1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC. 25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 26 * LLNL-CODE-403049. 27 * Rewritten for Linux by: 28 * Rohan Puri <rohan.puri15@gmail.com> 29 * Brian Behlendorf <behlendorf1@llnl.gov> 30 * Copyright (c) 2013 by Delphix. All rights reserved. 31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. 32 * Copyright (c) 2018 George Melikov. All Rights Reserved. 33 * Copyright (c) 2019 Datto, Inc. All rights reserved. 34 * Copyright (c) 2020 The MathWorks, Inc. All rights reserved. 35 */ 36 37 /* 38 * ZFS control directory (a.k.a. ".zfs") 39 * 40 * This directory provides a common location for all ZFS meta-objects. 41 * Currently, this is only the 'snapshot' and 'shares' directory, but this may 42 * expand in the future. The elements are built dynamically, as the hierarchy 43 * does not actually exist on disk. 44 * 45 * For 'snapshot', we don't want to have all snapshots always mounted, because 46 * this would take up a huge amount of space in /etc/mnttab. We have three 47 * types of objects: 48 * 49 * ctldir ------> snapshotdir -------> snapshot 50 * | 51 * | 52 * V 53 * mounted fs 54 * 55 * The 'snapshot' node contains just enough information to lookup '..' and act 56 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 57 * perform an automount of the underlying filesystem and return the 58 * corresponding inode. 59 * 60 * All mounts are handled automatically by an user mode helper which invokes 61 * the mount procedure. Unmounts are handled by allowing the mount 62 * point to expire so the kernel may automatically unmount it. 63 * 64 * The '.zfs', '.zfs/snapshot', and all directories created under 65 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same 66 * zfsvfs_t as the head filesystem (what '.zfs' lives under). 67 * 68 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths 69 * (ie: snapshots) are complete ZFS filesystems and have their own unique 70 * zfsvfs_t. However, the fsid reported by these mounts will be the same 71 * as that used by the parent zfsvfs_t to make NFS happy. 72 */ 73 74 #include <sys/types.h> 75 #include <sys/param.h> 76 #include <sys/time.h> 77 #include <sys/sysmacros.h> 78 #include <sys/pathname.h> 79 #include <sys/vfs.h> 80 #include <sys/zfs_ctldir.h> 81 #include <sys/zfs_ioctl.h> 82 #include <sys/zfs_vfsops.h> 83 #include <sys/zfs_vnops.h> 84 #include <sys/stat.h> 85 #include <sys/dmu.h> 86 #include <sys/dmu_objset.h> 87 #include <sys/dsl_destroy.h> 88 #include <sys/dsl_deleg.h> 89 #include <sys/zpl.h> 90 #include <sys/mntent.h> 91 #include "zfs_namecheck.h" 92 93 /* 94 * Two AVL trees are maintained which contain all currently automounted 95 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t 96 * entry which MUST: 97 * 98 * - be attached to both trees, and 99 * - be unique, no duplicate entries are allowed. 100 * 101 * The zfs_snapshots_by_name tree is indexed by the full dataset name 102 * while the zfs_snapshots_by_objsetid tree is indexed by the unique 103 * objsetid. This allows for fast lookups either by name or objsetid. 104 */ 105 static avl_tree_t zfs_snapshots_by_name; 106 static avl_tree_t zfs_snapshots_by_objsetid; 107 static krwlock_t zfs_snapshot_lock; 108 109 /* 110 * Control Directory Tunables (.zfs) 111 */ 112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT; 113 static int zfs_admin_snapshot = 0; 114 static int zfs_snapshot_no_setuid = 0; 115 116 typedef struct { 117 char *se_name; /* full snapshot name */ 118 char *se_path; /* full mount path */ 119 spa_t *se_spa; /* pool spa */ 120 uint64_t se_objsetid; /* snapshot objset id */ 121 struct dentry *se_root_dentry; /* snapshot root dentry */ 122 krwlock_t se_taskqid_lock; /* scheduled unmount taskqid lock */ 123 taskqid_t se_taskqid; /* scheduled unmount taskqid */ 124 avl_node_t se_node_name; /* zfs_snapshots_by_name link */ 125 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */ 126 zfs_refcount_t se_refcount; /* reference count */ 127 } zfs_snapentry_t; 128 129 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay); 130 131 /* 132 * Allocate a new zfs_snapentry_t being careful to make a copy of the 133 * the snapshot name and provided mount point. No reference is taken. 134 */ 135 static zfs_snapentry_t * 136 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa, 137 uint64_t objsetid, struct dentry *root_dentry) 138 { 139 zfs_snapentry_t *se; 140 141 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP); 142 143 se->se_name = kmem_strdup(full_name); 144 se->se_path = kmem_strdup(full_path); 145 se->se_spa = spa; 146 se->se_objsetid = objsetid; 147 se->se_root_dentry = root_dentry; 148 se->se_taskqid = TASKQID_INVALID; 149 rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL); 150 151 zfs_refcount_create(&se->se_refcount); 152 153 return (se); 154 } 155 156 /* 157 * Free a zfs_snapentry_t the caller must ensure there are no active 158 * references. 