1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/sysmacros.h> 32 #include <sys/vfs.h> 33 #include <sys/vnode.h> 34 #include <sys/file.h> 35 #include <sys/kmem.h> 36 #include <sys/uio.h> 37 #include <sys/pathname.h> 38 #include <sys/cmn_err.h> 39 #include <sys/errno.h> 40 #include <sys/stat.h> 41 #include <sys/sunddi.h> 42 #include <sys/random.h> 43 #include <sys/policy.h> 44 #include <sys/zfs_dir.h> 45 #include <sys/zfs_acl.h> 46 #include <sys/zfs_vnops.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/zap.h> 49 #include <sys/dmu.h> 50 #include <sys/atomic.h> 51 #include <sys/zfs_ctldir.h> 52 #include <sys/zfs_fuid.h> 53 #include <sys/sa.h> 54 #include <sys/zfs_sa.h> 55 #include <sys/dmu_objset.h> 56 #include <sys/dsl_dir.h> 57 58 /* 59 * zfs_match_find() is used by zfs_dirent_lock() to perform zap lookups 60 * of names after deciding which is the appropriate lookup interface. 61 */ 62 static int 63 zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, char *name, matchtype_t mt, 64 boolean_t update, int *deflags, pathname_t *rpnp, uint64_t *zoid) 65 { 66 boolean_t conflict = B_FALSE; 67 int error; 68 69 if (zfsvfs->z_norm) { 70 size_t bufsz = 0; 71 char *buf = NULL; 72 73 if (rpnp) { 74 buf = rpnp->pn_buf; 75 bufsz = rpnp->pn_bufsize; 76 } 77 78 /* 79 * In the non-mixed case we only expect there would ever 80 * be one match, but we need to use the normalizing lookup. 81 */ 82 error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1, 83 zoid, mt, buf, bufsz, &conflict); 84 } else { 85 error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid); 86 } 87 88 /* 89 * Allow multiple entries provided the first entry is 90 * the object id. Non-zpl consumers may safely make 91 * use of the additional space. 92 * 93 * XXX: This should be a feature flag for compatibility 94 */ 95 if (error == EOVERFLOW) 96 error = 0; 97 98 if (zfsvfs->z_norm && !error && deflags) 99 *deflags = conflict ? ED_CASE_CONFLICT : 0; 100 101 *zoid = ZFS_DIRENT_OBJ(*zoid); 102 103 return (error); 104 } 105 106 /* 107 * Lock a directory entry. A dirlock on <dzp, name> protects that name 108 * in dzp's directory zap object. As long as you hold a dirlock, you can 109 * assume two things: (1) dzp cannot be reaped, and (2) no other thread 110 * can change the zap entry for (i.e. link or unlink) this name. 111 * 112 * Input arguments: 113 * dzp - znode for directory 114 * name - name of entry to lock 115 * flag - ZNEW: if the entry already exists, fail with EEXIST. 116 * ZEXISTS: if the entry does not exist, fail with ENOENT. 117 * ZSHARED: allow concurrent access with other ZSHARED callers. 118 * ZXATTR: we want dzp's xattr directory 119 * ZCILOOK: On a mixed sensitivity file system, 120 * this lookup should be case-insensitive. 121 * ZCIEXACT: On a purely case-insensitive file system, 122 * this lookup should be case-sensitive. 123 * ZRENAMING: we are locking for renaming, force narrow locks 124 * ZHAVELOCK: Don't grab the z_name_lock for this call. The 125 * current thread already holds it. 126 * 127 * Output arguments: 128 * zpp - pointer to the znode for the entry (NULL if there isn't one) 129 * dlpp - pointer to the dirlock for this entry (NULL on error) 130 * direntflags - (case-insensitive lookup only) 131 * flags if multiple case-sensitive matches exist in directory 132 * realpnp - (case-insensitive lookup only) 133 * actual name matched within the directory 134 * 135 * Return value: 0 on success or errno on failure. 136 * 137 * NOTE: Always checks for, and rejects, '.' and '..'. 138 * NOTE: For case-insensitive file systems we take wide locks (see below), 139 * but return znode pointers to a single match. 140 */ 141 int 142 zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name, znode_t **zpp, 143 int flag, int *direntflags, pathname_t *realpnp) 144 { 145 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 146 zfs_dirlock_t *dl; 147 boolean_t update; 148 matchtype_t mt = 0; 149 uint64_t zoid; 150 int error = 0; 151 int cmpflags; 152 153 *zpp = NULL; 154 *dlpp = NULL; 155 156 /* 157 * Verify that we are not trying to lock '.', '..', or '.zfs' 158 */ 159 if ((name[0] == '.' && 160 (name[1] == '\0' || (name[1] == '.' && name[2] == '\0'))) || 161 (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0)) 162 return (SET_ERROR(EEXIST)); 163 164 /* 165 * Case sensitivity and normalization preferences are set when 166 * the file system is created. These are stored in the 167 * zfsvfs->z_case and zfsvfs->z_norm fields. These choices 168 * affect what vnodes can be cached in the DNLC, how we 169 * perform zap lookups, and the "width" of our dirlocks. 