xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_ctldir.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26  * LLNL-CODE-403049.
27  * Rewritten for Linux by:
28  *   Rohan Puri <rohan.puri15@gmail.com>
29  *   Brian Behlendorf <behlendorf1@llnl.gov>
30  * Copyright (c) 2013 by Delphix. All rights reserved.
31  * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32  * Copyright (c) 2018 George Melikov. All Rights Reserved.
33  * Copyright (c) 2019 Datto, Inc. All rights reserved.
34  * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
35  */
36 
37 /*
38  * ZFS control directory (a.k.a. ".zfs")
39  *
40  * This directory provides a common location for all ZFS meta-objects.
41  * Currently, this is only the 'snapshot' and 'shares' directory, but this may
42  * expand in the future.  The elements are built dynamically, as the hierarchy
43  * does not actually exist on disk.
44  *
45  * For 'snapshot', we don't want to have all snapshots always mounted, because
46  * this would take up a huge amount of space in /etc/mnttab.  We have three
47  * types of objects:
48  *
49  *	ctldir ------> snapshotdir -------> snapshot
50  *                                             |
51  *                                             |
52  *                                             V
53  *                                         mounted fs
54  *
55  * The 'snapshot' node contains just enough information to lookup '..' and act
56  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
57  * perform an automount of the underlying filesystem and return the
58  * corresponding inode.
59  *
60  * All mounts are handled automatically by an user mode helper which invokes
61  * the mount procedure.  Unmounts are handled by allowing the mount
62  * point to expire so the kernel may automatically unmount it.
63  *
64  * The '.zfs', '.zfs/snapshot', and all directories created under
65  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
66  * zfsvfs_t as the head filesystem (what '.zfs' lives under).
67  *
68  * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
69  * (ie: snapshots) are complete ZFS filesystems and have their own unique
70  * zfsvfs_t.  However, the fsid reported by these mounts will be the same
71  * as that used by the parent zfsvfs_t to make NFS happy.
72  */
73 
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/sysmacros.h>
78 #include <sys/pathname.h>
79 #include <sys/vfs.h>
80 #include <sys/zfs_ctldir.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/zfs_vfsops.h>
83 #include <sys/zfs_vnops.h>
84 #include <sys/stat.h>
85 #include <sys/dmu.h>
86 #include <sys/dmu_objset.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/dsl_deleg.h>
89 #include <sys/zpl.h>
90 #include <sys/mntent.h>
91 #include "zfs_namecheck.h"
92 
93 /*
94  * Two AVL trees are maintained which contain all currently automounted
95  * snapshots.  Every automounted snapshots maps to a single zfs_snapentry_t
96  * entry which MUST:
97  *
98  *   - be attached to both trees, and
99  *   - be unique, no duplicate entries are allowed.
100  *
101  * The zfs_snapshots_by_name tree is indexed by the full dataset name
102  * while the zfs_snapshots_by_objsetid tree is indexed by the unique
103  * objsetid.  This allows for fast lookups either by name or objsetid.
104  */
105 static avl_tree_t zfs_snapshots_by_name;
106 static avl_tree_t zfs_snapshots_by_objsetid;
107 static krwlock_t zfs_snapshot_lock;
108 
109 /*
110  * Control Directory Tunables (.zfs)
111  */
112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
113 static int zfs_admin_snapshot = 0;
114 static int zfs_snapshot_no_setuid = 0;
115 
116 typedef struct {
117 	char		*se_name;	/* full snapshot name */
118 	char		*se_path;	/* full mount path */
119 	spa_t		*se_spa;	/* pool spa */
120 	uint64_t	se_objsetid;	/* snapshot objset id */
121 	struct dentry   *se_root_dentry; /* snapshot root dentry */
122 	krwlock_t	se_taskqid_lock;  /* scheduled unmount taskqid lock */
123 	taskqid_t	se_taskqid;	/* scheduled unmount taskqid */
124 	avl_node_t	se_node_name;	/* zfs_snapshots_by_name link */
125 	avl_node_t	se_node_objsetid; /* zfs_snapshots_by_objsetid link */
126 	zfs_refcount_t	se_refcount;	/* reference count */
127 } zfs_snapentry_t;
128 
129 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
130 
131 /*
132  * Allocate a new zfs_snapentry_t being careful to make a copy of the
133  * the snapshot name and provided mount point.  No reference is taken.
134  */
135 static zfs_snapentry_t *
136 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
137     uint64_t objsetid, struct dentry *root_dentry)
138 {
139 	zfs_snapentry_t *se;
140 
141 	se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
142 
143 	se->se_name = kmem_strdup(full_name);
144 	se->se_path = kmem_strdup(full_path);
145 	se->se_spa = spa;
146 	se->se_objsetid = objsetid;
147 	se->se_root_dentry = root_dentry;
148 	se->se_taskqid = TASKQID_INVALID;
149 	rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL);
150 
151 	zfs_refcount_create(&se->se_refcount);
152 
153 	return (se);
154 }
155 
156 /*
157  * Free a zfs_snapentry_t the caller must ensure there are no active
158  * references.
159  */
160 static void
161 zfsctl_snapshot_free(zfs_snapentry_t *se)
162 {
163 	zfs_refcount_destroy(&se->se_refcount);
164 	kmem_strfree(se->se_name);
165 	kmem_strfree(se->se_path);
166 	rw_destroy(&se->se_taskqid_lock);
167 
168 	kmem_free(se, sizeof (zfs_snapentry_t));
169 }
170 
171 /*
172  * Hold a reference on the zfs_snapentry_t.