159 */ 160 static void 161 zfsctl_snapshot_free(zfs_snapentry_t *se) 162 { 163 zfs_refcount_destroy(&se->se_refcount); 164 kmem_strfree(se->se_name); 165 kmem_strfree(se->se_path); 166 rw_destroy(&se->se_taskqid_lock); 167 168 kmem_free(se, sizeof (zfs_snapentry_t)); 169 } 170 171 /* 172 * Hold a reference on the zfs_snapentry_t. 173 */ 174 static void 175 zfsctl_snapshot_hold(zfs_snapentry_t *se) 176 { 177 zfs_refcount_add(&se->se_refcount, NULL); 178 } 179 180 /* 181 * Release a reference on the zfs_snapentry_t. When the number of 182 * references drops to zero the structure will be freed. 183 */ 184 static void 185 zfsctl_snapshot_rele(zfs_snapentry_t *se) 186 { 187 if (zfs_refcount_remove(&se->se_refcount, NULL) == 0) 188 zfsctl_snapshot_free(se); 189 } 190 191 /* 192 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and 193 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part 194 * of the trees a reference is held. 195 */ 196 static void 197 zfsctl_snapshot_add(zfs_snapentry_t *se) 198 { 199 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock)); 200 zfsctl_snapshot_hold(se); 201 avl_add(&zfs_snapshots_by_name, se); 202 avl_add(&zfs_snapshots_by_objsetid, se); 203 } 204 205 /* 206 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and 207 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped, 208 * this can result in the structure being freed if that was the last 209 * remaining reference. 210 */ 211 static void 212 zfsctl_snapshot_remove(zfs_snapentry_t *se) 213 { 214 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock)); 215 avl_remove(&zfs_snapshots_by_name, se); 216 avl_remove(&zfs_snapshots_by_objsetid, se); 217 zfsctl_snapshot_rele(se); 218 } 219 220 /* 221 * Snapshot name comparison function for the zfs_snapshots_by_name. 222 */ 223 static int 224 snapentry_compare_by_name(const void *a, const void *b) 225 { 226 const zfs_snapentry_t *se_a = a; 227 const zfs_snapentry_t *se_b = b; 228 int ret; 229 230 ret = strcmp(se_a->se_name, se_b->se_name); 231 232 if (ret < 0) 233 return (-1); 234 else if (ret > 0) 235 return (1); 236 else 237 return (0); 238 } 239 240 /* 241 * Snapshot name comparison function for the zfs_snapshots_by_objsetid. 242 */ 243 static int 244 snapentry_compare_by_objsetid(const void *a, const void *b) 245 { 246 const zfs_snapentry_t *se_a = a; 247 const zfs_snapentry_t *se_b = b; 248 249 if (se_a->se_spa != se_b->se_spa) 250 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1); 251 252 if (se_a->se_objsetid < se_b->se_objsetid) 253 return (-1); 254 else if (se_a->se_objsetid > se_b->se_objsetid) 255 return (1); 256 else 257 return (0); 258 } 259 260 /* 261 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname 262 * is found a pointer to the zfs_snapentry_t is returned and a reference 263 * taken on the structure. The caller is responsible for dropping the 264 * reference with zfsctl_snapshot_rele(). If the snapname is not found 265 * NULL will be returned. 266 */ 267 static zfs_snapentry_t * 268 zfsctl_snapshot_find_by_name(const char *snapname) 269 { 270 zfs_snapentry_t *se, search; 271 272 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock)); 273 274 search.se_name = (char *)snapname; 275 se = avl_find(&zfs_snapshots_by_name, &search, NULL); 276 if (se) 277 zfsctl_snapshot_hold(se); 278 279 return (se); 280 } 281 282 /* 283 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id 284 * rather than the snapname. In all other respects it behaves the same 285 * as zfsctl_snapshot_find_by_name(). 286 */ 287 static zfs_snapentry_t * 288 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid) 289 { 290 zfs_snapentry_t *se, search; 291 292 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock)); 293 294 search.se_spa = spa; 295 search.se_objsetid = objsetid; 296 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL); 297 if (se) 298 zfsctl_snapshot_hold(se); 299 300 return (se); 301 } 302 303 /* 304 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is 305 * removed, renamed, and added back to the new correct location in the tree. 306 */ 307 static int 308 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname) 309 { 310 zfs_snapentry_t *se; 311 312 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock)); 313 314 se = zfsctl_snapshot_find_by_name(old_snapname); 315 if (se == NULL) 316 return (SET_ERROR(ENOENT)); 317 318 zfsctl_snapshot_remove(se); 319 kmem_strfree(se->se_name); 320 se->se_name = kmem_strdup(new_snapname); 321 zfsctl_snapshot_add(se); 322 zfsctl_snapshot_rele(se); 323 324 return (0); 325 } 326 327 /* 328 * Delayed task responsible for unmounting an expired automounted snapshot. 329 */ 330 static void 331 snapentry_expire(void *data) 332 { 333 zfs_snapentry_t *se = (zfs_snapentry_t *)data; 334 spa_t *spa = se->se_spa; 335 uint64_t objsetid = se->se_objsetid; 336 337 if (zfs_expire_snapshot <= 0) { 338 zfsctl_snapshot_rele(se); 339 return; 340 } 341 342 rw_enter(&se->se_taskqid_lock, RW_WRITER); 343 se->se_taskqid = TASKQID_INVALID; 344 rw_exit(&se->se_taskqid_lock); 345 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE); 346 zfsctl_snapshot_rele(se); 347 348 /* 349 * Reschedule the unmount if the zfs_snapentry_t wasn't removed. 