170 * 171 * A normal dirlock locks a single name. Note that with 172 * normalization a name can be composed multiple ways, but 173 * when normalized, these names all compare equal. A wide 174 * dirlock locks multiple names. We need these when the file 175 * system is supporting mixed-mode access. It is sometimes 176 * necessary to lock all case permutations of file name at 177 * once so that simultaneous case-insensitive/case-sensitive 178 * behaves as rationally as possible. 179 */ 180 181 /* 182 * When matching we may need to normalize & change case according to 183 * FS settings. 184 * 185 * Note that a normalized match is necessary for a case insensitive 186 * filesystem when the lookup request is not exact because normalization 187 * can fold case independent of normalizing code point sequences. 188 * 189 * See the table above zfs_dropname(). 190 */ 191 if (zfsvfs->z_norm != 0) { 192 mt = MT_NORMALIZE; 193 194 /* 195 * Determine if the match needs to honor the case specified in 196 * lookup, and if so keep track of that so that during 197 * normalization we don't fold case. 198 */ 199 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE && 200 (flag & ZCIEXACT)) || 201 (zfsvfs->z_case == ZFS_CASE_MIXED && !(flag & ZCILOOK))) { 202 mt |= MT_MATCH_CASE; 203 } 204 } 205 206 /* 207 * Only look in or update the DNLC if we are looking for the 208 * name on a file system that does not require normalization 209 * or case folding. We can also look there if we happen to be 210 * on a non-normalizing, mixed sensitivity file system IF we 211 * are looking for the exact name. 212 * 213 * Maybe can add TO-UPPERed version of name to dnlc in ci-only 214 * case for performance improvement? 215 */ 216 update = !zfsvfs->z_norm || 217 (zfsvfs->z_case == ZFS_CASE_MIXED && 218 !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK)); 219 220 /* 221 * ZRENAMING indicates we are in a situation where we should 222 * take narrow locks regardless of the file system's 223 * preferences for normalizing and case folding. This will 224 * prevent us deadlocking trying to grab the same wide lock 225 * twice if the two names happen to be case-insensitive 226 * matches. 227 */ 228 if (flag & ZRENAMING) 229 cmpflags = 0; 230 else 231 cmpflags = zfsvfs->z_norm; 232 233 /* 234 * Wait until there are no locks on this name. 235 * 236 * Don't grab the lock if it is already held. However, cannot 237 * have both ZSHARED and ZHAVELOCK together. 238 */ 239 ASSERT(!(flag & ZSHARED) || !(flag & ZHAVELOCK)); 240 if (!(flag & ZHAVELOCK)) 241 rw_enter(&dzp->z_name_lock, RW_READER); 242 243 mutex_enter(&dzp->z_lock); 244 for (;;) { 245 if (dzp->z_unlinked && !(flag & ZXATTR)) { 246 mutex_exit(&dzp->z_lock); 247 if (!(flag & ZHAVELOCK)) 248 rw_exit(&dzp->z_name_lock); 249 return (SET_ERROR(ENOENT)); 250 } 251 for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) { 252 if ((u8_strcmp(name, dl->dl_name, 0, cmpflags, 253 U8_UNICODE_LATEST, &error) == 0) || error != 0) 254 break; 255 } 256 if (error != 0) { 257 mutex_exit(&dzp->z_lock); 258 if (!(flag & ZHAVELOCK)) 259 rw_exit(&dzp->z_name_lock); 260 return (SET_ERROR(ENOENT)); 261 } 262 if (dl == NULL) { 263 /* 264 * Allocate a new dirlock and add it to the list. 265 */ 266 dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP); 267 cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL); 268 dl->dl_name = name; 269 dl->dl_sharecnt = 0; 270 dl->dl_namelock = 0; 271 dl->dl_namesize = 0; 272 dl->dl_dzp = dzp; 273 dl->dl_next = dzp->z_dirlocks; 274 dzp->z_dirlocks = dl; 275 break; 276 } 277 if ((flag & ZSHARED) && dl->dl_sharecnt != 0) 278 break; 279 cv_wait(&dl->dl_cv, &dzp->z_lock); 280 } 281 282 /* 283 * If the z_name_lock was NOT held for this dirlock record it. 284 */ 285 if (flag & ZHAVELOCK) 286 dl->dl_namelock = 1; 287 288 if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) { 289 /* 290 * We're the second shared reference to dl. Make a copy of 291 * dl_name in case the first thread goes away before we do. 292 * Note that we initialize the new name before storing its 293 * pointer into dl_name, because the first thread may load 294 * dl->dl_name at any time. It'll either see the old value, 295 * which belongs to it, or the new shared copy; either is OK. 296 */ 297 dl->dl_namesize = strlen(dl->dl_name) + 1; 298 name = kmem_alloc(dl->dl_namesize, KM_SLEEP); 299 bcopy(dl->dl_name, name, dl->dl_namesize); 300 dl->dl_name = name; 301 } 302 303 mutex_exit(&dzp->z_lock); 304 305 /* 306 * We have a dirlock on the name. (Note that it is the dirlock, 307 * not the dzp's z_lock, that protects the name in the zap object.) 