1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 */ 26 27 /* Portions Copyright 2010 Robert Milkowski */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/mntent.h> 37 #include <sys/cmn_err.h> 38 #include <sys/zfs_znode.h> 39 #include <sys/zfs_vnops.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/sa.h> 50 #include <sys/sa_impl.h> 51 #include <sys/policy.h> 52 #include <sys/atomic.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_ctldir.h> 55 #include <sys/zfs_fuid.h> 56 #include <sys/zfs_quota.h> 57 #include <sys/sunddi.h> 58 #include <sys/dmu_objset.h> 59 #include <sys/dsl_dir.h> 60 #include <sys/objlist.h> 61 #include <sys/zfeature.h> 62 #include <sys/zpl.h> 63 #include <linux/vfs_compat.h> 64 #include <linux/fs.h> 65 #include "zfs_comutil.h" 66 67 enum { 68 TOKEN_RO, 69 TOKEN_RW, 70 TOKEN_SETUID, 71 TOKEN_NOSETUID, 72 TOKEN_EXEC, 73 TOKEN_NOEXEC, 74 TOKEN_DEVICES, 75 TOKEN_NODEVICES, 76 TOKEN_DIRXATTR, 77 TOKEN_SAXATTR, 78 TOKEN_XATTR, 79 TOKEN_NOXATTR, 80 TOKEN_ATIME, 81 TOKEN_NOATIME, 82 TOKEN_RELATIME, 83 TOKEN_NORELATIME, 84 TOKEN_NBMAND, 85 TOKEN_NONBMAND, 86 TOKEN_MNTPOINT, 87 TOKEN_LAST, 88 }; 89 90 static const match_table_t zpl_tokens = { 91 { TOKEN_RO, MNTOPT_RO }, 92 { TOKEN_RW, MNTOPT_RW }, 93 { TOKEN_SETUID, MNTOPT_SETUID }, 94 { TOKEN_NOSETUID, MNTOPT_NOSETUID }, 95 { TOKEN_EXEC, MNTOPT_EXEC }, 96 { TOKEN_NOEXEC, MNTOPT_NOEXEC }, 97 { TOKEN_DEVICES, MNTOPT_DEVICES }, 98 { TOKEN_NODEVICES, MNTOPT_NODEVICES }, 99 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR }, 100 { TOKEN_SAXATTR, MNTOPT_SAXATTR }, 101 { TOKEN_XATTR, MNTOPT_XATTR }, 102 { TOKEN_NOXATTR, MNTOPT_NOXATTR }, 103 { TOKEN_ATIME, MNTOPT_ATIME }, 104 { TOKEN_NOATIME, MNTOPT_NOATIME }, 105 { TOKEN_RELATIME, MNTOPT_RELATIME }, 106 { TOKEN_NORELATIME, MNTOPT_NORELATIME }, 107 { TOKEN_NBMAND, MNTOPT_NBMAND }, 108 { TOKEN_NONBMAND, MNTOPT_NONBMAND }, 109 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" }, 110 { TOKEN_LAST, NULL }, 111 }; 112 113 static void 114 zfsvfs_vfs_free(vfs_t *vfsp) 115 { 116 if (vfsp != NULL) { 117 if (vfsp->vfs_mntpoint != NULL) 118 kmem_strfree(vfsp->vfs_mntpoint); 119 mutex_destroy(&vfsp->vfs_mntpt_lock); 120 kmem_free(vfsp, sizeof (vfs_t)); 121 } 122 } 123 124 static int 125 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp) 126 { 127 switch (token) { 128 case TOKEN_RO: 129 vfsp->vfs_readonly = B_TRUE; 130 vfsp->vfs_do_readonly = B_TRUE; 131 break; 132 case TOKEN_RW: 133 vfsp->vfs_readonly = B_FALSE; 134 vfsp->vfs_do_readonly = B_TRUE; 135 break; 136 case TOKEN_SETUID: 137 vfsp->vfs_setuid = B_TRUE; 138 vfsp->vfs_do_setuid = B_TRUE; 139 break; 140 case TOKEN_NOSETUID: 141 vfsp->vfs_setuid = B_FALSE; 142 vfsp->vfs_do_setuid = B_TRUE; 143 break; 144 case TOKEN_EXEC: 145 vfsp->vfs_exec = B_TRUE; 146 vfsp->vfs_do_exec = B_TRUE; 147 break; 148 case TOKEN_NOEXEC: 149 vfsp->vfs_exec = B_FALSE; 150 vfsp->vfs_do_exec = B_TRUE; 151 break; 152 case TOKEN_DEVICES: 153 vfsp->vfs_devices = B_TRUE; 154 vfsp->vfs_do_devices = B_TRUE; 155 break; 156 case TOKEN_NODEVICES: 157 vfsp->vfs_devices = B_FALSE; 158 vfsp->vfs_do_devices = B_TRUE; 159 break; 160 case TOKEN_DIRXATTR: 161 vfsp->vfs_xattr = ZFS_XATTR_DIR; 162 vfsp->vfs_do_xattr = B_TRUE; 163 break; 164 case TOKEN_SAXATTR: 165 vfsp->vfs_xattr = ZFS_XATTR_SA; 166 vfsp->vfs_do_xattr = B_TRUE; 167 break; 168 case TOKEN_XATTR: 169 vfsp->vfs_xattr = ZFS_XATTR_SA; 170 vfsp->vfs_do_xattr = B_TRUE; 171 break; 172 case TOKEN_NOXATTR: 173 vfsp->vfs_xattr = ZFS_XATTR_OFF; 174 vfsp->vfs_do_xattr = B_TRUE; 175 break; 176 case TOKEN_ATIME: 177 vfsp->vfs_atime = B_TRUE; 178 vfsp->vfs_do_atime = B_TRUE; 179 break; 180 case TOKEN_NOATIME: 181 vfsp->vfs_atime = B_FALSE; 182 vfsp->vfs_do_atime = B_TRUE; 183 break; 184 case TOKEN_RELATIME: 185 vfsp->vfs_relatime = B_TRUE; 186 vfsp->vfs_do_relatime = B_TRUE; 187 break; 188 case TOKEN_NORELATIME: 189 vfsp->vfs_relatime = B_FALSE; 190 vfsp->vfs_do_relatime = B_TRUE; 191 break; 192 case TOKEN_NBMAND: 193 vfsp->vfs_nbmand = B_TRUE; 194 vfsp->vfs_do_nbmand = B_TRUE; 195 break; 196 case TOKEN_NONBMAND: 197 vfsp->vfs_nbmand = B_FALSE; 198 vfsp->vfs_do_nbmand = B_TRUE; 199 break; 200 case TOKEN_MNTPOINT: 201 if (vfsp->vfs_mntpoint != NULL) 202 kmem_strfree(vfsp->vfs_mntpoint); 203 vfsp->vfs_mntpoint = match_strdup(&args[0]); 204 if (vfsp->vfs_mntpoint == NULL) 205 return (SET_ERROR(ENOMEM)); 206 break; 207 default: 208 break; 209 } 210 211 return (0); 212 } 213 214 /* 215 * Parse the raw mntopts and return a vfs_t describing the options. 216 */ 217 static int 218 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp) 219 { 220 vfs_t *tmp_vfsp; 221 int error; 222 223 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP); 224 mutex_init(&tmp_vfsp->vfs_mntpt_lock, NULL, MUTEX_DEFAULT, NULL); 225 226 if (mntopts != NULL) { 227 substring_t args[MAX_OPT_ARGS]; 228 char *tmp_mntopts, *p, *t; 229 int token; 230 231 tmp_mntopts = t = kmem_strdup(mntopts); 232 if (tmp_mntopts == NULL) 233 return (SET_ERROR(ENOMEM)); 234 235 while ((p = strsep(&t, ",")) != NULL) { 236 if (!*p) 237 continue; 238 239 args[0].to = args[0].from = NULL; 240 token = match_token(p, zpl_tokens, args); 241 error = zfsvfs_parse_option(p, token, args, tmp_vfsp); 242 if (error) { 243 kmem_strfree(tmp_mntopts); 244 zfsvfs_vfs_free(tmp_vfsp); 245 return (error); 246 } 247 } 248 249 kmem_strfree(tmp_mntopts); 250 } 251 252 *vfsp = tmp_vfsp; 253 254 return (0); 255 } 256 257 boolean_t 258 zfs_is_readonly(zfsvfs_t *zfsvfs) 259 { 260 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY)); 261 } 262 263 int 264 zfs_sync(struct super_block *sb, int wait, cred_t *cr) 265 { 266 (void) cr; 267 zfsvfs_t *zfsvfs = sb->s_fs_info; 268 ASSERT3P(zfsvfs, !=, NULL); 269 270 /* 271 * Semantically, the only requirement is that the sync be initiated. 272 * The DMU syncs out txgs frequently, so there's nothing to do. 273 */ 274 if (!wait) 275 return (0); 276 277 int err = zfs_enter(zfsvfs, FTAG); 278 if (err != 0) 279 return (err); 280 281 /* 282 * Sync any pending writes, but do not block if the pool is suspended. 283 * This is to help with shutting down with pools suspended, as we don't 284 * want to block in that case. 285 */ 286 err = zil_commit_flags(zfsvfs->z_log, 0, ZIL_COMMIT_NOW); 287 zfs_exit(zfsvfs, FTAG); 288 289 return (err); 290 } 291 292 static void 293 atime_changed_cb(void *arg, uint64_t newval) 294 { 295 zfsvfs_t *zfsvfs = arg; 296 struct super_block *sb = zfsvfs->z_sb; 297 298 if (sb == NULL) 299 return; 300 /* 301 * Update SB_NOATIME bit in VFS super block. Since atime update is 302 * determined by atime_needs_update(), atime_needs_update() needs to 303 * return false if atime is turned off, and not unconditionally return 304 * false if atime is turned on. 305 */ 306 if (newval) 307 sb->s_flags &= ~SB_NOATIME; 308 else 309 sb->s_flags |= SB_NOATIME; 310 } 311 312 static void 313 relatime_changed_cb(void *arg, uint64_t newval) 314 { 315 ((zfsvfs_t *)arg)->z_relatime = newval; 316 } 317 318 static void 319 xattr_changed_cb(void *arg, uint64_t newval) 320 { 321 zfsvfs_t *zfsvfs = arg; 322 323 if (newval == ZFS_XATTR_OFF) { 324 zfsvfs->z_flags &= ~ZSB_XATTR; 325 } else { 326 zfsvfs->z_flags |= ZSB_XATTR; 327 328 if (newval == ZFS_XATTR_SA) 329 zfsvfs->z_xattr_sa = B_TRUE; 330 else 331 zfsvfs->z_xattr_sa = B_FALSE; 332 } 333 } 334 335 static void 336 acltype_changed_cb(void *arg, uint64_t newval) 337 { 338 zfsvfs_t *zfsvfs = arg; 339 340 switch (newval) { 341 case ZFS_ACLTYPE_NFSV4: 342 case ZFS_ACLTYPE_OFF: 343 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 344 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 345 break; 346 case ZFS_ACLTYPE_POSIX: 347 #ifdef CONFIG_FS_POSIX_ACL 348 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX; 349 zfsvfs->z_sb->s_flags |= SB_POSIXACL; 350 #else 351 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 352 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 