xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_dir.c (revision cc1a53bc1aea0675d64e9547cdca241612906592)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/sysmacros.h>
32 #include <sys/vfs.h>
33 #include <sys/vnode.h>
34 #include <sys/file.h>
35 #include <sys/kmem.h>
36 #include <sys/uio.h>
37 #include <sys/pathname.h>
38 #include <sys/cmn_err.h>
39 #include <sys/errno.h>
40 #include <sys/stat.h>
41 #include <sys/sunddi.h>
42 #include <sys/random.h>
43 #include <sys/policy.h>
44 #include <sys/zfs_dir.h>
45 #include <sys/zfs_acl.h>
46 #include <sys/zfs_vnops.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/zap.h>
49 #include <sys/dmu.h>
50 #include <sys/atomic.h>
51 #include <sys/zfs_ctldir.h>
52 #include <sys/zfs_fuid.h>
53 #include <sys/sa.h>
54 #include <sys/zfs_sa.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/dsl_dir.h>
57 
58 /*
59  * zfs_match_find() is used by zfs_dirent_lock() to perform zap lookups
60  * of names after deciding which is the appropriate lookup interface.
61  */
62 static int
63 zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, const char *name,
64     matchtype_t mt, boolean_t update, int *deflags, pathname_t *rpnp,
65     uint64_t *zoid)
66 {
67 	boolean_t conflict = B_FALSE;
68 	int error;
69 
70 	if (zfsvfs->z_norm) {
71 		size_t bufsz = 0;
72 		char *buf = NULL;
73 
74 		if (rpnp) {
75 			buf = rpnp->pn_buf;
76 			bufsz = rpnp->pn_bufsize;
77 		}
78 
79 		/*
80 		 * In the non-mixed case we only expect there would ever
81 		 * be one match, but we need to use the normalizing lookup.
82 		 */
83 		error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
84 		    zoid, mt, buf, bufsz, &conflict);
85 	} else {
86 		error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
87 	}
88 
89 	/*
90 	 * Allow multiple entries provided the first entry is
91 	 * the object id.  Non-zpl consumers may safely make
92 	 * use of the additional space.
93 	 *
94 	 * XXX: This should be a feature flag for compatibility
95 	 */
96 	if (error == EOVERFLOW)
97 		error = 0;
98 
99 	if (zfsvfs->z_norm && !error && deflags)
100 		*deflags = conflict ? ED_CASE_CONFLICT : 0;
101 
102 	*zoid = ZFS_DIRENT_OBJ(*zoid);
103 
104 	return (error);
105 }
106 
107 /*
108  * Lock a directory entry.  A dirlock on <dzp, name> protects that name
109  * in dzp's directory zap object.  As long as you hold a dirlock, you can
110  * assume two things: (1) dzp cannot be reaped, and (2) no other thread
111  * can change the zap entry for (i.e. link or unlink) this name.
112  *
113  * Input arguments:
114  *	dzp	- znode for directory
115  *	name	- name of entry to lock
116  *	flag	- ZNEW: if the entry already exists, fail with EEXIST.
117  *		  ZEXISTS: if the entry does not exist, fail with ENOENT.
118  *		  ZSHARED: allow concurrent access with other ZSHARED callers.
119  *		  ZXATTR: we want dzp's xattr directory
120  *		  ZCILOOK: On a mixed sensitivity file system,
121  *			   this lookup should be case-insensitive.
122  *		  ZCIEXACT: On a purely case-insensitive file system,
123  *			    this lookup should be case-sensitive.
124  *		  ZRENAMING: we are locking for renaming, force narrow locks
125  *		  ZHAVELOCK: Don't grab the z_name_lock for this call. The
126  *			     current thread already holds it.
127  *
128  * Output arguments:
129  *	zpp	- pointer to the znode for the entry (NULL if there isn't one)
130  *	dlpp	- pointer to the dirlock for this entry (NULL on error)
131  *      direntflags - (case-insensitive lookup only)
132  *		flags if multiple case-sensitive matches exist in directory
133  *      realpnp     - (case-insensitive lookup only)
134  *		actual name matched within the directory
135  *
136  * Return value: 0 on success or errno on failure.
137  *
138  * NOTE: Always checks for, and rejects, '.' and '..'.
139  * NOTE: For case-insensitive file systems we take wide locks (see below),
140  *	 but return znode pointers to a single match.
141  */
142 int
143 zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name,
144     znode_t **zpp, int flag, int *direntflags, pathname_t *realpnp)
145 {
146 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
147 	zfs_dirlock_t	*dl;
148 	boolean_t	update;
149 	matchtype_t	mt = 0;
150 	uint64_t	zoid;
151 	int		error = 0;
152 	int		cmpflags;
153 
154 	*zpp = NULL;
155 	*dlpp = NULL;
156 
157 	/*
158 	 * Verify that we are not trying to lock '.', '..', or '.zfs'
159 	 */
160 	if ((name[0] == '.' &&
161 	    (name[1] == '\0' || (name[1] == '.' && name[2] == '\0'))) ||
162 	    (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0))
163 		return (SET_ERROR(EEXIST));
164 
165 	/*
166 	 * Case sensitivity and normalization preferences are set when
167 	 * the file system is created.  These are stored in the
168 	 * zfsvfs->z_case and zfsvfs->z_norm fields.  These choices
169 	 * affect what vnodes can be cached in the DNLC, how we
170 	 * perform zap lookups, and the "width" of our dirlocks.