308 * See if there's an object by this name; if so, put a hold on it. 309 */ 310 if (flag & ZXATTR) { 311 error = sa_lookup(dzp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &zoid, 312 sizeof (zoid)); 313 if (error == 0) 314 error = (zoid == 0 ? SET_ERROR(ENOENT) : 0); 315 } else { 316 error = zfs_match_find(zfsvfs, dzp, name, mt, 317 update, direntflags, realpnp, &zoid); 318 } 319 if (error) { 320 if (error != ENOENT || (flag & ZEXISTS)) { 321 zfs_dirent_unlock(dl); 322 return (error); 323 } 324 } else { 325 if (flag & ZNEW) { 326 zfs_dirent_unlock(dl); 327 return (SET_ERROR(EEXIST)); 328 } 329 error = zfs_zget(zfsvfs, zoid, zpp); 330 if (error) { 331 zfs_dirent_unlock(dl); 332 return (error); 333 } 334 } 335 336 *dlpp = dl; 337 338 return (0); 339 } 340 341 /* 342 * Unlock this directory entry and wake anyone who was waiting for it. 343 */ 344 void 345 zfs_dirent_unlock(zfs_dirlock_t *dl) 346 { 347 znode_t *dzp = dl->dl_dzp; 348 zfs_dirlock_t **prev_dl, *cur_dl; 349 350 mutex_enter(&dzp->z_lock); 351 352 if (!dl->dl_namelock) 353 rw_exit(&dzp->z_name_lock); 354 355 if (dl->dl_sharecnt > 1) { 356 dl->dl_sharecnt--; 357 mutex_exit(&dzp->z_lock); 358 return; 359 } 360 prev_dl = &dzp->z_dirlocks; 361 while ((cur_dl = *prev_dl) != dl) 362 prev_dl = &cur_dl->dl_next; 363 *prev_dl = dl->dl_next; 364 cv_broadcast(&dl->dl_cv); 365 mutex_exit(&dzp->z_lock); 366 367 if (dl->dl_namesize != 0) 368 kmem_free(dl->dl_name, dl->dl_namesize); 369 cv_destroy(&dl->dl_cv); 370 kmem_free(dl, sizeof (*dl)); 371 } 372 373 /* 374 * Look up an entry in a directory. 375 * 376 * NOTE: '.' and '..' are handled as special cases because 377 * no directory entries are actually stored for them. If this is 378 * the root of a filesystem, then '.zfs' is also treated as a 379 * special pseudo-directory. 380 */ 381 int 382 zfs_dirlook(znode_t *dzp, char *name, znode_t **zpp, int flags, 383 int *deflg, pathname_t *rpnp) 384 { 385 zfs_dirlock_t *dl; 386 znode_t *zp; 387 struct inode *ip; 388 int error = 0; 389 uint64_t parent; 390 391 if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) { 392 *zpp = dzp; 393 zhold(*zpp); 394 } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) { 395 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 396 397 /* 398 * If we are a snapshot mounted under .zfs, return 399 * the inode pointer for the snapshot directory. 400 */ 401 if ((error = sa_lookup(dzp->z_sa_hdl, 402 SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0) 403 return (error); 404 405 if (parent == dzp->z_id && zfsvfs->z_parent != zfsvfs) { 406 error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir, 407 "snapshot", &ip, 0, kcred, NULL, NULL); 408 *zpp = ITOZ(ip); 409 return (error); 410 } 411 rw_enter(&dzp->z_parent_lock, RW_READER); 412 error = zfs_zget(zfsvfs, parent, &zp); 413 if (error == 0) 414 *zpp = zp; 415 rw_exit(&dzp->z_parent_lock); 416 } else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) { 417 ip = zfsctl_root(dzp); 418 *zpp = ITOZ(ip); 419 } else { 420 int zf; 421 422 zf = ZEXISTS | ZSHARED; 423 if (flags & FIGNORECASE) 424 zf |= ZCILOOK; 425 426 error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp); 427 if (error == 0) { 428 *zpp = zp; 429 zfs_dirent_unlock(dl); 430 dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */ 431 } 432 rpnp = NULL; 433 } 434 435 if ((flags & FIGNORECASE) && rpnp && !error) 436 (void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize); 437 438 return (error); 439 } 440 441 /* 442 * unlinked Set (formerly known as the "delete queue") Error Handling 443 * 444 * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we 445 * don't specify the name of the entry that we will be manipulating. We 446 * also fib and say that we won't be adding any new entries to the 447 * unlinked set, even though we might (this is to lower the minimum file 448 * size that can be deleted in a full filesystem). So on the small 449 * chance that the nlink list is using a fat zap (ie. has more than 450 * 2000 entries), we *may* not pre-read a block that's needed. 451 * Therefore it is remotely possible for some of the assertions 452 * regarding the unlinked set below to fail due to i/o error. On a 453 * nondebug system, this will result in the space being leaked. 454 */ 455 void 456 zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx) 457 { 458 zfsvfs_t *zfsvfs = ZTOZSB(zp); 459 460 ASSERT(zp->z_unlinked); 461 ASSERT(ZTOI(zp)->i_nlink == 0); 462 463 VERIFY3U(0, ==, 464 zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx)); 465 466 dataset_kstats_update_nunlinks_kstat(&zfsvfs->z_kstat, 1); 467 } 468 469 /* 470 * Clean up any znodes that had no links when we either crashed or 471 * (force) umounted the file system. 