350 * This can occur when the snapshot is busy. 351 */ 352 rw_enter(&zfs_snapshot_lock, RW_READER); 353 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) { 354 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot); 355 zfsctl_snapshot_rele(se); 356 } 357 rw_exit(&zfs_snapshot_lock); 358 } 359 360 /* 361 * Cancel an automatic unmount of a snapname. This callback is responsible 362 * for dropping the reference on the zfs_snapentry_t which was taken when 363 * during dispatch. 364 */ 365 static void 366 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se) 367 { 368 int err = 0; 369 rw_enter(&se->se_taskqid_lock, RW_WRITER); 370 err = taskq_cancel_id(system_delay_taskq, se->se_taskqid); 371 /* 372 * if we get ENOENT, the taskq couldn't be found to be 373 * canceled, so we can just mark it as invalid because 374 * it's already gone. If we got EBUSY, then we already 375 * blocked until it was gone _anyway_, so we don't care. 376 */ 377 se->se_taskqid = TASKQID_INVALID; 378 rw_exit(&se->se_taskqid_lock); 379 if (err == 0) { 380 zfsctl_snapshot_rele(se); 381 } 382 } 383 384 /* 385 * Dispatch the unmount task for delayed handling with a hold protecting it. 386 */ 387 static void 388 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay) 389 { 390 391 if (delay <= 0) 392 return; 393 394 zfsctl_snapshot_hold(se); 395 rw_enter(&se->se_taskqid_lock, RW_WRITER); 396 /* 397 * If this condition happens, we managed to: 398 * - dispatch once 399 * - want to dispatch _again_ before it returned 400 * 401 * So let's just return - if that task fails at unmounting, 402 * we'll eventually dispatch again, and if it succeeds, 403 * no problem. 404 */ 405 if (se->se_taskqid != TASKQID_INVALID) { 406 rw_exit(&se->se_taskqid_lock); 407 zfsctl_snapshot_rele(se); 408 return; 409 } 410 se->se_taskqid = taskq_dispatch_delay(system_delay_taskq, 411 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ); 412 rw_exit(&se->se_taskqid_lock); 413 } 414 415 /* 416 * Schedule an automatic unmount of objset id to occur in delay seconds from 417 * now. Any previous delayed unmount will be cancelled in favor of the 418 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name() 419 * and held until the outstanding task is handled or cancelled. 420 */ 421 int 422 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay) 423 { 424 zfs_snapentry_t *se; 425 int error = ENOENT; 426 427 rw_enter(&zfs_snapshot_lock, RW_READER); 428 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) { 429 zfsctl_snapshot_unmount_cancel(se); 430 zfsctl_snapshot_unmount_delay_impl(se, delay); 431 zfsctl_snapshot_rele(se); 432 error = 0; 433 } 434 rw_exit(&zfs_snapshot_lock); 435 436 return (error); 437 } 438 439 /* 440 * Check if snapname is currently mounted. Returned non-zero when mounted 441 * and zero when unmounted. 442 */ 443 static boolean_t 444 zfsctl_snapshot_ismounted(const char *snapname) 445 { 446 zfs_snapentry_t *se; 447 boolean_t ismounted = B_FALSE; 448 449 rw_enter(&zfs_snapshot_lock, RW_READER); 450 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) { 451 zfsctl_snapshot_rele(se); 452 ismounted = B_TRUE; 453 } 454 rw_exit(&zfs_snapshot_lock); 455 456 return (ismounted); 457 } 458 459 /* 460 * Check if the given inode is a part of the virtual .zfs directory. 461 */ 462 boolean_t 463 zfsctl_is_node(struct inode *ip) 464 { 465 return (ITOZ(ip)->z_is_ctldir); 466 } 467 468 /* 469 * Check if the given inode is a .zfs/snapshots/snapname directory. 470 */ 471 boolean_t 472 zfsctl_is_snapdir(struct inode *ip) 473 { 474 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS)); 475 } 476 477 /* 478 * Allocate a new inode with the passed id and ops. 479 */ 480 static struct inode * 481 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id, 482 const struct file_operations *fops, const struct inode_operations *ops, 483 uint64_t creation) 484 { 485 struct inode *ip; 486 znode_t *zp; 487 inode_timespec_t now = {.tv_sec = creation}; 488 489 ip = new_inode(zfsvfs->z_sb); 490 if (ip == NULL) 491 return (NULL); 492 493 if (!creation) 494 now = current_time(ip); 495 zp = ITOZ(ip); 496 ASSERT3P(zp->z_dirlocks, ==, NULL); 497 ASSERT3P(zp->z_acl_cached, ==, NULL); 498 ASSERT3P(zp->z_xattr_cached, ==, NULL); 499 zp->z_id = id; 500 zp->z_unlinked = B_FALSE; 501 zp->z_atime_dirty = B_FALSE; 502 zp->z_zn_prefetch = B_FALSE; 503 zp->z_is_sa = B_FALSE; 504 zp->z_is_ctldir = B_TRUE; 505 zp->z_sa_hdl = NULL; 506 zp->z_blksz = 0; 507 zp->z_seq = 0; 508 zp->z_mapcnt = 0; 509 zp->z_size = 0; 510 zp->z_pflags = 0; 511 zp->z_mode = 0; 512 zp->z_sync_cnt = 0; 513 zp->z_sync_writes_cnt = 0; 514 zp->z_async_writes_cnt = 0; 515 ip->i_generation = 0; 516 ip->i_ino = id; 517 ip->i_mode = (S_IFDIR | S_IRWXUGO); 518 ip->i_uid = SUID_TO_KUID(0); 519 ip->i_gid = SGID_TO_KGID(0); 520 ip->i_blkbits = SPA_MINBLOCKSHIFT; 521 zpl_inode_set_atime_to_ts(ip, now); 522 zpl_inode_set_mtime_to_ts(ip, now); 523 zpl_inode_set_ctime_to_ts(ip, now); 524 ip->i_fop = fops; 525 ip->i_op = ops; 526 #if defined(IOP_XATTR) 527 ip->i_opflags &= ~IOP_XATTR; 528 #endif 529 530 if (insert_inode_locked(ip)) { 531 unlock_new_inode(ip); 532 iput(ip); 533 return (NULL); 534 } 535 536 mutex_enter(&zfsvfs->z_znodes_lock); 537 list_insert_tail(&zfsvfs->z_all_znodes, zp); 538 membar_producer(); 539 mutex_exit(&zfsvfs->z_znodes_lock); 540 541 unlock_new_inode(ip); 542 543 return (ip); 544 } 545 546 /* 547 * Lookup the inode with given id, it will be allocated if needed. 