173  */
174 static void
175 zfsctl_snapshot_hold(zfs_snapentry_t *se)
176 {
177 	zfs_refcount_add(&se->se_refcount, NULL);
178 }
179 
180 /*
181  * Release a reference on the zfs_snapentry_t.  When the number of
182  * references drops to zero the structure will be freed.
183  */
184 static void
185 zfsctl_snapshot_rele(zfs_snapentry_t *se)
186 {
187 	if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
188 		zfsctl_snapshot_free(se);
189 }
190 
191 /*
192  * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
193  * zfs_snapshots_by_objsetid trees.  While the zfs_snapentry_t is part
194  * of the trees a reference is held.
195  */
196 static void
197 zfsctl_snapshot_add(zfs_snapentry_t *se)
198 {
199 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
200 	zfsctl_snapshot_hold(se);
201 	avl_add(&zfs_snapshots_by_name, se);
202 	avl_add(&zfs_snapshots_by_objsetid, se);
203 }
204 
205 /*
206  * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
207  * zfs_snapshots_by_objsetid trees.  Upon removal a reference is dropped,
208  * this can result in the structure being freed if that was the last
209  * remaining reference.
210  */
211 static void
212 zfsctl_snapshot_remove(zfs_snapentry_t *se)
213 {
214 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
215 	avl_remove(&zfs_snapshots_by_name, se);
216 	avl_remove(&zfs_snapshots_by_objsetid, se);
217 	zfsctl_snapshot_rele(se);
218 }
219 
220 /*
221  * Snapshot name comparison function for the zfs_snapshots_by_name.
222  */
223 static int
224 snapentry_compare_by_name(const void *a, const void *b)
225 {
226 	const zfs_snapentry_t *se_a = a;
227 	const zfs_snapentry_t *se_b = b;
228 	int ret;
229 
230 	ret = strcmp(se_a->se_name, se_b->se_name);
231 
232 	if (ret < 0)
233 		return (-1);
234 	else if (ret > 0)
235 		return (1);
236 	else
237 		return (0);
238 }
239 
240 /*
241  * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
242  */
243 static int
244 snapentry_compare_by_objsetid(const void *a, const void *b)
245 {
246 	const zfs_snapentry_t *se_a = a;
247 	const zfs_snapentry_t *se_b = b;
248 
249 	if (se_a->se_spa != se_b->se_spa)
250 		return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
251 
252 	if (se_a->se_objsetid < se_b->se_objsetid)
253 		return (-1);
254 	else if (se_a->se_objsetid > se_b->se_objsetid)
255 		return (1);
256 	else
257 		return (0);
258 }
259 
260 /*
261  * Find a zfs_snapentry_t in zfs_snapshots_by_name.  If the snapname
262  * is found a pointer to the zfs_snapentry_t is returned and a reference
263  * taken on the structure.  The caller is responsible for dropping the
264  * reference with zfsctl_snapshot_rele().  If the snapname is not found
265  * NULL will be returned.
266  */
267 static zfs_snapentry_t *
268 zfsctl_snapshot_find_by_name(const char *snapname)
269 {
270 	zfs_snapentry_t *se, search;
271 
272 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
273 
274 	search.se_name = (char *)snapname;
275 	se = avl_find(&zfs_snapshots_by_name, &search, NULL);
276 	if (se)
277 		zfsctl_snapshot_hold(se);
278 
279 	return (se);
280 }
281 
282 /*
283  * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
284  * rather than the snapname.  In all other respects it behaves the same
285  * as zfsctl_snapshot_find_by_name().
286  */
287 static zfs_snapentry_t *
288 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
289 {
290 	zfs_snapentry_t *se, search;
291 
292 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
293 
294 	search.se_spa = spa;
295 	search.se_objsetid = objsetid;
296 	se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
297 	if (se)
298 		zfsctl_snapshot_hold(se);
299 
300 	return (se);
301 }
302 
303 /*
304  * Rename a zfs_snapentry_t in the zfs_snapshots_by_name.  The structure is
305  * removed, renamed, and added back to the new correct location in the tree.
306  */
307 static int
308 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
309 {
310 	zfs_snapentry_t *se;
311 
312 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
313 
314 	se = zfsctl_snapshot_find_by_name(old_snapname);
315 	if (se == NULL)
316 		return (SET_ERROR(ENOENT));
317 
318 	zfsctl_snapshot_remove(se);
319 	kmem_strfree(se->se_name);
320 	se->se_name = kmem_strdup(new_snapname);
321 	zfsctl_snapshot_add(se);
322 	zfsctl_snapshot_rele(se);
323 
324 	return (0);
325 }
326 
327 /*
328  * Delayed task responsible for unmounting an expired automounted snapshot.
329  */
330 static void
331 snapentry_expire(void *data)
332 {
333 	zfs_snapentry_t *se = (zfs_snapentry_t *)data;
334 	spa_t *spa = se->se_spa;
335 	uint64_t objsetid = se->se_objsetid;
336 
337 	if (zfs_expire_snapshot <= 0) {
338 		zfsctl_snapshot_rele(se);
339 		return;
340 	}
341 
342 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
343 	se->se_taskqid = TASKQID_INVALID;
344 	rw_exit(&se->se_taskqid_lock);
345 	(void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
346 	zfsctl_snapshot_rele(se);
347 
348 	/*
349 	 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
350 	 * This can occur when the snapshot is busy.
351 	 */
352 	rw_enter(&zfs_snapshot_lock, RW_READER);
353 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
354 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
355 		zfsctl_snapshot_rele(se);
356 	}
357 	rw_exit(&zfs_snapshot_lock);
358 }
359 
360 /*
361  * Cancel an automatic unmount of a snapname.  This callback is responsible
362  * for dropping the reference on the zfs_snapentry_t which was taken when
363  * during dispatch.