472 */ 473 static void 474 zfs_unlinked_drain_task(void *arg) 475 { 476 zfsvfs_t *zfsvfs = arg; 477 zap_cursor_t zc; 478 zap_attribute_t zap; 479 dmu_object_info_t doi; 480 znode_t *zp; 481 int error; 482 483 ASSERT3B(zfsvfs->z_draining, ==, B_TRUE); 484 485 /* 486 * Iterate over the contents of the unlinked set. 487 */ 488 for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj); 489 zap_cursor_retrieve(&zc, &zap) == 0 && !zfsvfs->z_drain_cancel; 490 zap_cursor_advance(&zc)) { 491 492 /* 493 * See what kind of object we have in list 494 */ 495 496 error = dmu_object_info(zfsvfs->z_os, 497 zap.za_first_integer, &doi); 498 if (error != 0) 499 continue; 500 501 ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) || 502 (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS)); 503 /* 504 * We need to re-mark these list entries for deletion, 505 * so we pull them back into core and set zp->z_unlinked. 506 */ 507 error = zfs_zget(zfsvfs, zap.za_first_integer, &zp); 508 509 /* 510 * We may pick up znodes that are already marked for deletion. 511 * This could happen during the purge of an extended attribute 512 * directory. All we need to do is skip over them, since they 513 * are already in the system marked z_unlinked. 514 */ 515 if (error != 0) 516 continue; 517 518 zp->z_unlinked = B_TRUE; 519 520 /* 521 * zrele() decrements the znode's ref count and may cause 522 * it to be synchronously freed. We interrupt freeing 523 * of this znode by checking the return value of 524 * dmu_objset_zfs_unmounting() in dmu_free_long_range() 525 * when an unmount is requested. 526 */ 527 zrele(zp); 528 ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE); 529 } 530 zap_cursor_fini(&zc); 531 532 zfsvfs->z_draining = B_FALSE; 533 zfsvfs->z_drain_task = TASKQID_INVALID; 534 } 535 536 /* 537 * Sets z_draining then tries to dispatch async unlinked drain. 538 * If that fails executes synchronous unlinked drain. 539 */ 540 void 541 zfs_unlinked_drain(zfsvfs_t *zfsvfs) 542 { 543 ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE); 544 ASSERT3B(zfsvfs->z_draining, ==, B_FALSE); 545 546 zfsvfs->z_draining = B_TRUE; 547 zfsvfs->z_drain_cancel = B_FALSE; 548 549 zfsvfs->z_drain_task = taskq_dispatch( 550 dsl_pool_unlinked_drain_taskq(dmu_objset_pool(zfsvfs->z_os)), 551 zfs_unlinked_drain_task, zfsvfs, TQ_SLEEP); 552 if (zfsvfs->z_drain_task == TASKQID_INVALID) { 553 zfs_dbgmsg("async zfs_unlinked_drain dispatch failed"); 554 zfs_unlinked_drain_task(zfsvfs); 555 } 556 } 557 558 /* 559 * Wait for the unlinked drain taskq task to stop. This will interrupt the 560 * unlinked set processing if it is in progress. 561 */ 562 void 563 zfs_unlinked_drain_stop_wait(zfsvfs_t *zfsvfs) 564 { 565 ASSERT3B(zfsvfs->z_unmounted, ==, B_FALSE); 566 567 if (zfsvfs->z_draining) { 568 zfsvfs->z_drain_cancel = B_TRUE; 569 taskq_cancel_id(dsl_pool_unlinked_drain_taskq( 570 dmu_objset_pool(zfsvfs->z_os)), zfsvfs->z_drain_task); 571 zfsvfs->z_drain_task = TASKQID_INVALID; 572 zfsvfs->z_draining = B_FALSE; 573 } 574 } 575 576 /* 577 * Delete the entire contents of a directory. Return a count 578 * of the number of entries that could not be deleted. If we encounter 579 * an error, return a count of at least one so that the directory stays 580 * in the unlinked set. 581 * 582 * NOTE: this function assumes that the directory is inactive, 583 * so there is no need to lock its entries before deletion. 584 * Also, it assumes the directory contents is *only* regular 585 * files. 586 */ 587 static int 588 zfs_purgedir(znode_t *dzp) 589 { 590 zap_cursor_t zc; 591 zap_attribute_t zap; 592 znode_t *xzp; 593 dmu_tx_t *tx; 594 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 595 zfs_dirlock_t dl; 596 int skipped = 0; 597 int error; 598 599 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); 600 (error = zap_cursor_retrieve(&zc, &zap)) == 0; 601 zap_cursor_advance(&zc)) { 602 error = zfs_zget(zfsvfs, 603 ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp); 604 if (error) { 605 skipped += 1; 606 continue; 607 } 608 609 ASSERT(S_ISREG(ZTOI(xzp)->i_mode) || 610 S_ISLNK(ZTOI(xzp)->i_mode)); 611 612 tx = dmu_tx_create(zfsvfs->z_os); 613 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 614 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name); 615 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 616 