1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC. 25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 26 * LLNL-CODE-403049. 27 * Rewritten for Linux by: 28 * Rohan Puri <rohan.puri15@gmail.com> 29 * Brian Behlendorf <behlendorf1@llnl.gov> 30 * Copyright (c) 2013 by Delphix. All rights reserved. 31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. 32 * Copyright (c) 2018 George Melikov. All Rights Reserved. 33 * Copyright (c) 2019 Datto, Inc. All rights reserved. 34 * Copyright (c) 2020 The MathWorks, Inc. All rights reserved. 35 */ 36 37 /* 38 * ZFS control directory (a.k.a. ".zfs") 39 * 40 * This directory provides a common location for all ZFS meta-objects. 41 * Currently, this is only the 'snapshot' and 'shares' directory, but this may 42 * expand in the future. The elements are built dynamically, as the hierarchy 43 * does not actually exist on disk. 44 * 45 * For 'snapshot', we don't want to have all snapshots always mounted, because 46 * this would take up a huge amount of space in /etc/mnttab. We have three 47 * types of objects: 48 * 49 * ctldir ------> snapshotdir -------> snapshot 50 * | 51 * | 52 * V 53 * mounted fs 54 * 55 * The 'snapshot' node contains just enough information to lookup '..' and act 56 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 57 * perform an automount of the underlying filesystem and return the 58 * corresponding inode. 59 * 60 * All mounts are handled automatically by an user mode helper which invokes 61 * the mount procedure. Unmounts are handled by allowing the mount 62 * point to expire so the kernel may automatically unmount it. 63 * 64 * The '.zfs', '.zfs/snapshot', and all directories created under 65 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same 66 * zfsvfs_t as the head filesystem (what '.zfs' lives under). 67 * 68 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths 69 * (ie: snapshots) are complete ZFS filesystems and have their own unique 70 * zfsvfs_t. However, the fsid reported by these mounts will be the same 71 * as that used by the parent zfsvfs_t to make NFS happy. 72 */ 73 74 #include <sys/types.h> 75 #include <sys/param.h> 76 #include <sys/time.h> 77 #include <sys/sysmacros.h> 78 #include <sys/pathname.h> 79 #include <sys/vfs.h> 80 #include <sys/zfs_ctldir.h> 81 #include <sys/zfs_ioctl.h> 82 #include <sys/zfs_vfsops.h> 83 #include <sys/zfs_vnops.h> 84 #include <sys/stat.h> 85 #include <sys/dmu.h> 86 #include <sys/dmu_objset.h> 87 #include <sys/dsl_destroy.h> 88 #include <sys/dsl_deleg.h> 89 #include <sys/zpl.h> 90 #include <sys/mntent.h> 91 #include "zfs_namecheck.h" 92 93 /* 94 * Two AVL trees are maintained which contain all currently automounted 95 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t 96 * entry which MUST: 97 * 98 * - be attached to both trees, and 99 * - be unique, no duplicate entries are allowed. 100 * 101 * The zfs_snapshots_by_name tree is indexed by the full dataset name 102 * while the zfs_snapshots_by_objsetid tree is indexed by the unique 103 * objsetid. This allows for fast lookups either by name or objsetid. 104 */ 105 static avl_tree_t zfs_snapshots_by_name; 106 static avl_tree_t zfs_snapshots_by_objsetid; 107 static krwlock_t zfs_snapshot_lock; 108 109 /* 110 * Control Directory Tunables (.zfs) 111 */ 112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT; 113 static int zfs_admin_snapshot = 0; 114 static int zfs_snapshot_no_setuid = 0; 115 116 typedef struct { 117 char *se_name; /* full snapshot name */ 118 char *se_path; /* full mount path */ 119 spa_t *se_spa; /* pool spa */ 120 uint64_t se_objsetid; /* snapshot objset id */ 121 struct dentry *se_root_dentry; /* snapshot root dentry */ 122 krwlock_t se_taskqid_lock; /* scheduled unmount taskqid lock */ 123 taskqid_t se_taskqid; /* scheduled unmount taskqid */ 124 avl_node_t se_node_name; /* zfs_snapshots_by_name link */ 125 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */ 126 zfs_refcount_t se_refcount; /* reference count */ 127 } zfs_snapentry_t; 128 129 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay); 130 131 /* 132 * Allocate a new zfs_snapentry_t being careful to make a copy of the 133 * the snapshot name and provided mount point. No reference is taken. 