364  */
365 static void
366 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
367 {
368 	int err = 0;
369 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
370 	err = taskq_cancel_id(system_delay_taskq, se->se_taskqid);
371 	/*
372 	 * if we get ENOENT, the taskq couldn't be found to be
373 	 * canceled, so we can just mark it as invalid because
374 	 * it's already gone. If we got EBUSY, then we already
375 	 * blocked until it was gone _anyway_, so we don't care.
376 	 */
377 	se->se_taskqid = TASKQID_INVALID;
378 	rw_exit(&se->se_taskqid_lock);
379 	if (err == 0) {
380 		zfsctl_snapshot_rele(se);
381 	}
382 }
383 
384 /*
385  * Dispatch the unmount task for delayed handling with a hold protecting it.
386  */
387 static void
388 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
389 {
390 
391 	if (delay <= 0)
392 		return;
393 
394 	zfsctl_snapshot_hold(se);
395 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
396 	/*
397 	 * If this condition happens, we managed to:
398 	 * - dispatch once
399 	 * - want to dispatch _again_ before it returned
400 	 *
401 	 * So let's just return - if that task fails at unmounting,
402 	 * we'll eventually dispatch again, and if it succeeds,
403 	 * no problem.
404 	 */
405 	if (se->se_taskqid != TASKQID_INVALID) {
406 		rw_exit(&se->se_taskqid_lock);
407 		zfsctl_snapshot_rele(se);
408 		return;
409 	}
410 	se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
411 	    snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
412 	rw_exit(&se->se_taskqid_lock);
413 }
414 
415 /*
416  * Schedule an automatic unmount of objset id to occur in delay seconds from
417  * now.  Any previous delayed unmount will be cancelled in favor of the
418  * updated deadline.  A reference is taken by zfsctl_snapshot_find_by_name()
419  * and held until the outstanding task is handled or cancelled.
420  */
421 int
422 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
423 {
424 	zfs_snapentry_t *se;
425 	int error = ENOENT;
426 
427 	rw_enter(&zfs_snapshot_lock, RW_READER);
428 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
429 		zfsctl_snapshot_unmount_cancel(se);
430 		zfsctl_snapshot_unmount_delay_impl(se, delay);
431 		zfsctl_snapshot_rele(se);
432 		error = 0;
433 	}
434 	rw_exit(&zfs_snapshot_lock);
435 
436 	return (error);
437 }
438 
439 /*
440  * Check if snapname is currently mounted.  Returned non-zero when mounted
441  * and zero when unmounted.
442  */
443 static boolean_t
444 zfsctl_snapshot_ismounted(const char *snapname)
445 {
446 	zfs_snapentry_t *se;
447 	boolean_t ismounted = B_FALSE;
448 
449 	rw_enter(&zfs_snapshot_lock, RW_READER);
450 	if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
451 		zfsctl_snapshot_rele(se);
452 		ismounted = B_TRUE;
453 	}
454 	rw_exit(&zfs_snapshot_lock);
455 
456 	return (ismounted);
457 }
458 
459 /*
460  * Check if the given inode is a part of the virtual .zfs directory.
461  */
462 boolean_t
463 zfsctl_is_node(struct inode *ip)
464 {
465 	return (ITOZ(ip)->z_is_ctldir);
466 }
467 
468 /*
469  * Check if the given inode is a .zfs/snapshots/snapname directory.
470  */
471 boolean_t
472 zfsctl_is_snapdir(struct inode *ip)
473 {
474 	return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
475 }
476 
477 /*
478  * Allocate a new inode with the passed id and ops.
479  */
480 static struct inode *
481 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
482     const struct file_operations *fops, const struct inode_operations *ops,
483     uint64_t creation)
484 {
485 	struct inode *ip;
486 	znode_t *zp;
487 	inode_timespec_t now = {.tv_sec = creation};
488 
489 	ip = new_inode(zfsvfs->z_sb);
490 	if (ip == NULL)
491 		return (NULL);
492 
493 	if (!creation)
494 		now = current_time(ip);
495 	zp = ITOZ(ip);
496 	ASSERT3P(zp->z_dirlocks, ==, NULL);
497 	ASSERT3P(zp->z_acl_cached, ==, NULL);
498 	ASSERT3P(zp->z_xattr_cached, ==, NULL);
499 	zp->z_id = id;
500 	zp->z_unlinked = B_FALSE;
501 	zp->z_atime_dirty = B_FALSE;
502 	zp->z_zn_prefetch = B_FALSE;
503 	zp->z_is_sa = B_FALSE;
504 	zp->z_is_ctldir = B_TRUE;
505 	zp->z_sa_hdl = NULL;
506 	zp->z_blksz = 0;
507 	zp->z_seq = 0;
508 	zp->z_mapcnt = 0;
509 	zp->z_size = 0;
510 	zp->z_pflags = 0;
511 	zp->z_mode = 0;
512 	zp->z_sync_cnt = 0;
513 	zp->z_sync_writes_cnt = 0;
514 	zp->z_async_writes_cnt = 0;
515 	ip->i_generation = 0;
516 	ip->i_ino = id;
517 	ip->i_mode = (S_IFDIR | S_IRWXUGO);
518 	ip->i_uid = SUID_TO_KUID(0);
519 	ip->i_gid = SGID_TO_KGID(0);
520 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
521 	zpl_inode_set_atime_to_ts(ip, now);
522 	zpl_inode_set_mtime_to_ts(ip, now);
523 	zpl_inode_set_ctime_to_ts(ip, now);
524 	ip->i_fop = fops;
525 	ip->i_op = ops;
526 #if defined(IOP_XATTR)
527 	ip->i_opflags &= ~IOP_XATTR;
528 #endif
529 
530 	if (insert_inode_locked(ip)) {
531 		unlock_new_inode(ip);
532 		iput(ip);
533 		return (NULL);
534 	}
535 
536 	mutex_enter(&zfsvfs->z_znodes_lock);
537 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
538 	membar_producer();
539 	mutex_exit(&zfsvfs->z_znodes_lock);
540 
541 	unlock_new_inode(ip);
542 
543 	return (ip);
544 }
545 
546 /*
547  * Lookup the inode with given id, it will be allocated if needed.