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 617 /* Is this really needed ? */ 618 zfs_sa_upgrade_txholds(tx, xzp); 619 dmu_tx_mark_netfree(tx); 620 error = dmu_tx_assign(tx, TXG_WAIT); 621 if (error) { 622 dmu_tx_abort(tx); 623 zfs_zrele_async(xzp); 624 skipped += 1; 625 continue; 626 } 627 bzero(&dl, sizeof (dl)); 628 dl.dl_dzp = dzp; 629 dl.dl_name = zap.za_name; 630 631 error = zfs_link_destroy(&dl, xzp, tx, 0, NULL); 632 if (error) 633 skipped += 1; 634 dmu_tx_commit(tx); 635 636 zfs_zrele_async(xzp); 637 } 638 zap_cursor_fini(&zc); 639 if (error != ENOENT) 640 skipped += 1; 641 return (skipped); 642 } 643 644 void 645 zfs_rmnode(znode_t *zp) 646 { 647 zfsvfs_t *zfsvfs = ZTOZSB(zp); 648 objset_t *os = zfsvfs->z_os; 649 znode_t *xzp = NULL; 650 dmu_tx_t *tx; 651 uint64_t acl_obj; 652 uint64_t xattr_obj; 653 uint64_t links; 654 int error; 655 656 ASSERT(ZTOI(zp)->i_nlink == 0); 657 ASSERT(atomic_read(&ZTOI(zp)->i_count) == 0); 658 659 /* 660 * If this is an attribute directory, purge its contents. 661 */ 662 if (S_ISDIR(ZTOI(zp)->i_mode) && (zp->z_pflags & ZFS_XATTR)) { 663 if (zfs_purgedir(zp) != 0) { 664 /* 665 * Not enough space to delete some xattrs. 666 * Leave it in the unlinked set. 667 */ 668 zfs_znode_dmu_fini(zp); 669 670 return; 671 } 672 } 673 674 /* 675 * Free up all the data in the file. We don't do this for directories 676 * because we need truncate and remove to be in the same tx, like in 677 * zfs_znode_delete(). Otherwise, if we crash here we'll end up with 678 * an inconsistent truncated zap object in the delete queue. Note a 679 * truncated file is harmless since it only contains user data. 680 */ 681 if (S_ISREG(ZTOI(zp)->i_mode)) { 682 error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END); 683 if (error) { 684 /* 685 * Not enough space or we were interrupted by unmount. 686 * Leave the file in the unlinked set. 687 */ 688 zfs_znode_dmu_fini(zp); 689 return; 690 } 691 } 692 693 /* 694 * If the file has extended attributes, we're going to unlink 695 * the xattr dir. 696 */ 697 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 698 &xattr_obj, sizeof (xattr_obj)); 699 if (error == 0 && xattr_obj) { 700 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 701 ASSERT(error == 0); 702 } 703 704 acl_obj = zfs_external_acl(zp); 705 706 /* 707 * Set up the final transaction. 708 */ 709 tx = dmu_tx_create(os); 710 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 711 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 712 if (xzp) { 713 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL); 714 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 715 } 716 if (acl_obj) 717 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 718 719 zfs_sa_upgrade_txholds(tx, zp); 720 error = dmu_tx_assign(tx, TXG_WAIT); 721 if (error) { 722 /* 723 * Not enough space to delete the file. Leave it in the 724 * unlinked set, leaking it until the fs is remounted (at 725 * which point we'll call zfs_unlinked_drain() to process it). 726 */ 727 dmu_tx_abort(tx); 728 zfs_znode_dmu_fini(zp); 729 goto out; 730 } 731 732 if (xzp) { 733 ASSERT(error == 0); 734 mutex_enter(&xzp->z_lock); 735 xzp->z_unlinked = B_TRUE; /* mark xzp for deletion */ 736 clear_nlink(ZTOI(xzp)); /* no more links to it */ 737 links = 0; 738 VERIFY(0 == sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 739 &links, sizeof (links), tx)); 740 mutex_exit(&xzp->z_lock); 741 zfs_unlinked_add(xzp, tx); 742 } 743 744 mutex_enter(&os->os_dsl_dataset->ds_dir->dd_activity_lock); 745 746 /* 747 * Remove this znode from the unlinked set. If a has rollback has 748 * occurred while a file is open and unlinked. Then when the file 749 * is closed post rollback it will not exist in the rolled back 750 * version of the unlinked object. 751 */ 752 error = zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, 753 zp->z_id, tx); 754 VERIFY(error == 0 || error == ENOENT); 755 756 uint64_t count; 757 if (zap_count(os, zfsvfs->z_unlinkedobj, &count) == 0 && count == 0) { 758 cv_broadcast(&os->os_dsl_dataset->ds_dir->dd_activity_cv); 759 } 760 761 mutex_exit(&os->os_dsl_dataset->ds_dir->dd_activity_lock); 762 763 dataset_kstats_update_nunlinked_kstat(&zfsvfs->z_kstat, 1); 764 765 zfs_znode_delete(zp, tx); 766 767 dmu_tx_commit(tx); 768 out: 769 if (xzp) 770 zfs_zrele_async(xzp); 771 } 772 773 static uint64_t 774 zfs_dirent(znode_t *zp, uint64_t mode) 775 { 776 uint64_t de = zp->z_id; 777 778 if (ZTOZSB(zp)->z_version >= ZPL_VERSION_DIRENT_TYPE) 779 de |= IFTODT(mode) << 60; 780 return (de); 781 } 782 783 /* 784 * Link zp into dl. Can fail in the following cases : 785 * - if zp has been unlinked. 