548 */ 549 static struct inode * 550 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id, 551 const struct file_operations *fops, const struct inode_operations *ops) 552 { 553 struct inode *ip = NULL; 554 uint64_t creation = 0; 555 dsl_dataset_t *snap_ds; 556 dsl_pool_t *pool; 557 558 while (ip == NULL) { 559 ip = ilookup(zfsvfs->z_sb, (unsigned long)id); 560 if (ip) 561 break; 562 563 if (id <= ZFSCTL_INO_SNAPDIRS && !creation) { 564 pool = dmu_objset_pool(zfsvfs->z_os); 565 dsl_pool_config_enter(pool, FTAG); 566 if (!dsl_dataset_hold_obj(pool, 567 ZFSCTL_INO_SNAPDIRS - id, FTAG, &snap_ds)) { 568 creation = dsl_get_creation(snap_ds); 569 dsl_dataset_rele(snap_ds, FTAG); 570 } 571 dsl_pool_config_exit(pool, FTAG); 572 } 573 574 /* May fail due to concurrent zfsctl_inode_alloc() */ 575 ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops, creation); 576 } 577 578 return (ip); 579 } 580 581 /* 582 * Create the '.zfs' directory. This directory is cached as part of the VFS 583 * structure. This results in a hold on the zfsvfs_t. The code in zfs_umount() 584 * therefore checks against a vfs_count of 2 instead of 1. This reference 585 * is removed when the ctldir is destroyed in the unmount. All other entities 586 * under the '.zfs' directory are created dynamically as needed. 587 * 588 * Because the dynamically created '.zfs' directory entries assume the use 589 * of 64-bit inode numbers this support must be disabled on 32-bit systems. 590 */ 591 int 592 zfsctl_create(zfsvfs_t *zfsvfs) 593 { 594 ASSERT(zfsvfs->z_ctldir == NULL); 595 596 zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT, 597 &zpl_fops_root, &zpl_ops_root, 0); 598 if (zfsvfs->z_ctldir == NULL) 599 return (SET_ERROR(ENOENT)); 600 601 return (0); 602 } 603 604 /* 605 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name. 606 * Only called when the filesystem is unmounted. 607 */ 608 void 609 zfsctl_destroy(zfsvfs_t *zfsvfs) 610 { 611 if (zfsvfs->z_issnap) { 612 zfs_snapentry_t *se; 613 spa_t *spa = zfsvfs->z_os->os_spa; 614 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 615 616 rw_enter(&zfs_snapshot_lock, RW_WRITER); 617 se = zfsctl_snapshot_find_by_objsetid(spa, objsetid); 618 if (se != NULL) 619 zfsctl_snapshot_remove(se); 620 rw_exit(&zfs_snapshot_lock); 621 if (se != NULL) { 622 zfsctl_snapshot_unmount_cancel(se); 623 zfsctl_snapshot_rele(se); 624 } 625 } else if (zfsvfs->z_ctldir) { 626 iput(zfsvfs->z_ctldir); 627 zfsvfs->z_ctldir = NULL; 628 } 629 } 630 631 /* 632 * Given a root znode, retrieve the associated .zfs directory. 633 * Add a hold to the vnode and return it. 634 */ 635 struct inode * 636 zfsctl_root(znode_t *zp) 637 { 638 ASSERT(zfs_has_ctldir(zp)); 639 /* Must have an existing ref, so igrab() cannot return NULL */ 640 VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL); 641 return (ZTOZSB(zp)->z_ctldir); 642 } 643 644 /* 645 * Generate a long fid to indicate a snapdir. We encode whether snapdir is 646 * already mounted in gen field. We do this because nfsd lookup will not 647 * trigger automount. Next time the nfsd does fh_to_dentry, we will notice 648 * this and do automount and return ESTALE to force nfsd revalidate and follow 649 * mount. 650 */ 651 static int 652 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp) 653 { 654 zfid_short_t *zfid = (zfid_short_t *)fidp; 655 zfid_long_t *zlfid = (zfid_long_t *)fidp; 656 uint32_t gen = 0; 657 uint64_t object; 658 uint64_t objsetid; 659 int i; 660 struct dentry *dentry; 661 662 if (fidp->fid_len < LONG_FID_LEN) { 663 fidp->fid_len = LONG_FID_LEN; 664 return (SET_ERROR(ENOSPC)); 665 } 666 667 object = ip->i_ino; 668 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino; 669 zfid->zf_len = LONG_FID_LEN; 670 671 dentry = d_obtain_alias(igrab(ip)); 672 if (!IS_ERR(dentry)) { 673 gen = !!d_mountpoint(dentry); 674 dput(dentry); 675 } 676 677 for (i = 0; i < sizeof (zfid->zf_object); i++) 678 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 679 680 for (i = 0; i < sizeof (zfid->zf_gen); i++) 681 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 682 683 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 684 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 685 686 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 687 zlfid->zf_setgen[i] = 0; 688 689 return (0); 690 } 691 692 /* 693 * Generate an appropriate fid for an entry in the .zfs directory. 