171 	 *
172 	 * A normal dirlock locks a single name.  Note that with
173 	 * normalization a name can be composed multiple ways, but
174 	 * when normalized, these names all compare equal.  A wide
175 	 * dirlock locks multiple names.  We need these when the file
176 	 * system is supporting mixed-mode access.  It is sometimes
177 	 * necessary to lock all case permutations of file name at
178 	 * once so that simultaneous case-insensitive/case-sensitive
179 	 * behaves as rationally as possible.
180 	 */
181 
182 	/*
183 	 * When matching we may need to normalize & change case according to
184 	 * FS settings.
185 	 *
186 	 * Note that a normalized match is necessary for a case insensitive
187 	 * filesystem when the lookup request is not exact because normalization
188 	 * can fold case independent of normalizing code point sequences.
189 	 *
190 	 * See the table above zfs_dropname().
191 	 */
192 	if (zfsvfs->z_norm != 0) {
193 		mt = MT_NORMALIZE;
194 
195 		/*
196 		 * Determine if the match needs to honor the case specified in
197 		 * lookup, and if so keep track of that so that during
198 		 * normalization we don't fold case.
199 		 */
200 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE &&
201 		    (flag & ZCIEXACT)) ||
202 		    (zfsvfs->z_case == ZFS_CASE_MIXED && !(flag & ZCILOOK))) {
203 			mt |= MT_MATCH_CASE;
204 		}
205 	}
206 
207 	/*
208 	 * Only look in or update the DNLC if we are looking for the
209 	 * name on a file system that does not require normalization
210 	 * or case folding.  We can also look there if we happen to be
211 	 * on a non-normalizing, mixed sensitivity file system IF we
212 	 * are looking for the exact name.
213 	 *
214 	 * Maybe can add TO-UPPERed version of name to dnlc in ci-only
215 	 * case for performance improvement?
216 	 */
217 	update = !zfsvfs->z_norm ||
218 	    (zfsvfs->z_case == ZFS_CASE_MIXED &&
219 	    !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK));
220 
221 	/*
222 	 * ZRENAMING indicates we are in a situation where we should
223 	 * take narrow locks regardless of the file system's
224 	 * preferences for normalizing and case folding.  This will
225 	 * prevent us deadlocking trying to grab the same wide lock
226 	 * twice if the two names happen to be case-insensitive
227 	 * matches.
228 	 */
229 	if (flag & ZRENAMING)
230 		cmpflags = 0;
231 	else
232 		cmpflags = zfsvfs->z_norm;
233 
234 	/*
235 	 * Wait until there are no locks on this name.
236 	 *
237 	 * Don't grab the lock if it is already held. However, cannot
238 	 * have both ZSHARED and ZHAVELOCK together.
239 	 */
240 	ASSERT(!(flag & ZSHARED) || !(flag & ZHAVELOCK));
241 	if (!(flag & ZHAVELOCK))
242 		rw_enter(&dzp->z_name_lock, RW_READER);
243 
244 	mutex_enter(&dzp->z_lock);
245 	for (;;) {
246 		if (dzp->z_unlinked && !(flag & ZXATTR)) {
247 			mutex_exit(&dzp->z_lock);
248 			if (!(flag & ZHAVELOCK))
249 				rw_exit(&dzp->z_name_lock);
250 			return (SET_ERROR(ENOENT));
251 		}
252 		for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) {
253 			if ((u8_strcmp(name, dl->dl_name, 0, cmpflags,
254 			    U8_UNICODE_LATEST, &error) == 0) || error != 0)
255 				break;
256 		}
257 		if (error != 0) {
258 			mutex_exit(&dzp->z_lock);
259 			if (!(flag & ZHAVELOCK))
260 				rw_exit(&dzp->z_name_lock);
261 			return (SET_ERROR(ENOENT));
262 		}
263 		if (dl == NULL)	{
264 			/*
265 			 * Allocate a new dirlock and add it to the list.
266 			 */
267 			dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP);
268 			cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL);
269 			dl->dl_name = name;
270 			dl->dl_sharecnt = 0;
271 			dl->dl_namelock = 0;
272 			dl->dl_namesize = 0;
273 			dl->dl_dzp = dzp;
274 			dl->dl_next = dzp->z_dirlocks;
275 			dzp->z_dirlocks = dl;
276 			break;
277 		}
278 		if ((flag & ZSHARED) && dl->dl_sharecnt != 0)
279 			break;
280 		cv_wait(&dl->dl_cv, &dzp->z_lock);
281 	}
282 
283 	/*
284 	 * If the z_name_lock was NOT held for this dirlock record it.
285 	 */
286 	if (flag & ZHAVELOCK)
287 		dl->dl_namelock = 1;
288 
289 	if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) {
290 		/*
291 		 * We're the second shared reference to dl.  Make a copy of
292 		 * dl_name in case the first thread goes away before we do.
293 		 * Note that we initialize the new name before storing its
294 		 * pointer into dl_name, because the first thread may load
295 		 * dl->dl_name at any time.  It'll either see the old value,
296 		 * which belongs to it, or the new shared copy; either is OK.
297 		 */
298 		dl->dl_namesize = strlen(dl->dl_name) + 1;
299 		name = kmem_alloc(dl->dl_namesize, KM_SLEEP);
300 		memcpy(name, dl->dl_name, dl->dl_namesize);
301 		dl->dl_name = name;
302 	}
303 
304 	mutex_exit(&dzp->z_lock);
305 
306 	/*
307 	 * We have a dirlock on the name.  (Note that it is the dirlock,
308 	 * not the dzp's z_lock, that protects the name in the zap object.)