353 #endif /* CONFIG_FS_POSIX_ACL */ 354 break; 355 default: 356 break; 357 } 358 } 359 360 static void 361 blksz_changed_cb(void *arg, uint64_t newval) 362 { 363 zfsvfs_t *zfsvfs = arg; 364 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 365 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 366 ASSERT(ISP2(newval)); 367 368 zfsvfs->z_max_blksz = newval; 369 } 370 371 static void 372 readonly_changed_cb(void *arg, uint64_t newval) 373 { 374 zfsvfs_t *zfsvfs = arg; 375 struct super_block *sb = zfsvfs->z_sb; 376 377 if (sb == NULL) 378 return; 379 380 if (newval) 381 sb->s_flags |= SB_RDONLY; 382 else 383 sb->s_flags &= ~SB_RDONLY; 384 } 385 386 static void 387 devices_changed_cb(void *arg, uint64_t newval) 388 { 389 } 390 391 static void 392 setuid_changed_cb(void *arg, uint64_t newval) 393 { 394 } 395 396 static void 397 exec_changed_cb(void *arg, uint64_t newval) 398 { 399 } 400 401 static void 402 nbmand_changed_cb(void *arg, uint64_t newval) 403 { 404 zfsvfs_t *zfsvfs = arg; 405 struct super_block *sb = zfsvfs->z_sb; 406 407 if (sb == NULL) 408 return; 409 410 if (newval == TRUE) 411 sb->s_flags |= SB_MANDLOCK; 412 else 413 sb->s_flags &= ~SB_MANDLOCK; 414 } 415 416 static void 417 snapdir_changed_cb(void *arg, uint64_t newval) 418 { 419 ((zfsvfs_t *)arg)->z_show_ctldir = newval; 420 } 421 422 static void 423 acl_mode_changed_cb(void *arg, uint64_t newval) 424 { 425 zfsvfs_t *zfsvfs = arg; 426 427 zfsvfs->z_acl_mode = newval; 428 } 429 430 static void 431 acl_inherit_changed_cb(void *arg, uint64_t newval) 432 { 433 ((zfsvfs_t *)arg)->z_acl_inherit = newval; 434 } 435 436 static void 437 longname_changed_cb(void *arg, uint64_t newval) 438 { 439 ((zfsvfs_t *)arg)->z_longname = newval; 440 } 441 442 static int 443 zfs_register_callbacks(vfs_t *vfsp) 444 { 445 struct dsl_dataset *ds = NULL; 446 objset_t *os = NULL; 447 zfsvfs_t *zfsvfs = NULL; 448 int error = 0; 449 450 ASSERT(vfsp); 451 zfsvfs = vfsp->vfs_data; 452 ASSERT(zfsvfs); 453 os = zfsvfs->z_os; 454 455 /* 456 * The act of registering our callbacks will destroy any mount 457 * options we may have. In order to enable temporary overrides 458 * of mount options, we stash away the current values and 459 * restore them after we register the callbacks. 460 */ 461 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) { 462 vfsp->vfs_do_readonly = B_TRUE; 463 vfsp->vfs_readonly = B_TRUE; 464 } 465 466 /* 467 * Register property callbacks. 468 * 469 * It would probably be fine to just check for i/o error from 470 * the first prop_register(), but I guess I like to go 471 * overboard... 472 */ 473 ds = dmu_objset_ds(os); 474 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 475 error = dsl_prop_register(ds, 476 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 477 error = error ? error : dsl_prop_register(ds, 478 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs); 479 error = error ? error : dsl_prop_register(ds, 480 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 481 error = error ? error : dsl_prop_register(ds, 482 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 483 error = error ? error : dsl_prop_register(ds, 484 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 485 error = error ? error : dsl_prop_register(ds, 486 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 487 error = error ? error : dsl_prop_register(ds, 488 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 489 error = error ? error : dsl_prop_register(ds, 490 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 491 error = error ? error : dsl_prop_register(ds, 492 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 493 error = error ? error : dsl_prop_register(ds, 494 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs); 495 error = error ? error : dsl_prop_register(ds, 496 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 497 error = error ? error : dsl_prop_register(ds, 498 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 499 zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 zfs_prop_to_name(ZFS_PROP_LONGNAME), longname_changed_cb, zfsvfs); 504 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 505 if (error) 506 goto unregister; 507 508 /* 509 * Invoke our callbacks to restore temporary mount options. 510 */ 511 if (vfsp->vfs_do_readonly) 512 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly); 513 if (vfsp->vfs_do_setuid) 514 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid); 515 if (vfsp->vfs_do_exec) 516 exec_changed_cb(zfsvfs, vfsp->vfs_exec); 517 if (vfsp->vfs_do_devices) 518 devices_changed_cb(zfsvfs, vfsp->vfs_devices); 519 if (vfsp->vfs_do_xattr) 520 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr); 521 if (vfsp->vfs_do_atime) 522 atime_changed_cb(zfsvfs, vfsp->vfs_atime); 523 if (vfsp->vfs_do_relatime) 524 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime); 525 if (vfsp->vfs_do_nbmand) 526 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand); 527 528 return (0); 529 530 unregister: 531 dsl_prop_unregister_all(ds, zfsvfs); 532 return (error); 533 } 534 535 /* 536 * Takes a dataset, a property, a value and that value's setpoint as 537 * found in the ZAP. Checks if the property has been changed in the vfs. 538 * If so, val and setpoint will be overwritten with updated content. 539 * Otherwise, they are left unchanged. 540 */ 541 int 542 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val, 543 char *setpoint) 544 { 545 int error; 546 zfsvfs_t *zfvp; 547 vfs_t *vfsp; 548 objset_t *os; 549 uint64_t tmp = *val; 550 551 error = dmu_objset_from_ds(ds, &os); 552 if (error != 0) 553 return (error); 554 555 if (dmu_objset_type(os) != DMU_OST_ZFS) 556 return (EINVAL); 557 558 mutex_enter(&os->os_user_ptr_lock); 559 zfvp = dmu_objset_get_user(os); 560 mutex_exit(&os->os_user_ptr_lock); 561 if (zfvp == NULL) 562 return (ESRCH); 563 564 vfsp = zfvp->z_vfs; 565 566 switch (zfs_prop) { 567 case ZFS_PROP_ATIME: 568 if (vfsp->vfs_do_atime) 569 tmp = vfsp->vfs_atime; 570 break; 571 case ZFS_PROP_RELATIME: 572 if (vfsp->vfs_do_relatime) 573 tmp = vfsp->vfs_relatime; 574 break; 575 case ZFS_PROP_DEVICES: 576 if (vfsp->vfs_do_devices) 577 tmp = vfsp->vfs_devices; 578 break; 579 case ZFS_PROP_EXEC: 580 if (vfsp->vfs_do_exec) 581 tmp = vfsp->vfs_exec; 582 break; 583 case ZFS_PROP_SETUID: 584 if (vfsp->vfs_do_setuid) 585 tmp = vfsp->vfs_setuid; 586 break; 587 case ZFS_PROP_READONLY: 588 if (vfsp->vfs_do_readonly) 589 tmp = vfsp->vfs_readonly; 590 break; 591 case ZFS_PROP_XATTR: 592 if (vfsp->vfs_do_xattr) 593 tmp = vfsp->vfs_xattr; 594 break; 595 case ZFS_PROP_NBMAND: 596 if (vfsp->vfs_do_nbmand) 597 tmp = vfsp->vfs_nbmand; 598 break; 599 default: 600 return (ENOENT); 601 } 602 603 if (tmp != *val) { 604 if (setpoint) 605 (void) strcpy(setpoint, "temporary"); 606 *val = tmp; 607 } 608 return (0); 609 } 610 611 /* 612 * Associate this zfsvfs with the given objset, which must be owned. 613 * This will cache a bunch of on-disk state from the objset in the 614 * zfsvfs. 615 */ 616 static int 617 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) 618 { 619 int error; 620 uint64_t val; 621 622 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 623 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 624 zfsvfs->z_os = os; 625 626 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 627 if (error != 0) 628 return (error); 629 if (zfsvfs->z_version > 630 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 631 (void) printk("Can't mount a version %lld file system " 632 "on a version %lld pool\n. Pool must be upgraded to mount " 633 "this file system.