode/object is created which must use the same inode
1828 	 * number.  The stale inode will be be released when the
1829 	 * VFS prunes the dentry holding the remaining references
1830 	 * on the stale inode.
1831 	 */
1832 	mutex_enter(&zfsvfs->z_znodes_lock);
1833 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1834 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1835 		err2 = zfs_rezget(zp);
1836 		if (err2) {
1837 			zpl_d_drop_aliases(ZTOI(zp));
1838 			remove_inode_hash(ZTOI(zp));
1839 		}
1840 
1841 		/* see comment in zfs_suspend_fs() */
1842 		if (zp->z_suspended) {
1843 			zfs_zrele_async(zp);
1844 			zp->z_suspended = B_FALSE;
1845 		}
1846 	}
1847 	mutex_exit(&zfsvfs->z_znodes_lock);
1848 
1849 	if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1850 		/*
1851 		 * zfs_suspend_fs() could have interrupted freeing
1852 		 * of dnodes. We need to restart this freeing so
1853 		 * that we don't "leak" the space.
1854 		 */
1855 		zfs_unlinked_drain(zfsvfs);
1856 	}
1857 
1858 	/*
1859 	 * Most of the time zfs_suspend_fs is used for changing the contents
1860 	 * of the underlying dataset. ZFS rollback and receive operations
1861 	 * might create files for which negative dentries are present in
1862 	 * the cache. Since walking the dcache would require a lot of GPL-only
1863 	 * code duplication, it's much easier on these rather rare occasions
1864 	 * just to flush the whole dcache for the given dataset/filesystem.
1865 	 */
1866 	shrink_dcache_sb(zfsvfs->z_sb);
1867 
1868 bail:
1869 	if (err != 0)
1870 		zfsvfs->z_unmounted = B_TRUE;
1871 
1872 	/* release the VFS ops */
1873 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1874 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1875 
1876 	if (err != 0) {
1877 		/*
1878 		 * Since we couldn't setup the sa framework, try to force
1879 		 * unmount this file system.
1880 		 */
1881 		if (zfsvfs->z_os)
1882 			(void) zfs_umount(zfsvfs->z_sb);
1883 	}
1884 	return (err);
1885 }
1886 
1887 /*
1888  * Release VOPs and unmount a suspended filesystem.
1889  */
1890 int
1891 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1892 {
1893 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1894 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1895 
1896 	/*
1897 	 * We already own this, so just hold and rele it to update the
1898 	 * objset_t, as the one we had before may have been evicted.
1899 	 */
1900 	objset_t *os;
1901 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1902 	VERIFY(dsl_dataset_long_held(ds));
1903 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1904 	dsl_pool_config_enter(dp, FTAG);
1905 	VERIFY0(dmu_objset_from_ds(ds, &os));
1906 	dsl_pool_config_exit(dp, FTAG);
1907 	zfsvfs->z_os = os;
1908 
1909 	/* release the VOPs */
1910 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1911 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1912 
1913 	/*
1914 	 * Try to force unmount this file system.
1915 	 */
1916 	(void) zfs_umount(zfsvfs->z_sb);
1917 	zfsvfs->z_unmounted = B_TRUE;
1918 	return (0);
1919 }
1920 
1921 /*
1922  * Automounted snapshots rely on periodic revalidation
1923  * to defer snapshots from being automatically unmounted.