309 	 * See if there's an object by this name; if so, put a hold on it.
310 	 */
311 	if (flag & ZXATTR) {
312 		error = sa_lookup(dzp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &zoid,
313 		    sizeof (zoid));
314 		if (error == 0)
315 			error = (zoid == 0 ? SET_ERROR(ENOENT) : 0);
316 	} else {
317 		error = zfs_match_find(zfsvfs, dzp, name, mt,
318 		    update, direntflags, realpnp, &zoid);
319 	}
320 	if (error) {
321 		if (error != ENOENT || (flag & ZEXISTS)) {
322 			zfs_dirent_unlock(dl);
323 			return (error);
324 		}
325 	} else {
326 		if (flag & ZNEW) {
327 			zfs_dirent_unlock(dl);
328 			return (SET_ERROR(EEXIST));
329 		}
330 		error = zfs_zget(zfsvfs, zoid, zpp);
331 		if (error) {
332 			zfs_dirent_unlock(dl);
333 			return (error);
334 		}
335 	}
336 
337 	*dlpp = dl;
338 
339 	return (0);
340 }
341 
342 /*
343  * Unlock this directory entry and wake anyone who was waiting for it.
344  */
345 void
346 zfs_dirent_unlock(zfs_dirlock_t *dl)
347 {
348 	znode_t *dzp = dl->dl_dzp;
349 	zfs_dirlock_t **prev_dl, *cur_dl;
350 
351 	mutex_enter(&dzp->z_lock);
352 
353 	if (!dl->dl_namelock)
354 		rw_exit(&dzp->z_name_lock);
355 
356 	if (dl->dl_sharecnt > 1) {
357 		dl->dl_sharecnt--;
358 		mutex_exit(&dzp->z_lock);
359 		return;
360 	}
361 	prev_dl = &dzp->z_dirlocks;
362 	while ((cur_dl = *prev_dl) != dl)
363 		prev_dl = &cur_dl->dl_next;
364 	*prev_dl = dl->dl_next;
365 	cv_broadcast(&dl->dl_cv);
366 	mutex_exit(&dzp->z_lock);
367 
368 	if (dl->dl_namesize != 0)
369 		kmem_free(dl->dl_name, dl->dl_namesize);
370 	cv_destroy(&dl->dl_cv);
371 	kmem_free(dl, sizeof (*dl));
372 }
373 
374 /*
375  * Look up an entry in a directory.
376  *
377  * NOTE: '.' and '..' are handled as special cases because
378  *	no directory entries are actually stored for them.  If this is
379  *	the root of a filesystem, then '.zfs' is also treated as a
380  *	special pseudo-directory.
381  */
382 int
383 zfs_dirlook(znode_t *dzp, char *name, znode_t **zpp, int flags,
384     int *deflg, pathname_t *rpnp)
385 {
386 	zfs_dirlock_t *dl;
387 	znode_t *zp;
388 	struct inode *ip;
389 	int error = 0;
390 	uint64_t parent;
391 
392 	if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
393 		*zpp = dzp;
394 		zhold(*zpp);
395 	} else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
396 		zfsvfs_t *zfsvfs = ZTOZSB(dzp);
397 
398 		/*
399 		 * If we are a snapshot mounted under .zfs, return
400 		 * the inode pointer for the snapshot directory.
401 		 */
402 		if ((error = sa_lookup(dzp->z_sa_hdl,
403 		    SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0)
404 			return (error);
405 
406 		if (parent == dzp->z_id && zfsvfs->z_parent != zfsvfs) {
407 			error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir,
408 			    "snapshot", &ip, 0, kcred, NULL, NULL);
409 			*zpp = ITOZ(ip);
410 			return (error);
411 		}
412 		rw_enter(&dzp->z_parent_lock, RW_READER);
413 		error = zfs_zget(zfsvfs, parent, &zp);
414 		if (error == 0)
415 			*zpp = zp;
416 		rw_exit(&dzp->z_parent_lock);
417 	} else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) {
418 		ip = zfsctl_root(dzp);
419 		*zpp = ITOZ(ip);
420 	} else {
421 		int zf;
422 
423 		zf = ZEXISTS | ZSHARED;
424 		if (flags & FIGNORECASE)
425 			zf |= ZCILOOK;
426 
427 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp);
428 		if (error == 0) {
429 			*zpp = zp;
430 			zfs_dirent_unlock(dl);
431 			dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */
432 		}
433 		rpnp = NULL;
434 	}
435 
436 	if ((flags & FIGNORECASE) && rpnp && !error)
437 		(void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize);
438 
439 	return (error);
440 }
441 
442 /*
443  * unlinked Set (formerly known as the "delete queue") Error Handling
444  *
445  * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
446  * don't specify the name of the entry that we will be manipulating.  We
447  * also fib and say that we won't be adding any new entries to the
448  * unlinked set, even though we might (this is to lower the minimum file
449  * size that can be deleted in a full filesystem).  So on the small
450  * chance that the nlink list is using a fat zap (ie. has more than
451  * 2000 entries), we *may* not pre-read a block that's needed.
452  * Therefore it is remotely possible for some of the assertions
453  * regarding the unlinked set below to fail due to i/o error.  On a
454  * nondebug system, this will result in the space being leaked.
455  */
456 void
457 zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
458 {
459 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
460 
461 	ASSERT(zp->z_unlinked);
462 	ASSERT(ZTOI(zp)->i_nlink == 0);
463 
464 	VERIFY3U(0, ==,
465 	    zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));
466 
467 	dataset_kstats_update_nunlinks_kstat(&zfsvfs->z_kstat, 1);
468 }
469 
470 /*
471  * Clean up any znodes that had no links when we either crashed or
472  * (force) umounted the file system.