\n", (u_longlong_t)zfsvfs->z_version, 634 (u_longlong_t)spa_version(dmu_objset_spa(os))); 635 return (SET_ERROR(ENOTSUP)); 636 } 637 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); 638 if (error != 0) 639 return (error); 640 zfsvfs->z_norm = (int)val; 641 642 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); 643 if (error != 0) 644 return (error); 645 zfsvfs->z_utf8 = (val != 0); 646 647 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); 648 if (error != 0) 649 return (error); 650 zfsvfs->z_case = (uint_t)val; 651 652 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0) 653 return (error); 654 zfsvfs->z_acl_type = (uint_t)val; 655 656 /* 657 * Fold case on file systems that are always or sometimes case 658 * insensitive. 659 */ 660 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 661 zfsvfs->z_case == ZFS_CASE_MIXED) 662 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 663 664 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 665 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 666 667 uint64_t sa_obj = 0; 668 if (zfsvfs->z_use_sa) { 669 /* should either have both of these objects or none */ 670 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 671 &sa_obj); 672 if (error != 0) 673 return (error); 674 675 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val); 676 if ((error == 0) && (val == ZFS_XATTR_SA)) 677 zfsvfs->z_xattr_sa = B_TRUE; 678 } 679 680 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSERQUOTA, 681 &zfsvfs->z_defaultuserquota); 682 if (error != 0) 683 return (error); 684 685 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPQUOTA, 686 &zfsvfs->z_defaultgroupquota); 687 if (error != 0) 688 return (error); 689 690 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTQUOTA, 691 &zfsvfs->z_defaultprojectquota); 692 if (error != 0) 693 return (error); 694 695 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTUSEROBJQUOTA, 696 &zfsvfs->z_defaultuserobjquota); 697 if (error != 0) 698 return (error); 699 700 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTGROUPOBJQUOTA, 701 &zfsvfs->z_defaultgroupobjquota); 702 if (error != 0) 703 return (error); 704 705 error = zfs_get_zplprop(os, ZFS_PROP_DEFAULTPROJECTOBJQUOTA, 706 &zfsvfs->z_defaultprojectobjquota); 707 if (error != 0) 708 return (error); 709 710 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 711 &zfsvfs->z_root); 712 if (error != 0) 713 return (error); 714 ASSERT(zfsvfs->z_root != 0); 715 716 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 717 &zfsvfs->z_unlinkedobj); 718 if (error != 0) 719 return (error); 720 721 error = zap_lookup(os, MASTER_NODE_OBJ, 722 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 723 8, 1, &zfsvfs->z_userquota_obj); 724 if (error == ENOENT) 725 zfsvfs->z_userquota_obj = 0; 726 else if (error != 0) 727 return (error); 728 729 error = zap_lookup(os, MASTER_NODE_OBJ, 730 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 731 8, 1, &zfsvfs->z_groupquota_obj); 732 if (error == ENOENT) 733 zfsvfs->z_groupquota_obj = 0; 734 else if (error != 0) 735 return (error); 736 737 error = zap_lookup(os, MASTER_NODE_OBJ, 738 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 739 8, 1, &zfsvfs->z_projectquota_obj); 740 if (error == ENOENT) 741 zfsvfs->z_projectquota_obj = 0; 742 else if (error != 0) 743 return (error); 744 745 error = zap_lookup(os, MASTER_NODE_OBJ, 746 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 747 8, 1, &zfsvfs->z_userobjquota_obj); 748 if (error == ENOENT) 749 zfsvfs->z_userobjquota_obj = 0; 750 else if (error != 0) 751 return (error); 752 753 error = zap_lookup(os, MASTER_NODE_OBJ, 754 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 755 8, 1, &zfsvfs->z_groupobjquota_obj); 756 if (error == ENOENT) 757 zfsvfs->z_groupobjquota_obj = 0; 758 else if (error != 0) 759 return (error); 760 761 error = zap_lookup(os, MASTER_NODE_OBJ, 762 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 763 8, 1, &zfsvfs->z_projectobjquota_obj); 764 if (error == ENOENT) 765 zfsvfs->z_projectobjquota_obj = 0; 766 else if (error != 0) 767 return (error); 768 769 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 770 &zfsvfs->z_fuid_obj); 771 if (error == ENOENT) 772 zfsvfs->z_fuid_obj = 0; 773 else if (error != 0) 774 return (error); 775 776 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 777 &zfsvfs->z_shares_dir); 778 if (error == ENOENT) 779 zfsvfs->z_shares_dir = 0; 780 else if (error != 0) 781 return (error); 782 783 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 784 &zfsvfs->z_attr_table); 785 if (error != 0) 786 return (error); 787 788 if (zfsvfs->z_version >= ZPL_VERSION_SA) 789 sa_register_update_callback(os, zfs_sa_upgrade); 790 791 return (0); 792 } 793 794 int 795 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) 796 { 797 objset_t *os; 798 zfsvfs_t *zfsvfs; 799 int error; 800 boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); 801 802 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 803 804 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); 805 if (error != 0) { 806 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 807 return (error); 808 } 809 810 error = zfsvfs_create_impl(zfvp, zfsvfs, os); 811 812 return (error); 813 } 814 815 816 /* 817 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function 818 * on a failure. Do not pass in a statically allocated zfsvfs. 819 */ 820 int 821 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) 822 { 823 int error; 824 825 zfsvfs->z_vfs = NULL; 826 zfsvfs->z_sb = NULL; 827 zfsvfs->z_parent = zfsvfs; 828 829 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 830 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 831 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 832 offsetof(znode_t, z_link_node)); 833 ZFS_TEARDOWN_INIT(zfsvfs); 834 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 835 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 836 837 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1), 838 ZFS_OBJ_MTX_MAX); 839 zfsvfs->z_hold_size = size; 840 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, 841 KM_SLEEP); 842 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP); 843 for (int i = 0; i != size; i++) { 844 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare, 845 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node)); 846 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL); 847 } 848 849 error = zfsvfs_init(zfsvfs, os); 850 if (error != 0) { 851 dmu_objset_disown(os, B_TRUE, zfsvfs); 852 *zfvp = NULL; 853 zfsvfs_free(zfsvfs); 854 return (error); 855 } 856 857 zfsvfs->z_drain_task = TASKQID_INVALID; 858 zfsvfs->z_draining = B_FALSE; 859 zfsvfs->z_drain_cancel = B_TRUE; 860 861 *zfvp = zfsvfs; 862 return (0); 863 } 864 865 static int 866 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 867 { 868 int error; 869 boolean_t readonly = zfs_is_readonly(zfsvfs); 870 871 error = zfs_register_callbacks(zfsvfs->z_vfs); 872 if (error) 873 return (error); 874 875 /* 876 * If we are not mounting (ie: online recv), then we don't 877 * have to worry about replaying the log as we blocked all 878 * operations out since we closed the ZIL. 879 */ 880 if (mounting) { 881 ASSERT0P(zfsvfs->z_kstat.dk_kstats); 882 error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os); 883 if (error) 884 return (error); 885 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data, 886 &zfsvfs->z_kstat.dk_zil_sums); 887 888 /* 889 * During replay we remove the read only flag to 890 * allow replays to succeed. 891 */ 892 if (readonly != 0) { 893 readonly_changed_cb(zfsvfs, B_FALSE); 894 } else { 895 zap_stats_t zs; 896 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj, 897 &zs) == 0) { 898 dataset_kstats_update_nunlinks_kstat( 899 &zfsvfs->z_kstat, zs.zs_num_entries); 900 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 901 "num_entries in unlinked set: %llu", 902 zs.zs_num_entries); 903 } 904 zfs_unlinked_drain(zfsvfs); 905 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; 906 dd->dd_activity_cancelled = B_FALSE; 907 } 908 909 /* 910 * Parse and replay the intent log. 911 * 912 * Because of ziltest, this must be done after 913 * zfs_unlinked_drain(). (Further note: ziltest 914 * doesn't use readonly mounts, where 915 * zfs_unlinked_drain() isn't called.) This is because 916 * ziltest causes spa_sync() to think it's committed, 917 * but actually it is not, so the intent log contains 918 * many txg's worth of changes. 