786 * - if the number of entries with the same hash (aka. colliding entries) 787 * exceed the capacity of a leaf-block of fatzap and splitting of the 788 * leaf-block does not help. 789 */ 790 int 791 zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag) 792 { 793 znode_t *dzp = dl->dl_dzp; 794 zfsvfs_t *zfsvfs = ZTOZSB(zp); 795 uint64_t value; 796 int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode); 797 sa_bulk_attr_t bulk[5]; 798 uint64_t mtime[2], ctime[2]; 799 uint64_t links; 800 int count = 0; 801 int error; 802 803 mutex_enter(&zp->z_lock); 804 805 if (!(flag & ZRENAMING)) { 806 if (zp->z_unlinked) { /* no new links to unlinked zp */ 807 ASSERT(!(flag & (ZNEW | ZEXISTS))); 808 mutex_exit(&zp->z_lock); 809 return (SET_ERROR(ENOENT)); 810 } 811 if (!(flag & ZNEW)) { 812 /* 813 * ZNEW nodes come from zfs_mknode() where the link 814 * count has already been initialised 815 */ 816 inc_nlink(ZTOI(zp)); 817 links = ZTOI(zp)->i_nlink; 818 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), 819 NULL, &links, sizeof (links)); 820 } 821 } 822 823 value = zfs_dirent(zp, zp->z_mode); 824 error = zap_add(ZTOZSB(zp)->z_os, dzp->z_id, dl->dl_name, 8, 1, 825 &value, tx); 826 827 /* 828 * zap_add could fail to add the entry if it exceeds the capacity of the 829 * leaf-block and zap_leaf_split() failed to help. 830 * The caller of this routine is responsible for failing the transaction 831 * which will rollback the SA updates done above. 832 */ 833 if (error != 0) { 834 if (!(flag & ZRENAMING) && !(flag & ZNEW)) 835 drop_nlink(ZTOI(zp)); 836 mutex_exit(&zp->z_lock); 837 return (error); 838 } 839 840 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, 841 &dzp->z_id, sizeof (dzp->z_id)); 842 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 843 &zp->z_pflags, sizeof (zp->z_pflags)); 844 845 if (!(flag & ZNEW)) { 846 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 847 ctime, sizeof (ctime)); 848 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, 849 ctime); 850 } 851 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 852 ASSERT(error == 0); 853 854 mutex_exit(&zp->z_lock); 855 856 mutex_enter(&dzp->z_lock); 857 dzp->z_size++; 858 if (zp_is_dir) 859 inc_nlink(ZTOI(dzp)); 860 links = ZTOI(dzp)->i_nlink; 861 count = 0; 862 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 863 &dzp->z_size, sizeof (dzp->z_size)); 864 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 865 &links, sizeof (links)); 866 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 867 mtime, sizeof (mtime)); 868 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 869 ctime, sizeof (ctime)); 870 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 871 &dzp->z_pflags, sizeof (dzp->z_pflags)); 872 zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime); 873 error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx); 874 ASSERT(error == 0); 875 mutex_exit(&dzp->z_lock); 876 877 return (0); 878 } 879 880 /* 881 * The match type in the code for this function should conform to: 882 * 883 * ------------------------------------------------------------------------ 884 * fs type | z_norm | lookup type | match type 885 * ---------|-------------|-------------|---------------------------------- 886 * CS !norm | 0 | 0 | 0 (exact) 887 * CS norm | formX | 0 | MT_NORMALIZE 888 * CI !norm | upper | !ZCIEXACT | MT_NORMALIZE 889 * CI !norm | upper | ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE 890 * CI norm | upper|formX | !ZCIEXACT | MT_NORMALIZE 891 * CI norm | upper|formX | ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE 892 * CM !norm | upper | !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE 893 * CM !norm | upper | ZCILOOK | MT_NORMALIZE 894 * CM norm | upper|formX | !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE 895 * CM norm | upper|formX | ZCILOOK | MT_NORMALIZE 896 * 897 * Abbreviations: 898 * CS = Case Sensitive, CI = Case Insensitive, CM = Case Mixed 899 * upper = case folding set by fs type on creation (U8_TEXTPREP_TOUPPER) 900 * formX = unicode normalization form set on fs creation 901 */ 902 static int 903 zfs_dropname(zfs_dirlock_t *dl, znode_t *zp, znode_t *dzp, dmu_tx_t *tx, 904 int flag) 905 { 906 int error; 907 908 if (ZTOZSB(zp)->z_norm) { 909 matchtype_t mt = MT_NORMALIZE; 910 911 if ((ZTOZSB(zp)->z_case == ZFS_CASE_INSENSITIVE && 912 (flag & ZCIEXACT)) || 913 (ZTOZSB(zp)->z_case == ZFS_CASE_MIXED && 914 !