473  */
474 static void
475 zfs_unlinked_drain_task(void *arg)
476 {
477 	zfsvfs_t *zfsvfs = arg;
478 	zap_cursor_t	zc;
479 	zap_attribute_t zap;
480 	dmu_object_info_t doi;
481 	znode_t		*zp;
482 	int		error;
483 
484 	ASSERT3B(zfsvfs->z_draining, ==, B_TRUE);
485 
486 	/*
487 	 * Iterate over the contents of the unlinked set.
488 	 */
489 	for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj);
490 	    zap_cursor_retrieve(&zc, &zap) == 0 && !zfsvfs->z_drain_cancel;
491 	    zap_cursor_advance(&zc)) {
492 
493 		/*
494 		 * See what kind of object we have in list
495 		 */
496 
497 		error = dmu_object_info(zfsvfs->z_os,
498 		    zap.za_first_integer, &doi);
499 		if (error != 0)
500 			continue;
501 
502 		ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) ||
503 		    (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS));
504 		/*
505 		 * We need to re-mark these list entries for deletion,
506 		 * so we pull them back into core and set zp->z_unlinked.
507 		 */
508 		error = zfs_zget(zfsvfs, zap.za_first_integer, &zp);
509 
510 		/*
511 		 * We may pick up znodes that are already marked for deletion.
512 		 * This could happen during the purge of an extended attribute
513 		 * directory.  All we need to do is skip over them, since they
514 		 * are already in the system marked z_unlinked.
515 		 */
516 		if (error != 0)
517 			continue;
518 
519 		zp->z_unlinked = B_TRUE;
520 
521 		/*
522 		 * zrele() decrements the znode's ref count and may cause
523 		 * it to be synchronously freed. We interrupt freeing
524 		 * of this znode by checking the return value of
525 		 * dmu_objset_zfs_unmounting() in dmu_free_long_range()
526 		 * when an unmount is requested.
527 		 */
528 		zrele(zp);
529 		ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
530 	}
531 	zap_cursor_fini(&zc);
532 
533 	zfsvfs->z_draining = B_FALSE;
534 	zfsvfs->z_drain_task = TASKQID_INVALID;
535 }
536 
537 /*
538  * Sets z_draining then tries to dispatch async unlinked drain.
539  * If that fails executes synchronous unlinked drain.
540  */
541 void
542 zfs_unlinked_drain(zfsvfs_t *zfsvfs)
543 {
544 	ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
545 	ASSERT3B(zfsvfs->z_draining, ==, B_FALSE);
546 
547 	zfsvfs->z_draining = B_TRUE;
548 	zfsvfs->z_drain_cancel = B_FALSE;
549 
550 	zfsvfs->z_drain_task = taskq_dispatch(
551 	    dsl_pool_unlinked_drain_taskq(dmu_objset_pool(zfsvfs->z_os)),
552 	    zfs_unlinked_drain_task, zfsvfs, TQ_SLEEP);
553 	if (zfsvfs->z_drain_task == TASKQID_INVALID) {
554 		zfs_dbgmsg("async zfs_unlinked_drain dispatch failed");
555 		zfs_unlinked_drain_task(zfsvfs);
556 	}
557 }
558 
559 /*
560  * Wait for the unlinked drain taskq task to stop. This will interrupt the
561  * unlinked set processing if it is in progress.
562  */
563 void
564 zfs_unlinked_drain_stop_wait(zfsvfs_t *zfsvfs)
565 {
566 	ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE);
567 
568 	if (zfsvfs->z_draining) {
569 		zfsvfs->z_drain_cancel = B_TRUE;
570 		taskq_cancel_id(dsl_pool_unlinked_drain_taskq(
571 		    dmu_objset_pool(zfsvfs->z_os)), zfsvfs->z_drain_task);
572 		zfsvfs->z_drain_task = TASKQID_INVALID;
573 		zfsvfs->z_draining = B_FALSE;
574 	}
575 }
576 
577 /*
578  * Delete the entire contents of a directory.  Return a count
579  * of the number of entries that could not be deleted. If we encounter
580  * an error, return a count of at least one so that the directory stays
581  * in the unlinked set.
582  *
583  * NOTE: this function assumes that the directory is inactive,
584  *	so there is no need to lock its entries before deletion.
585  *	Also, it assumes the directory contents is *only* regular
586  *	files.