919 * 920 * In particular, if object N is in the unlinked set in 921 * the last txg to actually sync, then it could be 922 * actually freed in a later txg and then reallocated 923 * in a yet later txg. This would write a "create 924 * object N" record to the intent log. Normally, this 925 * would be fine because the spa_sync() would have 926 * written out the fact that object N is free, before 927 * we could write the "create object N" intent log 928 * record. 929 * 930 * But when we are in ziltest mode, we advance the "open 931 * txg" without actually spa_sync()-ing the changes to 932 * disk. So we would see that object N is still 933 * allocated and in the unlinked set, and there is an 934 * intent log record saying to allocate it. 935 */ 936 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 937 if (zil_replay_disable) { 938 zil_destroy(zfsvfs->z_log, B_FALSE); 939 } else { 940 zfsvfs->z_replay = B_TRUE; 941 zil_replay(zfsvfs->z_os, zfsvfs, 942 zfs_replay_vector); 943 zfsvfs->z_replay = B_FALSE; 944 } 945 } 946 947 /* restore readonly bit */ 948 if (readonly != 0) 949 readonly_changed_cb(zfsvfs, B_TRUE); 950 } else { 951 ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL); 952 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data, 953 &zfsvfs->z_kstat.dk_zil_sums); 954 } 955 956 /* 957 * Set the objset user_ptr to track its zfsvfs. 958 */ 959 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 960 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 961 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 962 963 return (0); 964 } 965 966 void 967 zfsvfs_free(zfsvfs_t *zfsvfs) 968 { 969 int i, size = zfsvfs->z_hold_size; 970 971 zfs_fuid_destroy(zfsvfs); 972 973 mutex_destroy(&zfsvfs->z_znodes_lock); 974 mutex_destroy(&zfsvfs->z_lock); 975 list_destroy(&zfsvfs->z_all_znodes); 976 ZFS_TEARDOWN_DESTROY(zfsvfs); 977 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 978 rw_destroy(&zfsvfs->z_fuid_lock); 979 for (i = 0; i != size; i++) { 980 avl_destroy(&zfsvfs->z_hold_trees[i]); 981 mutex_destroy(&zfsvfs->z_hold_locks[i]); 982 } 983 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size); 984 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size); 985 zfsvfs_vfs_free(zfsvfs->z_vfs); 986 dataset_kstats_destroy(&zfsvfs->z_kstat); 987 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 988 } 989 990 static void 991 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 992 { 993 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 994 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 995 } 996 997 static void 998 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 999 { 1000 objset_t *os = zfsvfs->z_os; 1001 1002 if (!dmu_objset_is_snapshot(os)) 1003 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 1004 } 1005 1006 #ifdef HAVE_MLSLABEL 1007 /* 1008 * Check that the hex label string is appropriate for the dataset being 1009 * mounted into the global_zone proper. 1010 * 1011 * Return an error if the hex label string is not default or 1012 * admin_low/admin_high. For admin_low labels, the corresponding 1013 * dataset must be readonly. 1014 */ 1015 int 1016 zfs_check_global_label(const char *dsname, const char *hexsl) 1017 { 1018 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1019 return (0); 1020 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1021 return (0); 1022 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1023 /* must be readonly */ 1024 uint64_t rdonly; 1025 1026 if (dsl_prop_get_integer(dsname, 1027 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1028 return (SET_ERROR(EACCES)); 1029 return (rdonly ? 0 : SET_ERROR(EACCES)); 1030 } 1031 return (SET_ERROR(EACCES)); 1032 } 1033 #endif /* HAVE_MLSLABEL */ 1034 1035 static int 1036 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp, 1037 uint32_t bshift) 1038 { 1039 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 1040 uint64_t offset = DMU_OBJACCT_PREFIX_LEN; 1041 uint64_t quota; 1042 uint64_t used; 1043 int err; 1044 1045 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1); 1046 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, 1047 sizeof (buf) - offset, B_FALSE); 1048 if (err) 1049 return (err); 1050 1051 if (zfsvfs->z_projectquota_obj == 0) { 1052 if (zfsvfs->z_defaultprojectquota == 0) 1053 goto objs; 1054 quota = zfsvfs->z_defaultprojectquota; 1055 } else { 1056 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj, 1057 buf + offset, 8, 1, "a); 1058 if (err && (quota = zfsvfs->z_defaultprojectquota) == 0) { 1059 if (err == ENOENT) 1060 goto objs; 1061 return (err); 1062 } 1063 } 1064 1065 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1066 buf + offset, 8, 1, &used); 1067 if (unlikely(err == ENOENT)) { 1068 uint32_t blksize; 1069 u_longlong_t nblocks; 1070 1071 /* 1072 * Quota accounting is async, so it is possible race case. 1073 * There is at least one object with the given project ID. 1074 */ 1075 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); 1076 if (unlikely(zp->z_blksz == 0)) 1077 blksize = zfsvfs->z_max_blksz; 1078 1079 used = blksize * nblocks; 1080 } else if (err) { 1081 return (err); 1082 } 1083 1084 statp->f_blocks = quota >> bshift; 1085 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0; 1086 statp->f_bavail = statp->f_bfree; 1087 1088 objs: 1089 1090 if (zfsvfs->z_projectobjquota_obj == 0) { 1091 if (zfsvfs->z_defaultprojectobjquota == 0) 1092 return (0); 1093 quota = zfsvfs->z_defaultprojectobjquota; 1094 } else { 1095 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj, 1096 buf + offset, 8, 1, "a); 1097 if (err && (quota = zfsvfs->z_defaultprojectobjquota) == 0) { 1098 if (err == ENOENT) 1099 return (0); 1100 return (err); 1101 } 1102 } 1103 1104 1105 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1106 buf, 8, 1, &used); 1107 if (unlikely(err == ENOENT)) { 1108 /* 1109 * Quota accounting is async, so it is possible race case. 1110 * There is at least one object with the given project ID. 1111 */ 1112 used = 1; 1113 } else if (err) { 1114 return (err); 1115 } 1116 1117 statp->f_files = quota; 1118 statp->f_ffree = (quota > used) ? (quota - used) : 0; 1119 1120 return (0); 1121 } 1122 1123 int 1124 zfs_statvfs(struct inode *ip, struct kstatfs *statp) 1125 { 1126 zfsvfs_t *zfsvfs = ITOZSB(ip); 1127 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1128 int err = 0; 1129 1130 if ((err = zfs_enter(zfsvfs, FTAG)) != 0) 1131 return (err); 1132 1133 dmu_objset_space(zfsvfs->z_os, 1134 &refdbytes, &availbytes, &usedobjs, &availobjs); 1135 1136 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os); 1137 /* 1138 * The underlying storage pool actually uses multiple block 1139 * size. Under Solaris frsize (fragment size) is reported as 1140 * the smallest block size we support, and bsize (block size) 1141 * as the filesystem's maximum block size. Unfortunately, 1142 * under Linux the fragment size and block size are often used 1143 * interchangeably. Thus we are forced to report both of them 1144 * as the filesystem's maximum block size. 1145 */ 1146 statp->f_frsize = zfsvfs->z_max_blksz; 1147 statp->f_bsize = zfsvfs->z_max_blksz; 1148 uint32_t bshift = fls(statp->f_bsize) - 1; 1149 1150 /* 1151 * The following report "total" blocks of various kinds in 1152 * the file system, but reported in terms of f_bsize - the 1153 * "preferred" size. 1154 */ 1155 1156 /* Round up so we never have a filesystem using 0 blocks. */ 1157 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize); 1158 statp->f_blocks = (refdbytes + availbytes) >> bshift; 1159 statp->f_bfree = availbytes >> bshift; 1160 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1161 1162 /* 1163 * statvfs() should really be called statufs(), because it assumes 1164 * static metadata. ZFS doesn't preallocate files, so the best 1165 * we can do is report the max that could possibly fit in f_files, 1166 * and that minus the number actually used in f_ffree. 