(flag & ZCILOOK))) { 915 mt |= MT_MATCH_CASE; 916 } 917 918 error = zap_remove_norm(ZTOZSB(zp)->z_os, dzp->z_id, 919 dl->dl_name, mt, tx); 920 } else { 921 error = zap_remove(ZTOZSB(zp)->z_os, dzp->z_id, dl->dl_name, 922 tx); 923 } 924 925 return (error); 926 } 927 928 /* 929 * Unlink zp from dl, and mark zp for deletion if this was the last link. Can 930 * fail if zp is a mount point (EBUSY) or a non-empty directory (ENOTEMPTY). 931 * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list. 932 * If it's non-NULL, we use it to indicate whether the znode needs deletion, 933 * and it's the caller's job to do it. 934 */ 935 int 936 zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag, 937 boolean_t *unlinkedp) 938 { 939 znode_t *dzp = dl->dl_dzp; 940 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 941 int zp_is_dir = S_ISDIR(ZTOI(zp)->i_mode); 942 boolean_t unlinked = B_FALSE; 943 sa_bulk_attr_t bulk[5]; 944 uint64_t mtime[2], ctime[2]; 945 uint64_t links; 946 int count = 0; 947 int error; 948 949 if (!(flag & ZRENAMING)) { 950 mutex_enter(&zp->z_lock); 951 952 if (zp_is_dir && !zfs_dirempty(zp)) { 953 mutex_exit(&zp->z_lock); 954 return (SET_ERROR(ENOTEMPTY)); 955 } 956 957 /* 958 * If we get here, we are going to try to remove the object. 959 * First try removing the name from the directory; if that 960 * fails, return the error. 961 */ 962 error = zfs_dropname(dl, zp, dzp, tx, flag); 963 if (error != 0) { 964 mutex_exit(&zp->z_lock); 965 return (error); 966 } 967 968 if (ZTOI(zp)->i_nlink <= zp_is_dir) { 969 zfs_panic_recover("zfs: link count on %lu is %u, " 970 "should be at least %u", zp->z_id, 971 (int)ZTOI(zp)->i_nlink, zp_is_dir + 1); 972 set_nlink(ZTOI(zp), zp_is_dir + 1); 973 } 974 drop_nlink(ZTOI(zp)); 975 if (ZTOI(zp)->i_nlink == zp_is_dir) { 976 zp->z_unlinked = B_TRUE; 977 clear_nlink(ZTOI(zp)); 978 unlinked = B_TRUE; 979 } else { 980 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), 981 NULL, &ctime, sizeof (ctime)); 982 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 983 NULL, &zp->z_pflags, sizeof (zp->z_pflags)); 984 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, 985 ctime); 986 } 987 links = ZTOI(zp)->i_nlink; 988 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), 989 NULL, &links, sizeof (links)); 990 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 991 count = 0; 992 ASSERT(error == 0); 993 mutex_exit(&zp->z_lock); 994 } else { 995 error = zfs_dropname(dl, zp, dzp, tx, flag); 996 if (error != 0) 997 return (error); 998 } 999 1000 mutex_enter(&dzp->z_lock); 1001 dzp->z_size--; /* one dirent removed */ 1002 if (zp_is_dir) 1003 drop_nlink(ZTOI(dzp)); /* ".." link from zp */ 1004 links = ZTOI(dzp)->i_nlink; 1005 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), 1006 NULL, &links, sizeof (links)); 1007 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1008 NULL, &dzp->z_size, sizeof (dzp->z_size)); 1009 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), 1010 NULL, ctime, sizeof (ctime)); 1011 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 1012 NULL, mtime, sizeof (mtime)); 1013 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1014 NULL, &dzp->z_pflags, sizeof (dzp->z_pflags)); 1015 zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime); 1016 error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx); 1017 ASSERT(error == 0); 1018 mutex_exit(&dzp->z_lock); 1019 1020 if (unlinkedp != NULL) 1021 *unlinkedp = unlinked; 1022 else if (unlinked) 1023 zfs_unlinked_add(zp, tx); 1024 1025 return (0); 1026 } 1027 1028 /* 1029 * Indicate whether the directory is empty. Works with or without z_lock 1030 * held, but can only be consider a hint in the latter case. Returns true 1031 * if only "." and ".." remain and there's no work in progress. 1032 * 1033 * The internal ZAP size, rather than zp->z_size, needs to be checked since 1034 * some consumers (Lustre) do not strictly maintain an accurate SA_ZPL_SIZE. 1035 */ 1036 boolean_t 1037 zfs_dirempty(znode_t *dzp) 1038 { 1039 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 1040 uint64_t count; 1041 int error; 1042 1043 if (dzp->z_dirlocks != NULL) 1044 return (B_FALSE); 1045 1046 error = zap_count(zfsvfs->z_os, dzp->z_id, &count); 1047 if (error != 0 || count != 0) 1048 return (B_FALSE); 1049 1050 return (B_TRUE); 1051 } 1052 1053 int 1054 zfs_make_xattrdir(znode_t *zp, vattr_t *vap, znode_t **xzpp, cred_t *cr) 1055 { 1056 zfsvfs_t *zfsvfs = ZTOZSB(zp); 1057 znode_t *xzp; 1058 dmu_tx_t *tx; 1059 int error; 1060 zfs_acl_ids_t acl_ids; 1061 boolean_t fuid_dirtied; 1062 #ifdef ZFS_DEBUG 1063 uint64_t parent; 1064 #endif 1065 1066 *xzpp = NULL; 