587  */
588 static int
589 zfs_purgedir(znode_t *dzp)
590 {
591 	zap_cursor_t	zc;
592 	zap_attribute_t	zap;
593 	znode_t		*xzp;
594 	dmu_tx_t	*tx;
595 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
596 	zfs_dirlock_t	dl;
597 	int skipped = 0;
598 	int error;
599 
600 	for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
601 	    (error = zap_cursor_retrieve(&zc, &zap)) == 0;
602 	    zap_cursor_advance(&zc)) {
603 		error = zfs_zget(zfsvfs,
604 		    ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp);
605 		if (error) {
606 			skipped += 1;
607 			continue;
608 		}
609 
610 		ASSERT(S_ISREG(ZTOI(xzp)->i_mode) ||
611 		    S_ISLNK(ZTOI(xzp)->i_mode));
612 
613 		tx = dmu_tx_create(zfsvfs->z_os);
614 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
615 		dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name);
616 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
617 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
618 		/* Is this really needed ? */
619 		zfs_sa_upgrade_txholds(tx, xzp);
620 		dmu_tx_mark_netfree(tx);
621 		error = dmu_tx_assign(tx, TXG_WAIT);
622 		if (error) {
623 			dmu_tx_abort(tx);
624 			zfs_zrele_async(xzp);
625 			skipped += 1;
626 			continue;
627 		}
628 		memset(&dl, 0, sizeof (dl));
629 		dl.dl_dzp = dzp;
630 		dl.dl_name = zap.za_name;
631 
632 		error = zfs_link_destroy(&dl, xzp, tx, 0, NULL);
633 		if (error)
634 			skipped += 1;
635 		dmu_tx_commit(tx);
636 
637 		zfs_zrele_async(xzp);
638 	}
639 	zap_cursor_fini(&zc);
640 	if (error != ENOENT)
641 		skipped += 1;
642 	return (skipped);
643 }
644 
645 void
646 zfs_rmnode(znode_t *zp)
647 {
648 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
649 	objset_t	*os = zfsvfs->z_os;
650 	znode_t		*xzp = NULL;
651 	dmu_tx_t	*tx;
652 	uint64_t	acl_obj;
653 	uint64_t	xattr_obj;
654 	uint64_t	links;
655 	int		error;
656 
657 	ASSERT(ZTOI(zp)->i_nlink == 0);
658 	ASSERT(atomic_read(&ZTOI(zp)->i_count) == 0);
659 
660 	/*
661 	 * If this is an attribute directory, purge its contents.
662 	 */
663 	if (S_ISDIR(ZTOI(zp)->i_mode) && (zp->z_pflags & ZFS_XATTR)) {
664 		if (zfs_purgedir(zp) != 0) {
665 			/*
666 			 * Not enough space to delete some xattrs.
667 			 * Leave it in the unlinked set.
668 			 */
669 			zfs_znode_dmu_fini(zp);
670 
671 			return;
672 		}
673 	}
674 
675 	/*
676 	 * Free up all the data in the file.  We don't do this for directories
677 	 * because we need truncate and remove to be in the same tx, like in
678 	 * zfs_znode_delete(). Otherwise, if we crash here we'll end up with
679 	 * an inconsistent truncated zap object in the delete queue.  Note a
680 	 * truncated file is harmless since it only contains user data.
681 	 */
682 	if (S_ISREG(ZTOI(zp)->i_mode)) {
683 		error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END);
684 		if (error) {
685 			/*
686 			 * Not enough space or we were interrupted by unmount.
687 			 * Leave the file in the unlinked set.
688 			 */
689 			zfs_znode_dmu_fini(zp);
690 			return;
691 		}
692 	}
693 
694 	/*
695 	 * If the file has extended attributes, we're going to unlink
696 	 * the xattr dir.
697 	 */
698 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
699 	    &xattr_obj, sizeof (xattr_obj));
700 	if (error == 0 && xattr_obj) {
701 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
702 		ASSERT(error == 0);
703 	}
704 
705 	acl_obj = zfs_external_acl(zp);
706 
707 	/*
708 	 * Set up the final transaction.
709 	 */
710 	tx = dmu_tx_create(os);
711 	dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
712 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
713 	if (xzp) {
714 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);
715 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
716 	}
717 	if (acl_obj)
718 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
719 
720 	zfs_sa_upgrade_txholds(tx, zp);
721 	error = dmu_tx_assign(tx, TXG_WAIT);
722 	if (error) {
723 		/*
724 		 * Not enough space to delete the file.  Leave it in the
725 		 * unlinked set, leaking it until the fs is remounted (at
726 		 * which point we'll call zfs_unlinked_drain() to process it).
727 		 */
728 		dmu_tx_abort(tx);
729 		zfs_znode_dmu_fini(zp);
730 		goto out;
731 	}
732 
733 	if (xzp) {
734 		ASSERT(error == 0);
735 		mutex_enter(&xzp->z_lock);
736 		xzp->z_unlinked = B_TRUE;	/* mark xzp for deletion */
737 		clear_nlink(ZTOI(xzp));		/* no more links to it */
738 		links = 0;
739 		VERIFY(0 == sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
740 		    &links, sizeof (links), tx));
741 		mutex_exit(&xzp->z_lock);
742 		zfs_unlinked_add(xzp, tx);
743 	}
744 
745 	mutex_enter(&os->os_dsl_dataset->ds_dir->dd_activity_lock);
746 
747 	/*
748 	 * Remove this znode from the unlinked set.  If a has rollback has
749 	 * occurred while a file is open and unlinked.  Then when the file
750 	 * is closed post rollback it will not exist in the rolled back
751 	 * version of the unlinked object.
752 	 */
753 	error = zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
754 	    zp->z_id, tx);
755 	VERIFY(error == 0 || error == ENOENT);
756 
757 	uint64_t count;
758 	if (zap_count(os, zfsvfs->z_unlinkedobj, &count) == 0 && count == 0) {
759 		cv_broadcast(&os->os_dsl_dataset->ds_dir->dd_activity_cv);
760 	}
761 
762 	mutex_exit(&os->os_dsl_dataset->ds_dir->dd_activity_lock);
763 
764 	dataset_kstats_update_nunlinked_kstat(&zfsvfs->z_kstat, 1);
765 
766 	zfs_znode_delete(zp, tx);
767 
768 	dmu_tx_commit(tx);
769 out:
770 	if (xzp)
771 		zfs_zrele_async(xzp);
772 }
773 
774 static uint64_t
775 zfs_dirent(znode_t *zp, uint64_t mode)
776 {
777 	uint64_t de = zp->z_id;
778 
779 	if (ZTOZSB(zp)->z_version >= ZPL_VERSION_DIRENT_TYPE)
780 		de |= IFTODT(mode) << 60;
781 	return (de);
782 }
783 
784 /*
785  * Link zp into dl.  Can fail in the following cases :
786  * - if zp has been unlinked.