694 */ 695 int 696 zfsctl_fid(struct inode *ip, fid_t *fidp) 697 { 698 znode_t *zp = ITOZ(ip); 699 zfsvfs_t *zfsvfs = ITOZSB(ip); 700 uint64_t object = zp->z_id; 701 zfid_short_t *zfid; 702 int i; 703 int error; 704 705 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 706 return (error); 707 708 if (zfsctl_is_snapdir(ip)) { 709 zfs_exit(zfsvfs, FTAG); 710 return (zfsctl_snapdir_fid(ip, fidp)); 711 } 712 713 if (fidp->fid_len < SHORT_FID_LEN) { 714 fidp->fid_len = SHORT_FID_LEN; 715 zfs_exit(zfsvfs, FTAG); 716 return (SET_ERROR(ENOSPC)); 717 } 718 719 zfid = (zfid_short_t *)fidp; 720 721 zfid->zf_len = SHORT_FID_LEN; 722 723 for (i = 0; i < sizeof (zfid->zf_object); i++) 724 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 725 726 /* .zfs znodes always have a generation number of 0 */ 727 for (i = 0; i < sizeof (zfid->zf_gen); i++) 728 zfid->zf_gen[i] = 0; 729 730 zfs_exit(zfsvfs, FTAG); 731 return (0); 732 } 733 734 /* 735 * Construct a full dataset name in full_name: "pool/dataset@snap_name" 736 */ 737 static int 738 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len, 739 char *full_name) 740 { 741 objset_t *os = zfsvfs->z_os; 742 743 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0) 744 return (SET_ERROR(EILSEQ)); 745 746 dmu_objset_name(os, full_name); 747 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len) 748 return (SET_ERROR(ENAMETOOLONG)); 749 750 (void) strcat(full_name, "@"); 751 (void) strcat(full_name, snap_name); 752 753 return (0); 754 } 755 756 /* 757 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/" 758 */ 759 static int 760 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid, 761 int path_len, char *full_path) 762 { 763 objset_t *os = zfsvfs->z_os; 764 fstrans_cookie_t cookie; 765 char *snapname; 766 boolean_t case_conflict; 767 uint64_t id, pos = 0; 768 int error = 0; 769 770 cookie = spl_fstrans_mark(); 771 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 772 773 while (error == 0) { 774 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 775 error = dmu_snapshot_list_next(zfsvfs->z_os, 776 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos, 777 &case_conflict); 778 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 779 if (error) 780 goto out; 781 782 if (id == objsetid) 783 break; 784 } 785 786 mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock); 787 if (zfsvfs->z_vfs->vfs_mntpoint != NULL) { 788 snprintf(full_path, path_len, "%s/.zfs/snapshot/%s", 789 zfsvfs->z_vfs->vfs_mntpoint, snapname); 790 } else 791 error = SET_ERROR(ENOENT); 792 mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock); 793 794 out: 795 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN); 796 spl_fstrans_unmark(cookie); 797 798 return (error); 799 } 800 801 /* 802 * Special case the handling of "..". 803 */ 804 int 805 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp, 806 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) 807 { 808 zfsvfs_t *zfsvfs = ITOZSB(dip); 809 int error = 0; 810 811 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 812 return (error); 813 814 if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) { 815 *ipp = NULL; 816 } else if (strcmp(name, "..") == 0) { 817 *ipp = dip->i_sb->s_root->d_inode; 818 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) { 819 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR, 820 &zpl_fops_snapdir, &zpl_ops_snapdir); 821 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) { 822 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES, 823 &zpl_fops_shares, &zpl_ops_shares); 824 } else { 825 *ipp = NULL; 826 } 827 828 if (*ipp == NULL) 829 error = SET_ERROR(ENOENT); 830 831 zfs_exit(zfsvfs, FTAG); 832 833 return (error); 834 } 835 836 /* 837 * Lookup entry point for the 'snapshot' directory. Try to open the 838 * snapshot if it exist, creating the pseudo filesystem inode as necessary. 839 */ 840 int 841 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp, 842 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) 843 { 844 zfsvfs_t *zfsvfs = ITOZSB(dip); 845 uint64_t id; 846 int error; 847 848 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 849 return (error); 850 851 error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id); 852 if (error) { 853 zfs_exit(zfsvfs, FTAG); 854 return (error); 855 } 856 857 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id, 858 &simple_dir_operations, &simple_dir_inode_operations); 859 if (*ipp == NULL) 860 error = SET_ERROR(ENOENT); 861 862 zfs_exit(zfsvfs, FTAG); 863 864 return (error); 865 } 866 867 /* 868 * Renaming a directory under '.zfs/snapshot' will automatically trigger 869 * a rename of the snapshot to the new given name. The rename is confined 870 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere. 871 */ 872 int 873 zfsctl_snapdir_rename(struct inode *sdip, const char *snm, 874 struct inode *tdip, const char *tnm, cred_t *cr, int flags) 875 { 876 zfsvfs_t *zfsvfs = ITOZSB(sdip); 877 char *to, *from, *real, *fsname; 878 int error; 879 880 if (!zfs_admin_snapshot) 881 return (SET_ERROR(EACCES)); 882 883 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 884 return (error); 885 886 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 887 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 888 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 889 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 890 891 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 892 error = dmu_snapshot_realname(zfsvfs->z_os, snm, real, 893 ZFS_MAX_DATASET_NAME_LEN, NULL); 894 if (error == 0) { 895 snm = real; 896 } else if (error != ENOTSUP) { 897 goto out; 898 } 899 } 900 901 dmu_objset_name(zfsvfs->z_os, fsname); 902 903 error = zfsctl_snapshot_name(ITOZSB(sdip), snm, 904 ZFS_MAX_DATASET_NAME_LEN, from); 905 if (error == 0) 906 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm, 907 ZFS_MAX_DATASET_NAME_LEN, to); 908 if (error == 0) 909 error = zfs_secpolicy_rename_perms(from, to, cr); 910 if (error != 0) 911 goto out; 912 913 /* 914 * Cannot move snapshots out of the snapdir. 