1167 * For f_ffree, report the smaller of the number of objects available 1168 * and the number of blocks (each object will take at least a block). 1169 */ 1170 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT); 1171 statp->f_files = statp->f_ffree + usedobjs; 1172 statp->f_fsid.val[0] = (uint32_t)fsid; 1173 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32); 1174 statp->f_type = ZFS_SUPER_MAGIC; 1175 statp->f_namelen = 1176 zfsvfs->z_longname ? (ZAP_MAXNAMELEN_NEW - 1) : (MAXNAMELEN - 1); 1177 1178 /* 1179 * We have all of 40 characters to stuff a string here. 1180 * Is there anything useful we could/should provide? 1181 */ 1182 memset(statp->f_spare, 0, sizeof (statp->f_spare)); 1183 1184 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) && 1185 dmu_objset_projectquota_present(zfsvfs->z_os)) { 1186 znode_t *zp = ITOZ(ip); 1187 1188 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid && 1189 zpl_is_valid_projid(zp->z_projid)) 1190 err = zfs_statfs_project(zfsvfs, zp, statp, bshift); 1191 } 1192 1193 zfs_exit(zfsvfs, FTAG); 1194 return (err); 1195 } 1196 1197 static int 1198 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp) 1199 { 1200 znode_t *rootzp; 1201 int error; 1202 1203 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1204 return (error); 1205 1206 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1207 if (error == 0) 1208 *ipp = ZTOI(rootzp); 1209 1210 zfs_exit(zfsvfs, FTAG); 1211 return (error); 1212 } 1213 1214 /* 1215 * Dentry and inode caches referenced by a task in non-root memcg are 1216 * not going to be scanned by the kernel-provided shrinker. So, if 1217 * kernel prunes nothing, fall back to this manual walk to free dnodes. 1218 * To avoid scanning the same znodes multiple times they are always rotated 1219 * to the end of the z_all_znodes list. New znodes are inserted at the 1220 * end of the list so we're always scanning the oldest znodes first. 1221 */ 1222 static int 1223 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan) 1224 { 1225 znode_t **zp_array, *zp; 1226 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *)); 1227 int objects = 0; 1228 int i = 0, j = 0; 1229 1230 zp_array = vmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP); 1231 1232 mutex_enter(&zfsvfs->z_znodes_lock); 1233 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) { 1234 1235 if ((i++ > nr_to_scan) || (j >= max_array)) 1236 break; 1237 1238 ASSERT(list_link_active(&zp->z_link_node)); 1239 list_remove(&zfsvfs->z_all_znodes, zp); 1240 list_insert_tail(&zfsvfs->z_all_znodes, zp); 1241 1242 /* Skip active znodes and .zfs entries */ 1243 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir) 1244 continue; 1245 1246 if (igrab(ZTOI(zp)) == NULL) 1247 continue; 1248 1249 zp_array[j] = zp; 1250 j++; 1251 } 1252 mutex_exit(&zfsvfs->z_znodes_lock); 1253 1254 for (i = 0; i < j; i++) { 1255 zp = zp_array[i]; 1256 1257 ASSERT3P(zp, !=, NULL); 1258 d_prune_aliases(ZTOI(zp)); 1259 1260 if (atomic_read(&ZTOI(zp)->i_count) == 1) 1261 objects++; 1262 1263 zrele(zp); 1264 } 1265 1266 vmem_free(zp_array, max_array * sizeof (znode_t *)); 1267 1268 return (objects); 1269 } 1270 1271 /* 1272 * The ARC has requested that the filesystem drop entries from the dentry 1273 * and inode caches. This can occur when the ARC needs to free meta data 1274 * blocks but can't because they are all pinned by entries in these caches. 1275 */ 1276 #if defined(HAVE_SUPER_BLOCK_S_SHRINK) 1277 #define S_SHRINK(sb) (&(sb)->s_shrink) 1278 #elif defined(HAVE_SUPER_BLOCK_S_SHRINK_PTR) 1279 #define S_SHRINK(sb) ((sb)->s_shrink) 1280 #endif 1281 1282 int 1283 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects) 1284 { 1285 zfsvfs_t *zfsvfs = sb->s_fs_info; 1286 int error = 0; 1287 struct shrinker *shrinker = S_SHRINK(sb); 1288 struct shrink_control sc = { 1289 .nr_to_scan = nr_to_scan, 1290 .gfp_mask = GFP_KERNEL, 1291 }; 1292 1293 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1294 return (error); 1295 1296 #ifdef SHRINKER_NUMA_AWARE 1297 if (shrinker->flags & SHRINKER_NUMA_AWARE) { 1298 long tc = 1; 1299 for_each_online_node(sc.nid) { 1300 long c = shrinker->count_objects(shrinker, &sc); 1301 if (c == 0 || c == SHRINK_EMPTY) 1302 continue; 1303 tc += c; 1304 } 1305 *objects = 0; 1306 for_each_online_node(sc.nid) { 1307 long c = shrinker->count_objects(shrinker, &sc); 1308 if (c == 0 || c == SHRINK_EMPTY) 1309 continue; 1310 if (c > tc) 1311 tc = c; 1312 sc.nr_to_scan = mult_frac(nr_to_scan, c, tc) + 1; 1313 *objects += (*shrinker->scan_objects)(shrinker, &sc); 1314 } 1315 } else { 1316 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1317 } 1318 #else 1319 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1320 #endif 1321 1322 /* 1323 * Fall back to zfs_prune_aliases if kernel's shrinker did nothing 1324 * due to dentry and inode caches being referenced by a task running 1325 * in non-root memcg. 1326 */ 1327 if (*objects == 0) 1328 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); 1329 1330 zfs_exit(zfsvfs, FTAG); 1331 1332 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 1333 "pruning, nr_to_scan=%lu objects=%d error=%d\n", 1334 nr_to_scan, *objects, error); 1335 1336 return (error); 1337 } 1338 1339 /* 1340 * Teardown the zfsvfs_t. 1341 * 1342 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' 1343 * and 'z_teardown_inactive_lock' held. 1344 */ 1345 static int 1346 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1347 { 1348 znode_t *zp; 1349 1350 zfs_unlinked_drain_stop_wait(zfsvfs); 1351 1352 /* 1353 * If someone has not already unmounted this file system, 1354 * drain the zrele_taskq to ensure all active references to the 1355 * zfsvfs_t have been handled only then can it be safely destroyed. 1356 */ 1357 if (zfsvfs->z_os) { 1358 /* 1359 * If we're unmounting we have to wait for the list to 1360 * drain completely. 1361 * 1362 * If we're not unmounting there's no guarantee the list 1363 * will drain completely, but iputs run from the taskq 1364 * may add the parents of dir-based xattrs to the taskq 1365 * so we want to wait for these. 1366 * 1367 * We can safely check z_all_znodes for being empty because the 1368 * VFS has already blocked operations which add to it. 1369 */ 1370 int round = 0; 1371 while (!list_is_empty(&zfsvfs->z_all_znodes)) { 1372 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1373 dmu_objset_pool(zfsvfs->z_os)), 0); 1374 if (++round > 1 && !unmounting) 1375 break; 1376 } 1377 } 1378 1379 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); 1380 1381 if (!unmounting) { 1382 /* 1383 * We purge the parent filesystem's super block as the 1384 * parent filesystem and all of its snapshots have their 1385 * inode's super block set to the parent's filesystem's 1386 * super block. Note, 'z_parent' is self referential 1387 * for non-snapshots. 1388 */ 1389 shrink_dcache_sb(zfsvfs->z_parent->z_sb); 1390 } 1391 1392 /* 1393 * Close the zil. NB: Can't close the zil while zfs_inactive 1394 * threads are blocked as zil_close can call zfs_inactive. 1395 */ 1396 if (zfsvfs->z_log) { 1397 zil_close(zfsvfs->z_log); 1398 zfsvfs->z_log = NULL; 1399 } 1400 1401 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1402 1403 /* 1404 * If we are not unmounting (ie: online recv) and someone already 1405 * unmounted this file system while we were doing the switcheroo, 1406 * or a reopen of z_os failed then just bail out now. 1407 */ 1408 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1409 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1410 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1411 return (SET_ERROR(EIO)); 1412 } 1413 1414 /* 1415 * At this point there are no VFS ops active, and any new VFS ops 1416 * will fail with EIO since we have z_teardown_lock for writer (only 1417 * relevant for forced unmount). 