548  */
549 static struct inode *
550 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
551     const struct file_operations *fops, const struct inode_operations *ops)
552 {
553 	struct inode *ip = NULL;
554 	uint64_t creation = 0;
555 	dsl_dataset_t *snap_ds;
556 	dsl_pool_t *pool;
557 
558 	while (ip == NULL) {
559 		ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
560 		if (ip)
561 			break;
562 
563 		if (id <= ZFSCTL_INO_SNAPDIRS && !creation) {
564 			pool = dmu_objset_pool(zfsvfs->z_os);
565 			dsl_pool_config_enter(pool, FTAG);
566 			if (!dsl_dataset_hold_obj(pool,
567 			    ZFSCTL_INO_SNAPDIRS - id, FTAG, &snap_ds)) {
568 				creation = dsl_get_creation(snap_ds);
569 				dsl_dataset_rele(snap_ds, FTAG);
570 			}
571 			dsl_pool_config_exit(pool, FTAG);
572 		}
573 
574 		/* May fail due to concurrent zfsctl_inode_alloc() */
575 		ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops, creation);
576 	}
577 
578 	return (ip);
579 }
580 
581 /*
582  * Create the '.zfs' directory.  This directory is cached as part of the VFS
583  * structure.  This results in a hold on the zfsvfs_t.  The code in zfs_umount()
584  * therefore checks against a vfs_count of 2 instead of 1.  This reference
585  * is removed when the ctldir is destroyed in the unmount.  All other entities
586  * under the '.zfs' directory are created dynamically as needed.
587  *
588  * Because the dynamically created '.zfs' directory entries assume the use
589  * of 64-bit inode numbers this support must be disabled on 32-bit systems.
590  */
591 int
592 zfsctl_create(zfsvfs_t *zfsvfs)
593 {
594 	ASSERT(zfsvfs->z_ctldir == NULL);
595 
596 	zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
597 	    &zpl_fops_root, &zpl_ops_root, 0);
598 	if (zfsvfs->z_ctldir == NULL)
599 		return (SET_ERROR(ENOENT));
600 
601 	return (0);
602 }
603 
604 /*
605  * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
606  * Only called when the filesystem is unmounted.
607  */
608 void
609 zfsctl_destroy(zfsvfs_t *zfsvfs)
610 {
611 	if (zfsvfs->z_issnap) {
612 		zfs_snapentry_t *se;
613 		spa_t *spa = zfsvfs->z_os->os_spa;
614 		uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
615 
616 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
617 		se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
618 		if (se != NULL)
619 			zfsctl_snapshot_remove(se);
620 		rw_exit(&zfs_snapshot_lock);
621 		if (se != NULL) {
622 			zfsctl_snapshot_unmount_cancel(se);
623 			zfsctl_snapshot_rele(se);
624 		}
625 	} else if (zfsvfs->z_ctldir) {
626 		iput(zfsvfs->z_ctldir);
627 		zfsvfs->z_ctldir = NULL;
628 	}
629 }
630 
631 /*
632  * Given a root znode, retrieve the associated .zfs directory.
633  * Add a hold to the vnode and return it.
634  */
635 struct inode *
636 zfsctl_root(znode_t *zp)
637 {
638 	ASSERT(zfs_has_ctldir(zp));
639 	/* Must have an existing ref, so igrab() cannot return NULL */
640 	VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL);
641 	return (ZTOZSB(zp)->z_ctldir);
642 }
643 
644 /*
645  * Generate a long fid to indicate a snapdir. We encode whether snapdir is
646  * already mounted in gen field. We do this because nfsd lookup will not
647  * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
648  * this and do automount and return ESTALE to force nfsd revalidate and follow
649  * mount.
650  */
651 static int
652 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
653 {
654 	zfid_short_t *zfid = (zfid_short_t *)fidp;
655 	zfid_long_t *zlfid = (zfid_long_t *)fidp;
656 	uint32_t gen = 0;
657 	uint64_t object;
658 	uint64_t objsetid;
659 	int i;
660 	struct dentry *dentry;
661 
662 	if (fidp->fid_len < LONG_FID_LEN) {
663 		fidp->fid_len = LONG_FID_LEN;
664 		return (SET_ERROR(ENOSPC));
665 	}
666 
667 	object = ip->i_ino;
668 	objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
669 	zfid->zf_len = LONG_FID_LEN;
670 
671 	dentry = d_obtain_alias(igrab(ip));
672 	if (!IS_ERR(dentry)) {
673 		gen = !!d_mountpoint(dentry);
674 		dput(dentry);
675 	}
676 
677 	for (i = 0; i < sizeof (zfid->zf_object); i++)
678 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
679 
680 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
681 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
682 
683 	for (i = 0; i < sizeof (zlfid->zf_setid); i++)
684 		zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
685 
686 	for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
687 		zlfid->zf_setgen[i] = 0;
688 
689 	return (0);
690 }
691 
692 /*
693  * Generate an appropriate fid for an entry in the .zfs directory.