915 */ 916 if (sdip != tdip) { 917 error = SET_ERROR(EINVAL); 918 goto out; 919 } 920 921 /* 922 * No-op when names are identical. 923 */ 924 if (strcmp(snm, tnm) == 0) { 925 error = 0; 926 goto out; 927 } 928 929 rw_enter(&zfs_snapshot_lock, RW_WRITER); 930 931 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE); 932 if (error == 0) 933 (void) zfsctl_snapshot_rename(snm, tnm); 934 935 rw_exit(&zfs_snapshot_lock); 936 out: 937 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN); 938 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN); 939 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN); 940 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN); 941 942 zfs_exit(zfsvfs, FTAG); 943 944 return (error); 945 } 946 947 /* 948 * Removing a directory under '.zfs/snapshot' will automatically trigger 949 * the removal of the snapshot with the given name. 950 */ 951 int 952 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr, 953 int flags) 954 { 955 zfsvfs_t *zfsvfs = ITOZSB(dip); 956 char *snapname, *real; 957 int error; 958 959 if (!zfs_admin_snapshot) 960 return (SET_ERROR(EACCES)); 961 962 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 963 return (error); 964 965 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 966 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 967 968 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 969 error = dmu_snapshot_realname(zfsvfs->z_os, name, real, 970 ZFS_MAX_DATASET_NAME_LEN, NULL); 971 if (error == 0) { 972 name = real; 973 } else if (error != ENOTSUP) { 974 goto out; 975 } 976 } 977 978 error = zfsctl_snapshot_name(ITOZSB(dip), name, 979 ZFS_MAX_DATASET_NAME_LEN, snapname); 980 if (error == 0) 981 error = zfs_secpolicy_destroy_perms(snapname, cr); 982 if (error != 0) 983 goto out; 984 985 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE); 986 if ((error == 0) || (error == ENOENT)) 987 error = dsl_destroy_snapshot(snapname, B_FALSE); 988 out: 989 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN); 990 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN); 991 992 zfs_exit(zfsvfs, FTAG); 993 994 return (error); 995 } 996 997 /* 998 * Creating a directory under '.zfs/snapshot' will automatically trigger 999 * the creation of a new snapshot with the given name. 1000 */ 1001 int 1002 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap, 1003 struct inode **ipp, cred_t *cr, int flags) 1004 { 1005 zfsvfs_t *zfsvfs = ITOZSB(dip); 1006 char *dsname; 1007 int error; 1008 1009 if (!zfs_admin_snapshot) 1010 return (SET_ERROR(EACCES)); 1011 1012 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 1013 1014 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) { 1015 error = SET_ERROR(EILSEQ); 1016 goto out; 1017 } 1018 1019 dmu_objset_name(zfsvfs->z_os, dsname); 1020 1021 error = zfs_secpolicy_snapshot_perms(dsname, cr); 1022 if (error != 0) 1023 goto out; 1024 1025 if (error == 0) { 1026 error = dmu_objset_snapshot_one(dsname, dirname); 1027 if (error != 0) 1028 goto out; 1029 1030 error = zfsctl_snapdir_lookup(dip, dirname, ipp, 1031 0, cr, NULL, NULL); 1032 } 1033 out: 1034 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 1035 1036 return (error); 1037 } 1038 1039 /* 1040 * Flush everything out of the kernel's export table and such. 1041 * This is needed as once the snapshot is used over NFS, its 1042 * entries in svc_export and svc_expkey caches hold reference 1043 * to the snapshot mount point. There is no known way of flushing 1044 * only the entries related to the snapshot. 1045 */ 1046 static void 1047 exportfs_flush(void) 1048 { 1049 char *argv[] = { "/usr/sbin/exportfs", "-f", NULL }; 1050 char *envp[] = { NULL }; 1051 1052 (void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); 1053 } 1054 1055 /* 1056 * Returns the path in char format for given struct path. Uses 1057 * d_path exported by kernel to convert struct path to char 1058 * format. Returns the correct path for mountpoints and chroot 1059 * environments. 1060 * 1061 * If chroot environment has directories that are mounted with 1062 * --bind or --rbind flag, d_path returns the complete path inside 1063 * chroot environment but does not return the absolute path, i.e. 1064 * the path to chroot environment is missing. 