787  * - if the number of entries with the same hash (aka. colliding entries)
788  *    exceed the capacity of a leaf-block of fatzap and splitting of the
789  *    leaf-block does not help.
790  */
791 int
792 zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag)
793 {
794 	znode_t *dzp = dl->dl_dzp;
795 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
796 	uint64_t value;
797 	int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode);
798 	sa_bulk_attr_t bulk[5];
799 	uint64_t mtime[2], ctime[2];
800 	uint64_t links;
801 	int count = 0;
802 	int error;
803 
804 	mutex_enter(&zp->z_lock);
805 
806 	if (!(flag & ZRENAMING)) {
807 		if (zp->z_unlinked) {	/* no new links to unlinked zp */
808 			ASSERT(!(flag & (ZNEW | ZEXISTS)));
809 			mutex_exit(&zp->z_lock);
810 			return (SET_ERROR(ENOENT));
811 		}
812 		if (!(flag & ZNEW)) {
813 			/*
814 			 * ZNEW nodes come from zfs_mknode() where the link
815 			 * count has already been initialised
816 			 */
817 			inc_nlink(ZTOI(zp));
818 			links = ZTOI(zp)->i_nlink;
819 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
820 			    NULL, &links, sizeof (links));
821 		}
822 	}
823 
824 	value = zfs_dirent(zp, zp->z_mode);
825 	error = zap_add(ZTOZSB(zp)->z_os, dzp->z_id, dl->dl_name, 8, 1,
826 	    &value, tx);
827 
828 	/*
829 	 * zap_add could fail to add the entry if it exceeds the capacity of the
830 	 * leaf-block and zap_leaf_split() failed to help.
831 	 * The caller of this routine is responsible for failing the transaction
832 	 * which will rollback the SA updates done above.
833 	 */
834 	if (error != 0) {
835 		if (!(flag & ZRENAMING) && !(flag & ZNEW))
836 			drop_nlink(ZTOI(zp));
837 		mutex_exit(&zp->z_lock);
838 		return (error);
839 	}
840 
841 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL,
842 	    &dzp->z_id, sizeof (dzp->z_id));
843 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
844 	    &zp->z_pflags, sizeof (zp->z_pflags));
845 
846 	if (!(flag & ZNEW)) {
847 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
848 		    ctime, sizeof (ctime));
849 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
850 		    ctime);
851 	}
852 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
853 	ASSERT(error == 0);
854 
855 	mutex_exit(&zp->z_lock);
856 
857 	mutex_enter(&dzp->z_lock);
858 	dzp->z_size++;
859 	if (zp_is_dir)
860 		inc_nlink(ZTOI(dzp));
861 	links = ZTOI(dzp)->i_nlink;
862 	count = 0;
863 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
864 	    &dzp->z_size, sizeof (dzp->z_size));
865 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
866 	    &links, sizeof (links));
867 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
868 	    mtime, sizeof (mtime));
869 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
870 	    ctime, sizeof (ctime));
871 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
872 	    &dzp->z_pflags, sizeof (dzp->z_pflags));
873 	zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime);
874 	error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
875 	ASSERT(error == 0);
876 	mutex_exit(&dzp->z_lock);
877 
878 	return (0);
879 }
880 
881 /*
882  * The match type in the code for this function should conform to:
883  *
884  * ------------------------------------------------------------------------
885  * fs type  | z_norm      | lookup type | match type
886  * ---------|-------------|-------------|----------------------------------
887  * CS !norm | 0           |           0 | 0 (exact)
888  * CS  norm | formX       |           0 | MT_NORMALIZE
889  * CI !norm | upper       |   !ZCIEXACT | MT_NORMALIZE
890  * CI !norm | upper       |    ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
891  * CI  norm | upper|formX |   !ZCIEXACT | MT_NORMALIZE
892  * CI  norm | upper|formX |    ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE
893  * CM !norm | upper       |    !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
894  * CM !norm | upper       |     ZCILOOK | MT_NORMALIZE
895  * CM  norm | upper|formX |    !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE
896  * CM  norm | upper|formX |     ZCILOOK | MT_NORMALIZE
897  *
898  * Abbreviations:
899  *    CS = Case Sensitive, CI = Case Insensitive, CM = Case Mixed
900  *    upper = case folding set by fs type on creation (U8_TEXTPREP_TOUPPER)
901  *    formX = unicode normalization form set on fs creation
902  */
903 static int
904 zfs_dropname(zfs_dirlock_t *dl, znode_t *zp, znode_t *dzp, dmu_tx_t *tx,
905     int flag)
906 {
907 	int error;
908 
909 	if (ZTOZSB(zp)->z_norm) {
910 		matchtype_t mt = MT_NORMALIZE;
911 
912 		if ((ZTOZSB(zp)->z_case == ZFS_CASE_INSENSITIVE &&
913 		    (flag & ZCIEXACT)) ||
914 		    (ZTOZSB(zp)->z_case == ZFS_CASE_MIXED &&
915 		    !(flag & ZCILOOK))) {
916 			mt |= MT_MATCH_CASE;
917 		}
918 
919 		error = zap_remove_norm(ZTOZSB(zp)->z_os, dzp->z_id,
920 		    dl->dl_name, mt, tx);
921 	} else {
922 		error = zap_remove(ZTOZSB(zp)->z_os, dzp->z_id, dl->dl_name,
923 		    tx);
924 	}
925 
926 	return (error);
927 }
928 
929 /*
930  * Unlink zp from dl, and mark zp for deletion if this was the last link. Can
931  * fail if zp is a mount point (EBUSY) or a non-empty directory (ENOTEMPTY).