1067 1068 if ((error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, 0, B_FALSE, cr))) 1069 return (error); 1070 1071 if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL, 1072 &acl_ids)) != 0) 1073 return (error); 1074 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zp->z_projid)) { 1075 zfs_acl_ids_free(&acl_ids); 1076 return (SET_ERROR(EDQUOT)); 1077 } 1078 1079 tx = dmu_tx_create(zfsvfs->z_os); 1080 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1081 ZFS_SA_BASE_ATTR_SIZE); 1082 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1083 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1084 fuid_dirtied = zfsvfs->z_fuid_dirty; 1085 if (fuid_dirtied) 1086 zfs_fuid_txhold(zfsvfs, tx); 1087 error = dmu_tx_assign(tx, TXG_WAIT); 1088 if (error) { 1089 zfs_acl_ids_free(&acl_ids); 1090 dmu_tx_abort(tx); 1091 return (error); 1092 } 1093 zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, &acl_ids); 1094 1095 if (fuid_dirtied) 1096 zfs_fuid_sync(zfsvfs, tx); 1097 1098 #ifdef ZFS_DEBUG 1099 error = sa_lookup(xzp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 1100 &parent, sizeof (parent)); 1101 ASSERT(error == 0 && parent == zp->z_id); 1102 #endif 1103 1104 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xzp->z_id, 1105 sizeof (xzp->z_id), tx)); 1106 1107 if (!zp->z_unlinked) 1108 (void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, 1109 xzp, "", NULL, acl_ids.z_fuidp, vap); 1110 1111 zfs_acl_ids_free(&acl_ids); 1112 dmu_tx_commit(tx); 1113 1114 *xzpp = xzp; 1115 1116 return (0); 1117 } 1118 1119 /* 1120 * Return a znode for the extended attribute directory for zp. 1121 * ** If the directory does not already exist, it is created ** 1122 * 1123 * IN: zp - znode to obtain attribute directory from 1124 * cr - credentials of caller 1125 * flags - flags from the VOP_LOOKUP call 1126 * 1127 * OUT: xipp - pointer to extended attribute znode 1128 * 1129 * RETURN: 0 on success 1130 * error number on failure 1131 */ 1132 int 1133 zfs_get_xattrdir(znode_t *zp, znode_t **xzpp, cred_t *cr, int flags) 1134 { 1135 zfsvfs_t *zfsvfs = ZTOZSB(zp); 1136 znode_t *xzp; 1137 zfs_dirlock_t *dl; 1138 vattr_t va; 1139 int error; 1140 top: 1141 error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL); 1142 if (error) 1143 return (error); 1144 1145 if (xzp != NULL) { 1146 *xzpp = xzp; 1147 zfs_dirent_unlock(dl); 1148 return (0); 1149 } 1150 1151 if (!(flags & CREATE_XATTR_DIR)) { 1152 zfs_dirent_unlock(dl); 1153 return (SET_ERROR(ENOENT)); 1154 } 1155 1156 if (zfs_is_readonly(zfsvfs)) { 1157 zfs_dirent_unlock(dl); 1158 return (SET_ERROR(EROFS)); 1159 } 1160 1161 /* 1162 * The ability to 'create' files in an attribute 1163 * directory comes from the write_xattr permission on the base file. 1164 * 1165 * The ability to 'search' an attribute directory requires 1166 * read_xattr permission on the base file. 1167 * 1168 * Once in a directory the ability to read/write attributes 1169 * is controlled by the permissions on the attribute file. 1170 */ 1171 va.va_mask = ATTR_MODE | ATTR_UID | ATTR_GID; 1172 va.va_mode = S_IFDIR | S_ISVTX | 0777; 1173 zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid); 1174 1175 va.va_dentry = NULL; 1176 error = zfs_make_xattrdir(zp, &va, xzpp, cr); 1177 zfs_dirent_unlock(dl); 1178 1179 if (error == ERESTART) { 1180 /* NB: we already did dmu_tx_wait() if necessary */ 1181 goto top; 1182 } 1183 1184 return (error); 1185 } 1186 1187 /* 1188 * Decide whether it is okay to remove within a sticky directory. 1189 * 1190 * In sticky directories, write access is not sufficient; 1191 * you can remove entries from a directory only if: 1192 * 1193 * you own the directory, 1194 * you own the entry, 1195 * you have write access to the entry, 1196 * or you are privileged (checked in secpolicy...). 1197 * 1198 * The function returns 0 if remove access is granted. 1199 */ 1200 int 1201 zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr) 1202 { 1203 uid_t uid; 1204 uid_t downer; 1205 uid_t fowner; 1206 zfsvfs_t *zfsvfs = ZTOZSB(zdp); 1207 1208 if (zfsvfs->z_replay) 1209 return (0); 1210 1211 if ((zdp->z_mode & S_ISVTX) == 0) 1212 return (0); 1213 1214 downer = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(ZTOI(zdp)->i_uid), 1215 cr, ZFS_OWNER); 1216 fowner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(ZTOI(zp)->i_uid), 1217 cr, ZFS_OWNER); 1218 1219 if ((uid = crgetuid(cr)) == downer || uid == fowner || 1220 zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0) 1221 return (0); 1222 else 1223 return (secpolicy_vnode_remove(cr)); 1224 } 1225