1065 */ 1066 static int 1067 get_root_path(struct path *path, char *buff, int len) 1068 { 1069 char *path_buffer, *path_ptr; 1070 int error = 0; 1071 1072 path_get(path); 1073 path_buffer = kmem_zalloc(len, KM_SLEEP); 1074 path_ptr = d_path(path, path_buffer, len); 1075 if (IS_ERR(path_ptr)) 1076 error = SET_ERROR(-PTR_ERR(path_ptr)); 1077 else 1078 strcpy(buff, path_ptr); 1079 1080 kmem_free(path_buffer, len); 1081 path_put(path); 1082 return (error); 1083 } 1084 1085 /* 1086 * Returns if the current process root is chrooted or not. Linux 1087 * kernel exposes the task_struct for current process and init. 1088 * Since init process root points to actual root filesystem when 1089 * Linux runtime is reached, we can compare the current process 1090 * root with init process root to determine if root of the current 1091 * process is different from init, which can reliably determine if 1092 * current process is in chroot context or not. 1093 */ 1094 static int 1095 is_current_chrooted(void) 1096 { 1097 struct task_struct *curr = current, *global = &init_task; 1098 struct path cr_root, gl_root; 1099 1100 task_lock(curr); 1101 get_fs_root(curr->fs, &cr_root); 1102 task_unlock(curr); 1103 1104 task_lock(global); 1105 get_fs_root(global->fs, &gl_root); 1106 task_unlock(global); 1107 1108 int chrooted = !path_equal(&cr_root, &gl_root); 1109 path_put(&gl_root); 1110 path_put(&cr_root); 1111 1112 return (chrooted); 1113 } 1114 1115 /* 1116 * Attempt to unmount a snapshot by making a call to user space. 1117 * There is no assurance that this can or will succeed, is just a 1118 * best effort. In the case where it does fail, perhaps because 1119 * it's in use, the unmount will fail harmlessly. 1120 */ 1121 int 1122 zfsctl_snapshot_unmount(const char *snapname, int flags) 1123 { 1124 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL, 1125 NULL }; 1126 char *envp[] = { NULL }; 1127 zfs_snapentry_t *se; 1128 int error; 1129 1130 rw_enter(&zfs_snapshot_lock, RW_READER); 1131 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) { 1132 rw_exit(&zfs_snapshot_lock); 1133 return (SET_ERROR(ENOENT)); 1134 } 1135 rw_exit(&zfs_snapshot_lock); 1136 1137 exportfs_flush(); 1138 1139 if (flags & MNT_FORCE) 1140 argv[4] = "-fn"; 1141 argv[5] = se->se_path; 1142 dprintf("unmount; path=%s\n", se->se_path); 1143 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); 1144 zfsctl_snapshot_rele(se); 1145 1146 1147 /* 1148 * The umount system utility will return 256 on error. We must 1149 * assume this error is because the file system is busy so it is 1150 * converted to the more sensible EBUSY. 1151 */ 1152 if (error) 1153 error = SET_ERROR(EBUSY); 1154 1155 return (error); 1156 } 1157 1158 int 1159 zfsctl_snapshot_mount(struct path *path, int flags) 1160 { 1161 struct dentry *dentry = path->dentry; 1162 struct inode *ip = dentry->d_inode; 1163 zfsvfs_t *zfsvfs; 1164 zfsvfs_t *snap_zfsvfs; 1165 zfs_snapentry_t *se; 1166 char *full_name, *full_path, *options; 1167 char *argv[] = { "/usr/bin/env", "mount", "-i", "-t", "zfs", "-n", 1168 "-o", NULL, NULL, NULL, NULL }; 1169 char *envp[] = { NULL }; 1170 int error; 1171 struct path spath; 1172 1173 if (ip == NULL) 1174 return (SET_ERROR(EISDIR)); 1175 1176 zfsvfs = ITOZSB(ip); 1177 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1178 return (error); 1179 1180 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 1181 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1182 options = kmem_zalloc(7, KM_SLEEP); 1183 1184 error = zfsctl_snapshot_name(zfsvfs, dname(dentry), 1185 ZFS_MAX_DATASET_NAME_LEN, full_name); 1186 if (error) 1187 goto error; 1188 1189 if (is_current_chrooted() == 0) { 1190 /* 1191 * Current process is not in chroot context 1192 */ 1193 1194 char *m = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1195 struct path mnt_path; 1196 mnt_path.mnt = path->mnt; 1197 mnt_path.dentry = path->mnt->mnt_root; 1198 1199 /* 1200 * Get path to current mountpoint 1201 */ 1202 error = get_root_path(&mnt_path, m, MAXPATHLEN); 1203 if (error != 0) { 1204 kmem_free(m, MAXPATHLEN); 1205 goto error; 1206 } 1207 mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock); 1208 if (zfsvfs->z_vfs->vfs_mntpoint != NULL) { 1209 /* 1210 * If current mnountpoint and vfs_mntpoint are not same, 1211 * store current mountpoint in vfs_mntpoint. 1212 */ 1213 if (strcmp(zfsvfs->z_vfs->vfs_mntpoint, m) != 0) { 1214 kmem_strfree(zfsvfs->z_vfs->vfs_mntpoint); 1215 zfsvfs->z_vfs->vfs_mntpoint = kmem_strdup(m); 1216 } 1217 } else 1218 zfsvfs->z_vfs->vfs_mntpoint = kmem_strdup(m); 1219 mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock); 1220 kmem_free(m, MAXPATHLEN); 1221 } 1222 1223 /* 1224 * Construct a mount point path from sb of the ctldir inode and dirent 1225 * name, instead of from d_path(), so that chroot'd process doesn't fail 1226 * on mount.zfs(8). 1227 */ 1228 mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock); 1229 snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s", 1230 zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "", 1231 dname(dentry)); 1232 mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock); 1233 1234 snprintf(options, 7, "%s", 1235 zfs_snapshot_no_setuid ? "nosuid" : "suid"); 1236 1237 /* 1238 * Multiple concurrent automounts of a snapshot are never allowed. 1239 * The snapshot may be manually mounted as many times as desired. 1240 */ 1241 if (zfsctl_snapshot_ismounted(full_name)) { 1242 error = 0; 1243 goto error; 1244 } 1245 1246 /* 1247 * Attempt to mount the snapshot from user space. Normally this 1248 * would be done using the vfs_kern_mount() function, however that 1249 * function is marked GPL-only and cannot be used. On error we 1250 * careful to log the real error to the console and return EISDIR 1251 * to safely abort the automount. This should be very rare. 1252 * 1253 * If the user mode helper happens to return EBUSY, a concurrent 1254 * mount is already in progress in which case the error is ignored. 