932  * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list.
933  * If it's non-NULL, we use it to indicate whether the znode needs deletion,
934  * and it's the caller's job to do it.
935  */
936 int
937 zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag,
938     boolean_t *unlinkedp)
939 {
940 	znode_t *dzp = dl->dl_dzp;
941 	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
942 	int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode);
943 	boolean_t unlinked = B_FALSE;
944 	sa_bulk_attr_t bulk[5];
945 	uint64_t mtime[2], ctime[2];
946 	uint64_t links;
947 	int count = 0;
948 	int error;
949 
950 	if (!(flag & ZRENAMING)) {
951 		mutex_enter(&zp->z_lock);
952 
953 		if (zp_is_dir && !zfs_dirempty(zp)) {
954 			mutex_exit(&zp->z_lock);
955 			return (SET_ERROR(ENOTEMPTY));
956 		}
957 
958 		/*
959 		 * If we get here, we are going to try to remove the object.
960 		 * First try removing the name from the directory; if that
961 		 * fails, return the error.
962 		 */
963 		error = zfs_dropname(dl, zp, dzp, tx, flag);
964 		if (error != 0) {
965 			mutex_exit(&zp->z_lock);
966 			return (error);
967 		}
968 
969 		if (ZTOI(zp)->i_nlink <= zp_is_dir) {
970 			zfs_panic_recover("zfs: link count on %lu is %u, "
971 			    "should be at least %u", zp->z_id,
972 			    (int)ZTOI(zp)->i_nlink, zp_is_dir + 1);
973 			set_nlink(ZTOI(zp), zp_is_dir + 1);
974 		}
975 		drop_nlink(ZTOI(zp));
976 		if (ZTOI(zp)->i_nlink == zp_is_dir) {
977 			zp->z_unlinked = B_TRUE;
978 			clear_nlink(ZTOI(zp));
979 			unlinked = B_TRUE;
980 		} else {
981 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
982 			    NULL, &ctime, sizeof (ctime));
983 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
984 			    NULL, &zp->z_pflags, sizeof (zp->z_pflags));
985 			zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime,
986 			    ctime);
987 		}
988 		links = ZTOI(zp)->i_nlink;
989 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
990 		    NULL, &links, sizeof (links));
991 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
992 		count = 0;
993 		ASSERT(error == 0);
994 		mutex_exit(&zp->z_lock);
995 	} else {
996 		error = zfs_dropname(dl, zp, dzp, tx, flag);
997 		if (error != 0)
998 			return (error);
999 	}
1000 
1001 	mutex_enter(&dzp->z_lock);
1002 	dzp->z_size--;		/* one dirent removed */
1003 	if (zp_is_dir)
1004 		drop_nlink(ZTOI(dzp));	/* ".." link from zp */
1005 	links = ZTOI(dzp)->i_nlink;
1006 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs),
1007 	    NULL, &links, sizeof (links));
1008 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1009 	    NULL, &dzp->z_size, sizeof (dzp->z_size));
1010 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs),
1011 	    NULL, ctime, sizeof (ctime));
1012 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
1013 	    NULL, mtime, sizeof (mtime));
1014 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1015 	    NULL, &dzp->z_pflags, sizeof (dzp->z_pflags));
1016 	zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime);
1017 	error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx);
1018 	ASSERT(error == 0);
1019 	mutex_exit(&dzp->z_lock);
1020 
1021 	if (unlinkedp != NULL)
1022 		*unlinkedp = unlinked;
1023 	else if (unlinked)
1024 		zfs_unlinked_add(zp, tx);
1025 
1026 	return (0);
1027 }
1028 
1029 /*
1030  * Indicate whether the directory is empty.  Works with or without z_lock
1031  * held, but can only be consider a hint in the latter case.  Returns true
1032  * if only "." and ".." remain and there's no work in progress.
1033  *
1034  * The internal ZAP size, rather than zp->z_size, needs to be checked since
1035  * some consumers (Lustre) do not strictly maintain an accurate SA_ZPL_SIZE.