694  */
695 int
696 zfsctl_fid(struct inode *ip, fid_t *fidp)
697 {
698 	znode_t		*zp = ITOZ(ip);
699 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
700 	uint64_t	object = zp->z_id;
701 	zfid_short_t	*zfid;
702 	int		i;
703 	int		error;
704 
705 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
706 		return (error);
707 
708 	if (zfsctl_is_snapdir(ip)) {
709 		zfs_exit(zfsvfs, FTAG);
710 		return (zfsctl_snapdir_fid(ip, fidp));
711 	}
712 
713 	if (fidp->fid_len < SHORT_FID_LEN) {
714 		fidp->fid_len = SHORT_FID_LEN;
715 		zfs_exit(zfsvfs, FTAG);
716 		return (SET_ERROR(ENOSPC));
717 	}
718 
719 	zfid = (zfid_short_t *)fidp;
720 
721 	zfid->zf_len = SHORT_FID_LEN;
722 
723 	for (i = 0; i < sizeof (zfid->zf_object); i++)
724 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
725 
726 	/* .zfs znodes always have a generation number of 0 */
727 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
728 		zfid->zf_gen[i] = 0;
729 
730 	zfs_exit(zfsvfs, FTAG);
731 	return (0);
732 }
733 
734 /*
735  * Construct a full dataset name in full_name: "pool/dataset@snap_name"
736  */
737 static int
738 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
739     char *full_name)
740 {
741 	objset_t *os = zfsvfs->z_os;
742 
743 	if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
744 		return (SET_ERROR(EILSEQ));
745 
746 	dmu_objset_name(os, full_name);
747 	if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
748 		return (SET_ERROR(ENAMETOOLONG));
749 
750 	(void) strcat(full_name, "@");
751 	(void) strcat(full_name, snap_name);
752 
753 	return (0);
754 }
755 
756 /*
757  * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
758  */
759 static int
760 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
761     int path_len, char *full_path)
762 {
763 	objset_t *os = zfsvfs->z_os;
764 	fstrans_cookie_t cookie;
765 	char *snapname;
766 	boolean_t case_conflict;
767 	uint64_t id, pos = 0;
768 	int error = 0;
769 
770 	cookie = spl_fstrans_mark();
771 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
772 
773 	while (error == 0) {
774 		dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
775 		error = dmu_snapshot_list_next(zfsvfs->z_os,
776 		    ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
777 		    &case_conflict);
778 		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
779 		if (error)
780 			goto out;
781 
782 		if (id == objsetid)
783 			break;
784 	}
785 
786 	mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock);
787 	if (zfsvfs->z_vfs->vfs_mntpoint != NULL) {
788 		snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
789 		    zfsvfs->z_vfs->vfs_mntpoint, snapname);
790 	} else
791 		error = SET_ERROR(ENOENT);
792 	mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock);
793 
794 out:
795 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
796 	spl_fstrans_unmark(cookie);
797 
798 	return (error);
799 }
800 
801 /*
802  * Special case the handling of "..".
803  */
804 int
805 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
806     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
807 {
808 	zfsvfs_t *zfsvfs = ITOZSB(dip);
809 	int error = 0;
810 
811 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
812 		return (error);
813 
814 	if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) {
815 		*ipp = NULL;
816 	} else if (strcmp(name, "..") == 0) {
817 		*ipp = dip->i_sb->s_root->d_inode;
818 	} else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
819 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
820 		    &zpl_fops_snapdir, &zpl_ops_snapdir);
821 	} else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
822 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
823 		    &zpl_fops_shares, &zpl_ops_shares);
824 	} else {
825 		*ipp = NULL;
826 	}
827 
828 	if (*ipp == NULL)
829 		error = SET_ERROR(ENOENT);
830 
831 	zfs_exit(zfsvfs, FTAG);
832 
833 	return (error);
834 }
835 
836 /*
837  * Lookup entry point for the 'snapshot' directory.  Try to open the
838  * snapshot if it exist, creating the pseudo filesystem inode as necessary.
839  */
840 int
841 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
842     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
843 {
844 	zfsvfs_t *zfsvfs = ITOZSB(dip);
845 	uint64_t id;
846 	int error;
847 
848 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
849 		return (error);
850 
851 	error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
852 	if (error) {
853 		zfs_exit(zfsvfs, FTAG);
854 		return (error);
855 	}
856 
857 	*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
858 	    &simple_dir_operations, &simple_dir_inode_operations);
859 	if (*ipp == NULL)
860 		error = SET_ERROR(ENOENT);
861 
862 	zfs_exit(zfsvfs, FTAG);
863 
864 	return (error);
865 }
866 
867 /*
868  * Renaming a directory under '.zfs/snapshot' will automatically trigger
869  * a rename of the snapshot to the new given name.  The rename is confined
870  * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
871  */
872 int
873 zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
874     struct inode *tdip, const char *tnm, cred_t *cr, int flags)
875 {
876 	zfsvfs_t *zfsvfs = ITOZSB(sdip);
877 	char *to, *from, *real, *fsname;
878 	int error;
879 
880 	if (!zfs_admin_snapshot)
881 		return (SET_ERROR(EACCES));
882 
883 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
884 		return (error);
885 
886 	to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
887 	from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
888 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
889 	fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
890 
891 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
892 		error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
893 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
894 		if (error == 0) {
895 			snm = real;
896 		} else if (error != ENOTSUP) {
897 			goto out;
898 		}
899 	}
900 
901 	dmu_objset_name(zfsvfs->z_os, fsname);
902 
903 	error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
904 	    ZFS_MAX_DATASET_NAME_LEN, from);
905 	if (error == 0)
906 		error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
907 		    ZFS_MAX_DATASET_NAME_LEN, to);
908 	if (error == 0)
909 		error = zfs_secpolicy_rename_perms(from, to, cr);
910 	if (error != 0)
911 		goto out;
912 
913 	/*
914 	 * Cannot move snapshots out of the snapdir.