1255 * Take note that if the program was executed successfully the return 1256 * value from call_usermodehelper() will be (exitcode << 8 + signal). 1257 */ 1258 dprintf("mount; name=%s path=%s\n", full_name, full_path); 1259 argv[7] = options; 1260 argv[8] = full_name; 1261 argv[9] = full_path; 1262 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); 1263 if (error) { 1264 if (!(error & MOUNT_BUSY << 8)) { 1265 zfs_dbgmsg("Unable to automount %s error=%d", 1266 full_path, error); 1267 error = SET_ERROR(EISDIR); 1268 } else { 1269 /* 1270 * EBUSY, this could mean a concurrent mount, or the 1271 * snapshot has already been mounted at completely 1272 * different place. We return 0 so VFS will retry. For 1273 * the latter case the VFS will retry several times 1274 * and return ELOOP, which is probably not a very good 1275 * behavior. 1276 */ 1277 error = 0; 1278 } 1279 goto error; 1280 } 1281 1282 /* 1283 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE 1284 * to identify this as an automounted filesystem. 1285 */ 1286 spath = *path; 1287 path_get(&spath); 1288 if (follow_down_one(&spath)) { 1289 snap_zfsvfs = ITOZSB(spath.dentry->d_inode); 1290 snap_zfsvfs->z_parent = zfsvfs; 1291 dentry = spath.dentry; 1292 spath.mnt->mnt_flags |= MNT_SHRINKABLE; 1293 1294 rw_enter(&zfs_snapshot_lock, RW_WRITER); 1295 se = zfsctl_snapshot_alloc(full_name, full_path, 1296 snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os), 1297 dentry); 1298 zfsctl_snapshot_add(se); 1299 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot); 1300 rw_exit(&zfs_snapshot_lock); 1301 } 1302 path_put(&spath); 1303 error: 1304 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN); 1305 kmem_free(full_path, MAXPATHLEN); 1306 1307 zfs_exit(zfsvfs, FTAG); 1308 1309 return (error); 1310 } 1311 1312 /* 1313 * Get the snapdir inode from fid 1314 */ 1315 int 1316 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen, 1317 struct inode **ipp) 1318 { 1319 int error; 1320 struct path path; 1321 char *mnt; 1322 struct dentry *dentry; 1323 1324 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1325 1326 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid, 1327 MAXPATHLEN, mnt); 1328 if (error) 1329 goto out; 1330 1331 /* Trigger automount */ 1332 error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path); 1333 if (error) 1334 goto out; 1335 1336 path_put(&path); 1337 /* 1338 * Get the snapdir inode. Note, we don't want to use the above 1339 * path because it contains the root of the snapshot rather 1340 * than the snapdir. 1341 */ 1342 *ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid); 1343 if (*ipp == NULL) { 1344 error = SET_ERROR(ENOENT); 1345 goto out; 1346 } 1347 1348 /* check gen, see zfsctl_snapdir_fid */ 1349 dentry = d_obtain_alias(igrab(*ipp)); 1350 if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) { 1351 iput(*ipp); 1352 *ipp = NULL; 1353 error = SET_ERROR(ENOENT); 1354 } 1355 if (!IS_ERR(dentry)) 1356 dput(dentry); 1357 out: 1358 kmem_free(mnt, MAXPATHLEN); 1359 return (error); 1360 } 1361 1362 int 1363 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp, 1364 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) 1365 { 1366 zfsvfs_t *zfsvfs = ITOZSB(dip); 1367 znode_t *zp; 1368 znode_t *dzp; 1369 int error; 1370 1371 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1372 return (error); 1373 1374 if (zfsvfs->z_shares_dir == 0) { 1375 zfs_exit(zfsvfs, FTAG); 1376 return (SET_ERROR(ENOTSUP)); 1377 } 1378 1379 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1380 error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL); 1381 zrele(dzp); 1382 } 1383 1384 zfs_exit(zfsvfs, FTAG); 1385 1386 return (error); 1387 } 1388 1389 /* 1390 * Initialize the various pieces we'll need to create and manipulate .zfs 1391 * directories. Currently this is unused but available. 1392 */ 1393 void 1394 zfsctl_init(void) 1395 { 1396 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name, 1397 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, 1398 se_node_name)); 1399 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid, 1400 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, 1401 se_node_objsetid)); 1402 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL); 1403 } 1404 1405 /* 1406 * Cleanup the various pieces we needed for .zfs directories. In particular 1407 * ensure the expiry timer is canceled safely. 1408 */ 1409 void 1410 zfsctl_fini(void) 1411 { 1412 avl_destroy(&zfs_snapshots_by_name); 1413 avl_destroy(&zfs_snapshots_by_objsetid); 1414 rw_destroy(&zfs_snapshot_lock); 1415 } 1416 1417 module_param(zfs_admin_snapshot, int, 0644); 1418 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot"); 1419 1420 module_param(zfs_expire_snapshot, int, 0644); 1421 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot"); 1422 1423 module_param(zfs_snapshot_no_setuid, int, 0644); 1424 MODULE_PARM_DESC(zfs_snapshot_no_setuid, 1425 "Disable setuid/setgid for automounts in .zfs/snapshot"); 1426