1418 * 1419 * Release all holds on dbufs. We also grab an extra reference to all 1420 * the remaining inodes so that the kernel does not attempt to free 1421 * any inodes of a suspended fs. This can cause deadlocks since the 1422 * zfs_resume_fs() process may involve starting threads, which might 1423 * attempt to free unreferenced inodes to free up memory for the new 1424 * thread. 1425 */ 1426 if (!unmounting) { 1427 mutex_enter(&zfsvfs->z_znodes_lock); 1428 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1429 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1430 if (zp->z_sa_hdl) 1431 zfs_znode_dmu_fini(zp); 1432 if (igrab(ZTOI(zp)) != NULL) 1433 zp->z_suspended = B_TRUE; 1434 1435 } 1436 mutex_exit(&zfsvfs->z_znodes_lock); 1437 } 1438 1439 /* 1440 * If we are unmounting, set the unmounted flag and let new VFS ops 1441 * unblock. zfs_inactive will have the unmounted behavior, and all 1442 * other VFS ops will fail with EIO. 1443 */ 1444 if (unmounting) { 1445 zfsvfs->z_unmounted = B_TRUE; 1446 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1447 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1448 } 1449 1450 /* 1451 * z_os will be NULL if there was an error in attempting to reopen 1452 * zfsvfs, so just return as the properties had already been 1453 * 1454 * unregistered and cached data had been evicted before. 1455 */ 1456 if (zfsvfs->z_os == NULL) 1457 return (0); 1458 1459 /* 1460 * Unregister properties. 1461 */ 1462 zfs_unregister_callbacks(zfsvfs); 1463 1464 /* 1465 * Evict cached data. We must write out any dirty data before 1466 * disowning the dataset. 1467 */ 1468 objset_t *os = zfsvfs->z_os; 1469 boolean_t os_dirty = B_FALSE; 1470 for (int t = 0; t < TXG_SIZE; t++) { 1471 if (dmu_objset_is_dirty(os, t)) { 1472 os_dirty = B_TRUE; 1473 break; 1474 } 1475 } 1476 if (!zfs_is_readonly(zfsvfs) && os_dirty) { 1477 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1478 } 1479 dmu_objset_evict_dbufs(zfsvfs->z_os); 1480 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 1481 dsl_dir_cancel_waiters(dd); 1482 1483 return (0); 1484 } 1485 1486 static atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0); 1487 1488 int 1489 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent) 1490 { 1491 const char *osname = zm->mnt_osname; 1492 struct inode *root_inode = NULL; 1493 uint64_t recordsize; 1494 int error = 0; 1495 zfsvfs_t *zfsvfs = NULL; 1496 vfs_t *vfs = NULL; 1497 int canwrite; 1498 int dataset_visible_zone; 1499 1500 ASSERT(zm); 1501 ASSERT(osname); 1502 1503 dataset_visible_zone = zone_dataset_visible(osname, &canwrite); 1504 1505 /* 1506 * Refuse to mount a filesystem if we are in a namespace and the 1507 * dataset is not visible or writable in that namespace. 1508 */ 1509 if (!INGLOBALZONE(curproc) && 1510 (!dataset_visible_zone || !canwrite)) { 1511 return (SET_ERROR(EPERM)); 1512 } 1513 1514 error = zfsvfs_parse_options(zm->mnt_data, &vfs); 1515 if (error) 1516 return (error); 1517 1518 /* 1519 * If a non-writable filesystem is being mounted without the 1520 * read-only flag, pretend it was set, as done for snapshots. 1521 */ 1522 if (!canwrite) 1523 vfs->vfs_readonly = B_TRUE; 1524 1525 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs); 1526 if (error) { 1527 zfsvfs_vfs_free(vfs); 1528 goto out; 1529 } 1530 1531 if ((error = dsl_prop_get_integer(osname, "recordsize", 1532 &recordsize, NULL))) { 1533 zfsvfs_vfs_free(vfs); 1534 goto out; 1535 } 1536 1537 vfs->vfs_data = zfsvfs; 1538 zfsvfs->z_vfs = vfs; 1539 zfsvfs->z_sb = sb; 1540 sb->s_fs_info = zfsvfs; 1541 sb->s_magic = ZFS_SUPER_MAGIC; 1542 sb->s_maxbytes = MAX_LFS_FILESIZE; 1543 sb->s_time_gran = 1; 1544 sb->s_blocksize = recordsize; 1545 sb->s_blocksize_bits = ilog2(recordsize); 1546 1547 error = -super_setup_bdi_name(sb, "%.28s-%ld", "zfs", 1548 atomic_long_inc_return(&zfs_bdi_seq)); 1549 if (error) 1550 goto out; 1551 1552 sb->s_bdi->ra_pages = 0; 1553 1554 /* Set callback operations for the file system. */ 1555 sb->s_op = &zpl_super_operations; 1556 sb->s_xattr = zpl_xattr_handlers; 1557 sb->s_export_op = &zpl_export_operations; 1558 1559 #ifdef HAVE_SET_DEFAULT_D_OP 1560 set_default_d_op(sb, &zpl_dentry_operations); 1561 #else 1562 sb->s_d_op = &zpl_dentry_operations; 1563 #endif 1564 1565 /* Set features for file system. */ 1566 zfs_set_fuid_feature(zfsvfs); 1567 1568 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1569 uint64_t pval; 1570 1571 atime_changed_cb(zfsvfs, B_FALSE); 1572 readonly_changed_cb(zfsvfs, B_TRUE); 1573 if ((error = dsl_prop_get_integer(osname, 1574 "xattr", &pval, NULL))) 1575 goto out; 1576 xattr_changed_cb(zfsvfs, pval); 1577 if ((error = dsl_prop_get_integer(osname, 1578 "acltype", &pval, NULL))) 1579 goto out; 1580 acltype_changed_cb(zfsvfs, pval); 1581 zfsvfs->z_issnap = B_TRUE; 1582 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1583 zfsvfs->z_snap_defer_time = jiffies; 1584 1585 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1586 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1587 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1588 } else { 1589 if ((error = zfsvfs_setup(zfsvfs, B_TRUE))) 1590 goto out; 1591 } 1592 1593 /* Allocate a root inode for the filesystem. */ 1594 error = zfs_root(zfsvfs, &root_inode); 1595 if (error) { 1596 (void) zfs_umount(sb); 1597 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */ 1598 goto out; 1599 } 1600 1601 /* Allocate a root dentry for the filesystem */ 1602 sb->s_root = d_make_root(root_inode); 1603 if (sb->s_root == NULL) { 1604 (void) zfs_umount(sb); 1605 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */ 1606 error = SET_ERROR(ENOMEM); 1607 goto out; 1608 } 1609 1610 if (!zfsvfs->z_issnap) 1611 zfsctl_create(zfsvfs); 1612 1613 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb); 1614 out: 1615 if (error) { 1616 if (zfsvfs != NULL) { 1617 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); 1618 zfsvfs_free(zfsvfs); 1619 } 1620 /* 1621 * make sure we don't have dangling sb->s_fs_info which 1622 * zfs_preumount will use. 1623 */ 1624 sb->s_fs_info = NULL; 1625 } 1626 1627 return (error); 1628 } 1629 1630 /* 1631 * Called when an unmount is requested and certain sanity checks have 1632 * already passed. At this point no dentries or inodes have been reclaimed 1633 * from their respective caches. We drop the extra reference on the .zfs 1634 * control directory to allow everything to be reclaimed. All snapshots 1635 * must already have been unmounted to reach this point. 1636 */ 1637 void 1638 zfs_preumount(struct super_block *sb) 1639 { 1640 zfsvfs_t *zfsvfs = sb->s_fs_info; 1641 1642 /* zfsvfs is NULL when zfs_domount fails during mount */ 1643 if (zfsvfs) { 1644 zfs_unlinked_drain_stop_wait(zfsvfs); 1645 zfsctl_destroy(sb->s_fs_info); 1646 /* 1647 * Wait for zrele_async before entering evict_inodes in 1648 * generic_shutdown_super. The reason we must finish before 1649 * evict_inodes is when lazytime is on, or when zfs_purgedir 1650 * calls zfs_zget, zrele would bump i_count from 0 to 1. This 1651 * would race with the i_count check in evict_inodes. This means 1652 * it could destroy the inode while we are still using it. 1653 * 1654 * We wait for two passes. xattr directories in the first pass 1655 * may add xattr entries in zfs_purgedir, so in the second pass 1656 * we wait for them. We don't use taskq_wait here because it is 1657 * a pool wide taskq. Other mounted filesystems can constantly 1658 * do zrele_async and there's no guarantee when taskq will be 1659 * empty. 1660 */ 1661 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1662 dmu_objset_pool(zfsvfs->z_os)), 0); 1663 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1664 dmu_objset_pool(zfsvfs->z_os)), 0); 1665 } 1666 } 1667 1668 /* 1669 * Called once all other unmount released tear down has occurred. 