915 	 */
916 	if (sdip != tdip) {
917 		error = SET_ERROR(EINVAL);
918 		goto out;
919 	}
920 
921 	/*
922 	 * No-op when names are identical.
923 	 */
924 	if (strcmp(snm, tnm) == 0) {
925 		error = 0;
926 		goto out;
927 	}
928 
929 	rw_enter(&zfs_snapshot_lock, RW_WRITER);
930 
931 	error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
932 	if (error == 0)
933 		(void) zfsctl_snapshot_rename(snm, tnm);
934 
935 	rw_exit(&zfs_snapshot_lock);
936 out:
937 	kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
938 	kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
939 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
940 	kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
941 
942 	zfs_exit(zfsvfs, FTAG);
943 
944 	return (error);
945 }
946 
947 /*
948  * Removing a directory under '.zfs/snapshot' will automatically trigger
949  * the removal of the snapshot with the given name.
950  */
951 int
952 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
953     int flags)
954 {
955 	zfsvfs_t *zfsvfs = ITOZSB(dip);
956 	char *snapname, *real;
957 	int error;
958 
959 	if (!zfs_admin_snapshot)
960 		return (SET_ERROR(EACCES));
961 
962 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
963 		return (error);
964 
965 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
966 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
967 
968 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
969 		error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
970 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
971 		if (error == 0) {
972 			name = real;
973 		} else if (error != ENOTSUP) {
974 			goto out;
975 		}
976 	}
977 
978 	error = zfsctl_snapshot_name(ITOZSB(dip), name,
979 	    ZFS_MAX_DATASET_NAME_LEN, snapname);
980 	if (error == 0)
981 		error = zfs_secpolicy_destroy_perms(snapname, cr);
982 	if (error != 0)
983 		goto out;
984 
985 	error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
986 	if ((error == 0) || (error == ENOENT))
987 		error = dsl_destroy_snapshot(snapname, B_FALSE);
988 out:
989 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
990 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
991 
992 	zfs_exit(zfsvfs, FTAG);
993 
994 	return (error);
995 }
996 
997 /*
998  * Creating a directory under '.zfs/snapshot' will automatically trigger
999  * the creation of a new snapshot with the given name.
1000  */
1001 int
1002 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
1003     struct inode **ipp, cred_t *cr, int flags)
1004 {
1005 	zfsvfs_t *zfsvfs = ITOZSB(dip);
1006 	char *dsname;
1007 	int error;
1008 
1009 	if (!zfs_admin_snapshot)
1010 		return (SET_ERROR(EACCES));
1011 
1012 	dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1013 
1014 	if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
1015 		error = SET_ERROR(EILSEQ);
1016 		goto out;
1017 	}
1018 
1019 	dmu_objset_name(zfsvfs->z_os, dsname);
1020 
1021 	error = zfs_secpolicy_snapshot_perms(dsname, cr);
1022 	if (error != 0)
1023 		goto out;
1024 
1025 	if (error == 0) {
1026 		error = dmu_objset_snapshot_one(dsname, dirname);
1027 		if (error != 0)
1028 			goto out;
1029 
1030 		error = zfsctl_snapdir_lookup(dip, dirname, ipp,
1031 		    0, cr, NULL, NULL);
1032 	}
1033 out:
1034 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
1035 
1036 	return (error);
1037 }
1038 
1039 /*
1040  * Flush everything out of the kernel's export table and such.
1041  * This is needed as once the snapshot is used over NFS, its
1042  * entries in svc_export and svc_expkey caches hold reference
1043  * to the snapshot mount point. There is no known way of flushing
1044  * only the entries related to the snapshot.
1045  */
1046 static void
1047 exportfs_flush(void)
1048 {
1049 	char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
1050 	char *envp[] = { NULL };
1051 
1052 	(void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1053 }
1054 
1055 /*
1056  * Returns the path in char format for given struct path. Uses
1057  * d_path exported by kernel to convert struct path to char
1058  * format. Returns the correct path for mountpoints and chroot
1059  * environments.
1060  *
1061  * If chroot environment has directories that are mounted with
1062  * --bind or --rbind flag, d_path returns the complete path inside
1063  * chroot environment but does not return the absolute path, i.e.
1064  * the path to chroot environment is missing.
1065  */
1066 static int
1067 get_root_path(struct path *path, char *buff, int len)
1068 {
1069 	char *path_buffer, *path_ptr;
1070 	int error = 0;
1071 
1072 	path_get(path);
1073 	path_buffer = kmem_zalloc(len, KM_SLEEP);
1074 	path_ptr = d_path(path, path_buffer, len);
1075 	if (IS_ERR(path_ptr))
1076 		error = SET_ERROR(-PTR_ERR(path_ptr));
1077 	else
1078 		strcpy(buff, path_ptr);
1079 
1080 	kmem_free(path_buffer, len);
1081 	path_put(path);
1082 	return (error);
1083 }
1084 
1085 /*
1086  * Returns if the current process root is chrooted or not. Linux
1087  * kernel exposes the task_struct for current process and init.
1088  * Since init process root points to actual root filesystem when
1089  * Linux runtime is reached, we can compare the current process
1090  * root with init process root to determine if root of the current
1091  * process is different from init, which can reliably determine if
1092  * current process is in chroot context or not.