1036  */
1037 boolean_t
1038 zfs_dirempty(znode_t *dzp)
1039 {
1040 	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1041 	uint64_t count;
1042 	int error;
1043 
1044 	if (dzp->z_dirlocks != NULL)
1045 		return (B_FALSE);
1046 
1047 	error = zap_count(zfsvfs->z_os, dzp->z_id, &count);
1048 	if (error != 0 || count != 0)
1049 		return (B_FALSE);
1050 
1051 	return (B_TRUE);
1052 }
1053 
1054 int
1055 zfs_make_xattrdir(znode_t *zp, vattr_t *vap, znode_t **xzpp, cred_t *cr)
1056 {
1057 	zfsvfs_t *zfsvfs = ZTOZSB(zp);
1058 	znode_t *xzp;
1059 	dmu_tx_t *tx;
1060 	int error;
1061 	zfs_acl_ids_t acl_ids;
1062 	boolean_t fuid_dirtied;
1063 #ifdef ZFS_DEBUG
1064 	uint64_t parent;
1065 #endif
1066 
1067 	*xzpp = NULL;
1068 
1069 	if ((error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, 0, B_FALSE, cr)))
1070 		return (error);
1071 
1072 	if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL,
1073 	    &acl_ids)) != 0)
1074 		return (error);
1075 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zp->z_projid)) {
1076 		zfs_acl_ids_free(&acl_ids);
1077 		return (SET_ERROR(EDQUOT));
1078 	}
1079 
1080 	tx = dmu_tx_create(zfsvfs->z_os);
1081 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1082 	    ZFS_SA_BASE_ATTR_SIZE);
1083 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1084 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1085 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1086 	if (fuid_dirtied)
1087 		zfs_fuid_txhold(zfsvfs, tx);
1088 	error = dmu_tx_assign(tx, TXG_WAIT);
1089 	if (error) {
1090 		zfs_acl_ids_free(&acl_ids);
1091 		dmu_tx_abort(tx);
1092 		return (error);
1093 	}
1094 	zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, &acl_ids);
1095 
1096 	if (fuid_dirtied)
1097 		zfs_fuid_sync(zfsvfs, tx);
1098 
1099 #ifdef ZFS_DEBUG
1100 	error = sa_lookup(xzp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1101 	    &parent, sizeof (parent));
1102 	ASSERT(error == 0 && parent == zp->z_id);
1103 #endif
1104 
1105 	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xzp->z_id,
1106 	    sizeof (xzp->z_id), tx));
1107 
1108 	if (!zp->z_unlinked)
1109 		zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, xzp, "", NULL,
1110 		    acl_ids.z_fuidp, vap);
1111 
1112 	zfs_acl_ids_free(&acl_ids);
1113 	dmu_tx_commit(tx);
1114 
1115 	*xzpp = xzp;
1116 
1117 	return (0);
1118 }
1119 
1120 /*
1121  * Return a znode for the extended attribute directory for zp.
1122  * ** If the directory does not already exist, it is created **
1123  *
1124  *	IN:	zp	- znode to obtain attribute directory from
1125  *		cr	- credentials of caller
1126  *		flags	- flags from the VOP_LOOKUP call
1127  *
1128  *	OUT:	xipp	- pointer to extended attribute znode
1129  *
1130  *	RETURN:	0 on success
1131  *		error number on failure
1132  */
1133 int
1134 zfs_get_xattrdir(znode_t *zp, znode_t **xzpp, cred_t *cr, int flags)
1135 {
1136 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1137 	znode_t		*xzp;
1138 	zfs_dirlock_t	*dl;
1139 	vattr_t		va;
1140 	int		error;
1141 top:
1142 	error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL);
1143 	if (error)
1144 		return (error);
1145 
1146 	if (xzp != NULL) {
1147 		*xzpp = xzp;
1148 		zfs_dirent_unlock(dl);
1149 		return (0);
1150 	}
1151 
1152 	if (!(flags & CREATE_XATTR_DIR)) {
1153 		zfs_dirent_unlock(dl);
1154 		return (SET_ERROR(ENOENT));
1155 	}
1156 
1157 	if (zfs_is_readonly(zfsvfs)) {
1158 		zfs_dirent_unlock(dl);
1159 		return (SET_ERROR(EROFS));
1160 	}
1161 
1162 	/*
1163 	 * The ability to 'create' files in an attribute
1164 	 * directory comes from the write_xattr permission on the base file.
1165 	 *
1166 	 * The ability to 'search' an attribute directory requires
1167 	 * read_xattr permission on the base file.
1168 	 *
1169 	 * Once in a directory the ability to read/write attributes
1170 	 * is controlled by the permissions on the attribute file.
1171 	 */
1172 	va.va_mask = ATTR_MODE | ATTR_UID | ATTR_GID;
1173 	va.va_mode = S_IFDIR | S_ISVTX | 0777;
1174 	zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid);
1175 
1176 	va.va_dentry = NULL;
1177 	error = zfs_make_xattrdir(zp, &va, xzpp, cr);
1178 	zfs_dirent_unlock(dl);
1179 
1180 	if (error == ERESTART) {
1181 		/* NB: we already did dmu_tx_wait() if necessary */
1182 		goto top;
1183 	}
1184 
1185 	return (error);
1186 }
1187 
1188 /*
1189  * Decide whether it is okay to remove within a sticky directory.
1190  *
1191  * In sticky directories, write access is not sufficient;
1192  * you can remove entries from a directory only if:
1193  *
1194  *	you own the directory,
1195  *	you own the entry,
1196  *	you have write access to the entry,
1197  *	or you are privileged (checked in secpolicy...).
1198  *
1199  * The function returns 0 if remove access is granted.
1200  */
1201 int
1202 zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
1203 {
1204 	uid_t		uid;
1205 	uid_t		downer;
1206 	uid_t		fowner;
1207 	zfsvfs_t	*zfsvfs = ZTOZSB(zdp);
1208 
1209 	if (zfsvfs->z_replay)
1210 		return (0);
1211 
1212 	if ((zdp->z_mode & S_ISVTX) == 0)
1213 		return (0);
1214 
1215 	downer = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(ZTOI(zdp)->i_uid),
1216 	    cr, ZFS_OWNER);
1217 	fowner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(ZTOI(zp)->i_uid),
1218 	    cr, ZFS_OWNER);
1219 
1220 	if ((uid = crgetuid(cr)) == downer || uid == fowner ||
1221 	    zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0)
1222 		return (0);
1223 	else
1224 		return (secpolicy_vnode_remove(cr));
1225 }
1226