1670 * It is our responsibility to release any remaining infrastructure. 1671 */ 1672 int 1673 zfs_umount(struct super_block *sb) 1674 { 1675 zfsvfs_t *zfsvfs = sb->s_fs_info; 1676 objset_t *os; 1677 1678 if (zfsvfs->z_arc_prune != NULL) 1679 arc_remove_prune_callback(zfsvfs->z_arc_prune); 1680 VERIFY0(zfsvfs_teardown(zfsvfs, B_TRUE)); 1681 os = zfsvfs->z_os; 1682 1683 /* 1684 * z_os will be NULL if there was an error in 1685 * attempting to reopen zfsvfs. 1686 */ 1687 if (os != NULL) { 1688 /* 1689 * Unset the objset user_ptr. 1690 */ 1691 mutex_enter(&os->os_user_ptr_lock); 1692 dmu_objset_set_user(os, NULL); 1693 mutex_exit(&os->os_user_ptr_lock); 1694 1695 /* 1696 * Finally release the objset 1697 */ 1698 dmu_objset_disown(os, B_TRUE, zfsvfs); 1699 } 1700 1701 zfsvfs_free(zfsvfs); 1702 sb->s_fs_info = NULL; 1703 return (0); 1704 } 1705 1706 int 1707 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm) 1708 { 1709 zfsvfs_t *zfsvfs = sb->s_fs_info; 1710 vfs_t *vfsp; 1711 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os); 1712 int error; 1713 1714 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) && 1715 !(*flags & SB_RDONLY)) { 1716 *flags |= SB_RDONLY; 1717 return (EROFS); 1718 } 1719 1720 error = zfsvfs_parse_options(zm->mnt_data, &vfsp); 1721 if (error) 1722 return (error); 1723 1724 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY)) 1725 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1726 1727 zfs_unregister_callbacks(zfsvfs); 1728 zfsvfs_vfs_free(zfsvfs->z_vfs); 1729 1730 vfsp->vfs_data = zfsvfs; 1731 zfsvfs->z_vfs = vfsp; 1732 if (!issnap) 1733 (void) zfs_register_callbacks(vfsp); 1734 1735 return (error); 1736 } 1737 1738 int 1739 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp) 1740 { 1741 zfsvfs_t *zfsvfs = sb->s_fs_info; 1742 znode_t *zp; 1743 uint64_t object = 0; 1744 uint64_t fid_gen = 0; 1745 uint64_t gen_mask; 1746 uint64_t zp_gen; 1747 int i, err; 1748 1749 *ipp = NULL; 1750 1751 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1752 zfid_short_t *zfid = (zfid_short_t *)fidp; 1753 1754 for (i = 0; i < sizeof (zfid->zf_object); i++) 1755 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1756 1757 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1758 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1759 } else { 1760 return (SET_ERROR(EINVAL)); 1761 } 1762 1763 /* LONG_FID_LEN means snapdirs */ 1764 if (fidp->fid_len == LONG_FID_LEN) { 1765 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1766 uint64_t objsetid = 0; 1767 uint64_t setgen = 0; 1768 1769 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1770 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1771 1772 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1773 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1774 1775 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) { 1776 dprintf("snapdir fid: objsetid (%llu) != " 1777 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n", 1778 objsetid, ZFSCTL_INO_SNAPDIRS, object); 1779 1780 return (SET_ERROR(EINVAL)); 1781 } 1782 1783 if (fid_gen > 1 || setgen != 0) { 1784 dprintf("snapdir fid: fid_gen (%llu) and setgen " 1785 "(%llu)\n", fid_gen, setgen); 1786 return (SET_ERROR(EINVAL)); 1787 } 1788 1789 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp)); 1790 } 1791 1792 if ((err = zfs_enter(zfsvfs, FTAG)) != 0) 1793 return (err); 1794 /* A zero fid_gen means we are in the .zfs control directories */ 1795 if (fid_gen == 0 && 1796 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1797 if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) { 1798 zfs_exit(zfsvfs, FTAG); 1799 return (SET_ERROR(ENOENT)); 1800 } 1801 1802 *ipp = zfsvfs->z_ctldir; 1803 ASSERT(*ipp != NULL); 1804 1805 if (object == ZFSCTL_INO_SNAPDIR) { 1806 VERIFY0(zfsctl_root_lookup(*ipp, "snapshot", ipp, 1807 0, kcred, NULL, NULL)); 1808 } else { 1809 /* 1810 * Must have an existing ref, so igrab() 1811 * cannot return NULL 1812 */ 1813 VERIFY3P(igrab(*ipp), !=, NULL); 1814 } 1815 zfs_exit(zfsvfs, FTAG); 1816 return (0); 1817 } 1818 1819 gen_mask = -1ULL >> (64 - 8 * i); 1820 1821 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask); 1822 if ((err = zfs_zget(zfsvfs, object, &zp))) { 1823 zfs_exit(zfsvfs, FTAG); 1824 return (err); 1825 } 1826 1827 /* Don't export xattr stuff */ 1828 if (zp->z_pflags & ZFS_XATTR) { 1829 zrele(zp); 1830 zfs_exit(zfsvfs, FTAG); 1831 return (SET_ERROR(ENOENT)); 1832 } 1833 1834 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1835 sizeof (uint64_t)); 1836 zp_gen = zp_gen & gen_mask; 1837 if (zp_gen == 0) 1838 zp_gen = 1; 1839 if ((fid_gen == 0) && (zfsvfs->z_root == object)) 1840 fid_gen = zp_gen; 1841 if (zp->z_unlinked || zp_gen != fid_gen) { 1842 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen, 1843 fid_gen); 1844 zrele(zp); 1845 zfs_exit(zfsvfs, FTAG); 1846 return (SET_ERROR(ENOENT)); 1847 } 1848 1849 *ipp = ZTOI(zp); 1850 if (*ipp) 1851 zfs_znode_update_vfs(ITOZ(*ipp)); 1852 1853 zfs_exit(zfsvfs, FTAG); 1854 return (0); 1855 } 1856 1857 /* 1858 * Block out VFS ops and close zfsvfs_t 1859 * 1860 * Note, if successful, then we return with the 'z_teardown_lock' and 1861 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 1862 * dataset and objset intact so that they can be atomically handed off during 1863 * a subsequent rollback or recv operation and the resume thereafter. 1864 */ 1865 int 1866 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1867 { 1868 int error; 1869 1870 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1871 return (error); 1872 1873 return (0); 1874 } 1875 1876 /* 1877 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 1878 * is an invariant across any of the operations that can be performed while the 1879 * filesystem was suspended. Whether it succeeded or failed, the preconditions 1880 * are the same: the relevant objset and associated dataset are owned by 1881 * zfsvfs, held, and long held on entry. 1882 */ 1883 int 1884 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1885 { 1886 int err, err2; 1887 znode_t *zp; 1888 1889 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); 1890 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1891 1892 /* 1893 * We already own this, so just update the objset_t, as the one we 1894 * had before may have been evicted. 1895 */ 1896 objset_t *os; 1897 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1898 VERIFY(dsl_dataset_long_held(ds)); 1899 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1900 dsl_pool_config_enter(dp, FTAG); 1901 VERIFY0(dmu_objset_from_ds(ds, &os)); 1902 dsl_pool_config_exit(dp, FTAG); 1903 1904 err = zfsvfs_init(zfsvfs, os); 1905 if (err != 0) 1906 goto bail; 1907 1908 ds->ds_dir->dd_activity_cancelled = B_FALSE; 1909 VERIFY0(zfsvfs_setup(zfsvfs, B_FALSE)); 1910 1911 zfs_set_fuid_feature(zfsvfs); 1912 zfsvfs->z_rollback_time = jiffies; 1913 1914 /* 1915 * Attempt to re-establish all the active inodes with their 1916 * dbufs. If a zfs_rezget() fails, then we unhash the inode 1917 * and mark it stale. This prevents a collision if a new 1918 * inode/object is created which must use the same inode 1919 * number. The stale inode will be be released when the 1920 * VFS prunes the dentry holding the remaining references 1921 * on the stale inode. 1922 */ 1923 mutex_enter(&zfsvfs->z_znodes_lock); 1924 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1925 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1926 err2 = zfs_rezget(zp); 1927 if (err2) { 1928 zpl_d_drop_aliases(ZTOI(zp)); 1929 remove_inode_hash(ZTOI(zp)); 1930 } 1931 1932 /* see comment in zfs_suspend_fs() */ 1933 if (zp->z_suspended) { 1934 zfs_zrele_async(zp); 1935 zp->z_suspended = B_FALSE; 1936 } 1937 } 1938 mutex_exit(&zfsvfs->z_znodes_lock); 1939 1940 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) { 1941 /* 1942 * zfs_suspend_fs() could have interrupted freeing 1943 * of dnodes. We need to restart this freeing so 1944 * that we don't "leak" the space. 