1093  */
1094 static int
1095 is_current_chrooted(void)
1096 {
1097 	struct task_struct *curr = current, *global = &init_task;
1098 	struct path cr_root, gl_root;
1099 
1100 	task_lock(curr);
1101 	get_fs_root(curr->fs, &cr_root);
1102 	task_unlock(curr);
1103 
1104 	task_lock(global);
1105 	get_fs_root(global->fs, &gl_root);
1106 	task_unlock(global);
1107 
1108 	int chrooted = !path_equal(&cr_root, &gl_root);
1109 	path_put(&gl_root);
1110 	path_put(&cr_root);
1111 
1112 	return (chrooted);
1113 }
1114 
1115 /*
1116  * Attempt to unmount a snapshot by making a call to user space.
1117  * There is no assurance that this can or will succeed, is just a
1118  * best effort.  In the case where it does fail, perhaps because
1119  * it's in use, the unmount will fail harmlessly.
1120  */
1121 int
1122 zfsctl_snapshot_unmount(const char *snapname, int flags)
1123 {
1124 	char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1125 	    NULL };
1126 	char *envp[] = { NULL };
1127 	zfs_snapentry_t *se;
1128 	int error;
1129 
1130 	rw_enter(&zfs_snapshot_lock, RW_READER);
1131 	if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1132 		rw_exit(&zfs_snapshot_lock);
1133 		return (SET_ERROR(ENOENT));
1134 	}
1135 	rw_exit(&zfs_snapshot_lock);
1136 
1137 	exportfs_flush();
1138 
1139 	if (flags & MNT_FORCE)
1140 		argv[4] = "-fn";
1141 	argv[5] = se->se_path;
1142 	dprintf("unmount; path=%s\n", se->se_path);
1143 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1144 	zfsctl_snapshot_rele(se);
1145 
1146 
1147 	/*
1148 	 * The umount system utility will return 256 on error.  We must
1149 	 * assume this error is because the file system is busy so it is
1150 	 * converted to the more sensible EBUSY.
1151 	 */
1152 	if (error)
1153 		error = SET_ERROR(EBUSY);
1154 
1155 	return (error);
1156 }
1157 
1158 int
1159 zfsctl_snapshot_mount(struct path *path, int flags)
1160 {
1161 	struct dentry *dentry = path->dentry;
1162 	struct inode *ip = dentry->d_inode;
1163 	zfsvfs_t *zfsvfs;
1164 	zfsvfs_t *snap_zfsvfs;
1165 	zfs_snapentry_t *se;
1166 	char *full_name, *full_path, *options;
1167 	char *argv[] = { "/usr/bin/env", "mount", "-i", "-t", "zfs", "-n",
1168 	    "-o", NULL, NULL, NULL, NULL };
1169 	char *envp[] = { NULL };
1170 	int error;
1171 	struct path spath;
1172 
1173 	if (ip == NULL)
1174 		return (SET_ERROR(EISDIR));
1175 
1176 	zfsvfs = ITOZSB(ip);
1177 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1178 		return (error);
1179 
1180 	full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1181 	full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1182 	options = kmem_zalloc(7, KM_SLEEP);
1183 
1184 	error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1185 	    ZFS_MAX_DATASET_NAME_LEN, full_name);
1186 	if (error)
1187 		goto error;
1188 
1189 	if (is_current_chrooted() == 0) {
1190 		/*
1191 		 * Current process is not in chroot context
1192 		 */
1193 
1194 		char *m = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1195 		struct path mnt_path;
1196 		mnt_path.mnt = path->mnt;
1197 		mnt_path.dentry = path->mnt->mnt_root;
1198 
1199 		/*
1200 		 * Get path to current mountpoint
1201 		 */
1202 		error = get_root_path(&mnt_path, m, MAXPATHLEN);
1203 		if (error != 0) {
1204 			kmem_free(m, MAXPATHLEN);
1205 			goto error;
1206 		}
1207 		mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock);
1208 		if (zfsvfs->z_vfs->vfs_mntpoint != NULL) {
1209 			/*
1210 			 * If current mnountpoint and vfs_mntpoint are not same,
1211 			 * store current mountpoint in vfs_mntpoint.
1212 			 */
1213 			if (strcmp(zfsvfs->z_vfs->vfs_mntpoint, m) != 0) {
1214 				kmem_strfree(zfsvfs->z_vfs->vfs_mntpoint);
1215 				zfsvfs->z_vfs->vfs_mntpoint = kmem_strdup(m);
1216 			}
1217 		} else
1218 			zfsvfs->z_vfs->vfs_mntpoint = kmem_strdup(m);
1219 		mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock);
1220 		kmem_free(m, MAXPATHLEN);
1221 	}
1222 
1223 	/*
1224 	 * Construct a mount point path from sb of the ctldir inode and dirent
1225 	 * name, instead of from d_path(), so that chroot'd process doesn't fail
1226 	 * on mount.zfs(8).
1227 	 */
1228 	mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock);
1229 	snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
1230 	    zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
1231 	    dname(dentry));
1232 	mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock);
1233 
1234 	snprintf(options, 7, "%s",
1235 	    zfs_snapshot_no_setuid ? "nosuid" : "suid");
1236 
1237 	/*
1238 	 * Multiple concurrent automounts of a snapshot are never allowed.
1239 	 * The snapshot may be manually mounted as many times as desired.