1924  */
1925 
1926 inline void
1927 zfs_exit_fs(zfsvfs_t *zfsvfs)
1928 {
1929 	if (!zfsvfs->z_issnap)
1930 		return;
1931 
1932 	if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1933 	    MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1934 		zfsvfs->z_snap_defer_time = jiffies;
1935 		zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1936 		    dmu_objset_id(zfsvfs->z_os),
1937 		    zfs_expire_snapshot);
1938 	}
1939 }
1940 
1941 int
1942 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1943 {
1944 	int error;
1945 	objset_t *os = zfsvfs->z_os;
1946 	dmu_tx_t *tx;
1947 
1948 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1949 		return (SET_ERROR(EINVAL));
1950 
1951 	if (newvers < zfsvfs->z_version)
1952 		return (SET_ERROR(EINVAL));
1953 
1954 	if (zfs_spa_version_map(newvers) >
1955 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
1956 		return (SET_ERROR(ENOTSUP));
1957 
1958 	tx = dmu_tx_create(os);
1959 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1960 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1961 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1962 		    ZFS_SA_ATTRS);
1963 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1964 	}
1965 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
1966 	if (error) {
1967 		dmu_tx_abort(tx);
1968 		return (error);
1969 	}
1970 
1971 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1972 	    8, 1, &newvers, tx);
1973 
1974 	if (error) {
1975 		dmu_tx_commit(tx);
1976 		return (error);
1977 	}
1978 
1979 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1980 		uint64_t sa_obj;
1981 
1982 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
1983 		    SPA_VERSION_SA);
1984 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1985 		    DMU_OT_NONE, 0, tx);
1986 
1987 		error = zap_add(os, MASTER_NODE_OBJ,
1988 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1989 		ASSERT0(error);
1990 
1991 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
1992 		sa_register_update_callback(os, zfs_sa_upgrade);
1993 	}
1994 
1995 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
1996 	    "from %llu to %llu", zfsvfs->z_version, newvers);
1997 
1998 	dmu_tx_commit(tx);
1999 
2000 	zfsvfs->z_version = newvers;
2001 	os->os_version = newvers;
2002 
2003 	zfs_set_fuid_feature(zfsvfs);
2004 
2005 	return (0);
2006 }
2007 
2008 /*
2009  * Return true if the corresponding vfs's unmounted flag is set.
2010  * Otherwise return false.
2011  * If this function returns true we know VFS unmount has been initiated.
2012  */
2013 boolean_t
2014 zfs_get_vfs_flag_unmounted(objset_t *os)
2015 {
2016 	zfsvfs_t *zfvp;
2017 	boolean_t unmounted = B_FALSE;
2018 
2019 	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2020 
2021 	mutex_enter(&os->os_user_ptr_lock);
2022 	zfvp = dmu_objset_get_user(os);
2023 	if (zfvp != NULL && zfvp->z_unmounted)
2024 		unmounted = B_TRUE;
2025 	mutex_exit(&os->os_user_ptr_lock);
2026 
2027 	return (unmounted);
2028 }
2029 
2030 void
2031 zfsvfs_update_fromname(const char *oldname, const char *newname)
2032 {
2033 	/*
2034 	 * We don't need to do anything here, the devname is always current by
2035 	 * virtue of zfsvfs->z_sb->s_op->show_devname.
2036 	 */
2037 	(void) oldname, (void) newname;
2038 }
2039 
2040 void
2041 zfs_init(void)
2042 {
2043 	zfsctl_init();
2044 	zfs_znode_init();
2045 	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2046 	register_filesystem(&zpl_fs_type);
2047 }
2048 
2049 void
2050 zfs_fini(void)
2051 {
2052 	/*
2053 	 * we don't use outstanding because zpl_posix_acl_free might add more.
2054 	 */
2055 	taskq_wait(system_delay_taskq);
2056 	taskq_wait(system_taskq);
2057 	unregister_filesystem(&zpl_fs_type);
2058 	zfs_znode_fini();
2059 	zfsctl_fini();
2060 }
2061 
2062 #if defined(_KERNEL)
2063 EXPORT_SYMBOL(zfs_suspend_fs);
2064 EXPORT_SYMBOL(zfs_resume_fs);
2065 EXPORT_SYMBOL(zfs_set_version);
2066 EXPORT_SYMBOL(zfsvfs_create);
2067 EXPORT_SYMBOL(zfsvfs_free);
2068 EXPORT_SYMBOL(zfs_is_readonly);
2069 EXPORT_SYMBOL(zfs_domount);
2070 EXPORT_SYMBOL(zfs_preumount);
2071 EXPORT_SYMBOL(zfs_umount);
2072 EXPORT_SYMBOL(zfs_remount);
2073 EXPORT_SYMBOL(zfs_statvfs);
2074 EXPORT_SYMBOL(zfs_vget);
2075 EXPORT_SYMBOL(zfs_prune);
2076 #endif
2077