1945 */ 1946 zfs_unlinked_drain(zfsvfs); 1947 } 1948 1949 /* 1950 * Most of the time zfs_suspend_fs is used for changing the contents 1951 * of the underlying dataset. ZFS rollback and receive operations 1952 * might create files for which negative dentries are present in 1953 * the cache. Since walking the dcache would require a lot of GPL-only 1954 * code duplication, it's much easier on these rather rare occasions 1955 * just to flush the whole dcache for the given dataset/filesystem. 1956 */ 1957 shrink_dcache_sb(zfsvfs->z_sb); 1958 1959 bail: 1960 if (err != 0) 1961 zfsvfs->z_unmounted = B_TRUE; 1962 1963 /* release the VFS ops */ 1964 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1965 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1966 1967 if (err != 0) { 1968 /* 1969 * Since we couldn't setup the sa framework, try to force 1970 * unmount this file system. 1971 */ 1972 if (zfsvfs->z_os) 1973 (void) zfs_umount(zfsvfs->z_sb); 1974 } 1975 return (err); 1976 } 1977 1978 /* 1979 * Release VOPs and unmount a suspended filesystem. 1980 */ 1981 int 1982 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1983 { 1984 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); 1985 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1986 1987 /* 1988 * We already own this, so just hold and rele it to update the 1989 * objset_t, as the one we had before may have been evicted. 1990 */ 1991 objset_t *os; 1992 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1993 VERIFY(dsl_dataset_long_held(ds)); 1994 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1995 dsl_pool_config_enter(dp, FTAG); 1996 VERIFY0(dmu_objset_from_ds(ds, &os)); 1997 dsl_pool_config_exit(dp, FTAG); 1998 zfsvfs->z_os = os; 1999 2000 /* release the VOPs */ 2001 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2002 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 2003 2004 /* 2005 * Try to force unmount this file system. 2006 */ 2007 (void) zfs_umount(zfsvfs->z_sb); 2008 zfsvfs->z_unmounted = B_TRUE; 2009 return (0); 2010 } 2011 2012 /* 2013 * Automounted snapshots rely on periodic revalidation 2014 * to defer snapshots from being automatically unmounted. 2015 */ 2016 2017 inline void 2018 zfs_exit_fs(zfsvfs_t *zfsvfs) 2019 { 2020 if (!zfsvfs->z_issnap) 2021 return; 2022 2023 if (time_after(jiffies, zfsvfs->z_snap_defer_time + 2024 MAX(zfs_expire_snapshot * HZ / 2, HZ))) { 2025 zfsvfs->z_snap_defer_time = jiffies; 2026 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa, 2027 dmu_objset_id(zfsvfs->z_os), 2028 zfs_expire_snapshot); 2029 } 2030 } 2031 2032 int 2033 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2034 { 2035 int error; 2036 objset_t *os = zfsvfs->z_os; 2037 dmu_tx_t *tx; 2038 2039 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2040 return (SET_ERROR(EINVAL)); 2041 2042 if (newvers < zfsvfs->z_version) 2043 return (SET_ERROR(EINVAL)); 2044 2045 if (zfs_spa_version_map(newvers) > 2046 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2047 return (SET_ERROR(ENOTSUP)); 2048 2049 tx = dmu_tx_create(os); 2050 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2051 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2052 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2053 ZFS_SA_ATTRS); 2054 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2055 } 2056 error = dmu_tx_assign(tx, DMU_TX_WAIT); 2057 if (error) { 2058 dmu_tx_abort(tx); 2059 return (error); 2060 } 2061 2062 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2063 8, 1, &newvers, tx); 2064 2065 if (error) { 2066 dmu_tx_commit(tx); 2067 return (error); 2068 } 2069 2070 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2071 uint64_t sa_obj; 2072 2073 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2074 SPA_VERSION_SA); 2075 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2076 DMU_OT_NONE, 0, tx); 2077 2078 error = zap_add(os, MASTER_NODE_OBJ, 2079 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2080 ASSERT0(error); 2081 2082 VERIFY0(sa_set_sa_object(os, sa_obj)); 2083 sa_register_update_callback(os, zfs_sa_upgrade); 2084 } 2085 2086 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2087 "from %llu to %llu", zfsvfs->z_version, newvers); 2088 2089 dmu_tx_commit(tx); 2090 2091 zfsvfs->z_version = newvers; 2092 os->os_version = newvers; 2093 2094 zfs_set_fuid_feature(zfsvfs); 2095 2096 return (0); 2097 } 2098 2099 int 2100 zfs_set_default_quota(zfsvfs_t *zfsvfs, zfs_prop_t prop, uint64_t quota) 2101 { 2102 int error; 2103 objset_t *os = zfsvfs->z_os; 2104 const char *propstr = zfs_prop_to_name(prop); 2105 dmu_tx_t *tx; 2106 2107 tx = dmu_tx_create(os); 2108 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, propstr); 2109 error = dmu_tx_assign(tx, DMU_TX_WAIT); 2110 if (error) { 2111 dmu_tx_abort(tx); 2112 return (error); 2113 } 2114 2115 if (quota == 0) { 2116 error = zap_remove(os, MASTER_NODE_OBJ, propstr, tx); 2117 if (error == ENOENT) 2118 error = 0; 2119 } else { 2120 error = zap_update(os, MASTER_NODE_OBJ, propstr, 8, 1, 2121 "a, tx); 2122 } 2123 2124 if (error) 2125 goto out; 2126 2127 switch (prop) { 2128 case ZFS_PROP_DEFAULTUSERQUOTA: 2129 zfsvfs->z_defaultuserquota = quota; 2130 break; 2131 case ZFS_PROP_DEFAULTGROUPQUOTA: 2132 zfsvfs->z_defaultgroupquota = quota; 2133 break; 2134 case ZFS_PROP_DEFAULTPROJECTQUOTA: 2135 zfsvfs->z_defaultprojectquota = quota; 2136 break; 2137 case ZFS_PROP_DEFAULTUSEROBJQUOTA: 2138 zfsvfs->z_defaultuserobjquota = quota; 2139 break; 2140 case ZFS_PROP_DEFAULTGROUPOBJQUOTA: 2141 zfsvfs->z_defaultgroupobjquota = quota; 2142 break; 2143 case ZFS_PROP_DEFAULTPROJECTOBJQUOTA: 2144 zfsvfs->z_defaultprojectobjquota = quota; 2145 break; 2146 default: 2147 break; 2148 } 2149 2150 out: 2151 dmu_tx_commit(tx); 2152 return (error); 2153 } 2154 2155 /* 2156 * Return true if the corresponding vfs's unmounted flag is set. 2157 * Otherwise return false. 2158 * If this function returns true we know VFS unmount has been initiated. 2159 */ 2160 boolean_t 2161 zfs_get_vfs_flag_unmounted(objset_t *os) 2162 { 2163 zfsvfs_t *zfvp; 2164 boolean_t unmounted = B_FALSE; 2165 2166 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS); 2167 2168 mutex_enter(&os->os_user_ptr_lock); 2169 zfvp = dmu_objset_get_user(os); 2170 if (zfvp != NULL && zfvp->z_unmounted) 2171 unmounted = B_TRUE; 2172 mutex_exit(&os->os_user_ptr_lock); 2173 2174 return (unmounted); 2175 } 2176 2177 void 2178 zfsvfs_update_fromname(const char *oldname, const char *newname) 2179 { 2180 /* 2181 * We don't need to do anything here, the devname is always current by 2182 * virtue of zfsvfs->z_sb->s_op->show_devname. 2183 */ 2184 (void) oldname, (void) newname; 2185 } 2186 2187 void 2188 zfs_init(void) 2189 { 2190 zfsctl_init(); 2191 zfs_znode_init(); 2192 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info); 2193 register_filesystem(&zpl_fs_type); 2194 } 2195 2196 void 2197 zfs_fini(void) 2198 { 2199 /* 2200 * we don't use outstanding because zpl_posix_acl_free might add more. 2201 */ 2202 taskq_wait(system_delay_taskq); 2203 taskq_wait(system_taskq); 2204 unregister_filesystem(&zpl_fs_type); 2205 zfs_znode_fini(); 2206 zfsctl_fini(); 2207 } 2208 2209 #if defined(_KERNEL) 2210 EXPORT_SYMBOL(zfs_suspend_fs); 2211 EXPORT_SYMBOL(zfs_resume_fs); 2212 EXPORT_SYMBOL(zfs_set_version); 2213 EXPORT_SYMBOL(zfsvfs_create); 2214 EXPORT_SYMBOL(zfsvfs_free); 2215 EXPORT_SYMBOL(zfs_is_readonly); 2216 EXPORT_SYMBOL(zfs_domount); 2217 EXPORT_SYMBOL(zfs_preumount); 2218 EXPORT_SYMBOL(zfs_umount); 2219 EXPORT_SYMBOL(zfs_remount); 2220 EXPORT_SYMBOL(zfs_statvfs); 2221 EXPORT_SYMBOL(zfs_vget); 2222 EXPORT_SYMBOL(zfs_prune); 2223 EXPORT_SYMBOL(zfs_set_default_quota); 2224 #endif 2225