1240 	 */
1241 	if (zfsctl_snapshot_ismounted(full_name)) {
1242 		error = 0;
1243 		goto error;
1244 	}
1245 
1246 	/*
1247 	 * Attempt to mount the snapshot from user space.  Normally this
1248 	 * would be done using the vfs_kern_mount() function, however that
1249 	 * function is marked GPL-only and cannot be used.  On error we
1250 	 * careful to log the real error to the console and return EISDIR
1251 	 * to safely abort the automount.  This should be very rare.
1252 	 *
1253 	 * If the user mode helper happens to return EBUSY, a concurrent
1254 	 * mount is already in progress in which case the error is ignored.
1255 	 * Take note that if the program was executed successfully the return
1256 	 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1257 	 */
1258 	dprintf("mount; name=%s path=%s\n", full_name, full_path);
1259 	argv[7] = options;
1260 	argv[8] = full_name;
1261 	argv[9] = full_path;
1262 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1263 	if (error) {
1264 		if (!(error & MOUNT_BUSY << 8)) {
1265 			zfs_dbgmsg("Unable to automount %s error=%d",
1266 			    full_path, error);
1267 			error = SET_ERROR(EISDIR);
1268 		} else {
1269 			/*
1270 			 * EBUSY, this could mean a concurrent mount, or the
1271 			 * snapshot has already been mounted at completely
1272 			 * different place. We return 0 so VFS will retry. For
1273 			 * the latter case the VFS will retry several times
1274 			 * and return ELOOP, which is probably not a very good
1275 			 * behavior.
1276 			 */
1277 			error = 0;
1278 		}
1279 		goto error;
1280 	}
1281 
1282 	/*
1283 	 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1284 	 * to identify this as an automounted filesystem.
1285 	 */
1286 	spath = *path;
1287 	path_get(&spath);
1288 	if (follow_down_one(&spath)) {
1289 		snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1290 		snap_zfsvfs->z_parent = zfsvfs;
1291 		dentry = spath.dentry;
1292 		spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1293 
1294 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
1295 		se = zfsctl_snapshot_alloc(full_name, full_path,
1296 		    snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1297 		    dentry);
1298 		zfsctl_snapshot_add(se);
1299 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1300 		rw_exit(&zfs_snapshot_lock);
1301 	}
1302 	path_put(&spath);
1303 error:
1304 	kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1305 	kmem_free(full_path, MAXPATHLEN);
1306 
1307 	zfs_exit(zfsvfs, FTAG);
1308 
1309 	return (error);
1310 }
1311 
1312 /*
1313  * Get the snapdir inode from fid
1314  */
1315 int
1316 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1317     struct inode **ipp)
1318 {
1319 	int error;
1320 	struct path path;
1321 	char *mnt;
1322 	struct dentry *dentry;
1323 
1324 	mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1325 
1326 	error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1327 	    MAXPATHLEN, mnt);
1328 	if (error)
1329 		goto out;
1330 
1331 	/* Trigger automount */
1332 	error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1333 	if (error)
1334 		goto out;
1335 
1336 	path_put(&path);
1337 	/*
1338 	 * Get the snapdir inode. Note, we don't want to use the above
1339 	 * path because it contains the root of the snapshot rather
1340 	 * than the snapdir.
1341 	 */
1342 	*ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1343 	if (*ipp == NULL) {
1344 		error = SET_ERROR(ENOENT);
1345 		goto out;
1346 	}
1347 
1348 	/* check gen, see zfsctl_snapdir_fid */
1349 	dentry = d_obtain_alias(igrab(*ipp));
1350 	if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1351 		iput(*ipp);
1352 		*ipp = NULL;
1353 		error = SET_ERROR(ENOENT);
1354 	}
1355 	if (!IS_ERR(dentry))
1356 		dput(dentry);
1357 out:
1358 	kmem_free(mnt, MAXPATHLEN);
1359 	return (error);
1360 }
1361 
1362 int
1363 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1364     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1365 {
1366 	zfsvfs_t *zfsvfs = ITOZSB(dip);
1367 	znode_t *zp;
1368 	znode_t *dzp;
1369 	int error;
1370 
1371 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1372 		return (error);
1373 
1374 	if (zfsvfs->z_shares_dir == 0) {
1375 		zfs_exit(zfsvfs, FTAG);
1376 		return (SET_ERROR(ENOTSUP));
1377 	}
1378 
1379 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1380 		error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
1381 		zrele(dzp);
1382 	}
1383 
1384 	zfs_exit(zfsvfs, FTAG);
1385 
1386 	return (error);
1387 }
1388 
1389 /*
1390  * Initialize the various pieces we'll need to create and manipulate .zfs
1391  * directories.  Currently this is unused but available.
1392  */
1393 void
1394 zfsctl_init(void)
1395 {
1396 	avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1397 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1398 	    se_node_name));
1399 	avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1400 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1401 	    se_node_objsetid));
1402 	rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1403 }
1404 
1405 /*
1406  * Cleanup the various pieces we needed for .zfs directories.  In particular
1407  * ensure the expiry timer is canceled safely.
1408  */
1409 void
1410 zfsctl_fini(void)
1411 {
1412 	avl_destroy(&zfs_snapshots_by_name);
1413 	avl_destroy(&zfs_snapshots_by_objsetid);
1414 	rw_destroy(&zfs_snapshot_lock);
1415 }
1416 
1417 module_param(zfs_admin_snapshot, int, 0644);
1418 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1419 
1420 module_param(zfs_expire_snapshot, int, 0644);
1421 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");
1422 
1423 module_param(zfs_snapshot_no_setuid, int, 0644);
1424 MODULE_PARM_DESC(zfs_snapshot_no_setuid,
1425 	"Disable setuid/setgid for automounts in .zfs/snapshot");
1426