134 */ 135 static zfs_snapentry_t * 136 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa, 137 uint64_t objsetid, struct dentry *root_dentry) 138 { 139 zfs_snapentry_t *se; 140 141 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP); 142 143 se->se_name = kmem_strdup(full_name); 144 se->se_path = kmem_strdup(full_path); 145 se->se_spa = spa; 146 se->se_objsetid = objsetid; 147 se->se_root_dentry = root_dentry; 148 se->se_taskqid = TASKQID_INVALID; 149 rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL); 150 151 zfs_refcount_create(&se->se_refcount); 152 153 return (se); 154 } 155 156 /* 157 * Free a zfs_snapentry_t the caller must ensure there are no active 158 * references. 159 */ 160 static void 161 zfsctl_snapshot_free(zfs_snapentry_t *se) 162 { 163 zfs_refcount_destroy(&se->se_refcount); 164 kmem_strfree(se->se_name); 165 kmem_strfree(se->se_path); 166 rw_destroy(&se->se_taskqid_lock); 167 168 kmem_free(se, sizeof (zfs_snapentry_t)); 169 } 170 171 /* 172 * Hold a reference on the zfs_snapentry_t. 173 */ 174 static void 175 zfsctl_snapshot_hold(zfs_snapentry_t *se) 176 { 177 zfs_refcount_add(&se->se_refcount, NULL); 178 } 179 180 /* 181 * Release a reference on the zfs_snapentry_t. When the number of 182 * references drops to zero the structure will be freed. 183 */ 184 static void 185 zfsctl_snapshot_rele(zfs_snapentry_t *se) 186 { 187 if (zfs_refcount_remove(&se->se_refcount, NULL) == 0) 188 zfsctl_snapshot_free(se); 189 } 190 191 /* 192 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and 193 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part 194 * of the trees a reference is held. 195 */ 196 static void 197 zfsctl_snapshot_add(zfs_snapentry_t *se) 198 { 199 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock)); 200 zfsctl_snapshot_hold(se); 201 avl_add(&zfs_snapshots_by_name, se); 202 avl_add(&zfs_snapshots_by_objsetid, se); 203 } 204 205 /* 206 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and 207 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped, 208 * this can result in the structure being freed if that was the last 209 * remaining reference. 210 */ 211 static void 212 zfsctl_snapshot_remove(zfs_snapentry_t *se) 213 { 214 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock)); 215 avl_remove(&zfs_snapshots_by_name, se); 216 avl_remove(&zfs_snapshots_by_objsetid, se); 217 zfsctl_snapshot_rele(se); 218 } 219 220 /* 221 * Snapshot name comparison function for the zfs_snapshots_by_name. 222 */ 223 static int 224 snapentry_compare_by_name(const void *a, const void *b) 225 { 226 const zfs_snapentry_t *se_a = a; 227 const zfs_snapentry_t *se_b = b; 228 int ret; 229 230 ret = strcmp(se_a->se_name, se_b->se_name); 231 232 if (ret < 0) 233 return (-1); 234 else if (ret > 0) 235 return (1); 236 else 237 return (0); 238 } 239 240 /* 241 * Snapshot name comparison function for the zfs_snapshots_by_objsetid. 242 */ 243 static int 244 snapentry_compare_by_objsetid(const void *a, const void *b) 245 { 246 const zfs_snapentry_t *se_a = a; 247 const zfs_snapentry_t *se_b = b; 248 249 if (se_a->se_spa != se_b->se_spa) 250 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1); 251 252 if (se_a->se_objsetid < se_b->se_objsetid) 253 return (-1); 254 else if (se_a->se_objsetid > se_b->se_objsetid) 255 return (1); 256 else 257 return (0); 258 } 259 260 /* 261 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname 262 * is found a pointer to the zfs_snapentry_t is returned and a reference 263 * taken on the structure. The caller is responsible for dropping the 264 * reference with zfsctl_snapshot_rele(). If the snapname is not found 265 * NULL will be returned. 266 */ 267 static zfs_snapentry_t * 268 zfsctl_snapshot_find_by_name(const char *snapname) 269 { 270 zfs_snapentry_t *se, search; 271 272 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock)); 273 274 search.se_name = (char *)snapname; 275 se = avl_find(&zfs_snapshots_by_name, &search, NULL); 276 if (se) 277 zfsctl_snapshot_hold(se); 278 279 return (se); 280 } 281 282 /* 283 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id 284 * rather than the snapname. In all other respects it behaves the same 285 * as zfsctl_snapshot_find_by_name(). 286 */ 287 static zfs_snapentry_t * 288 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid) 289 { 290 zfs_snapentry_t *se, search; 291 292 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock)); 293 294 search.se_spa = spa; 295 search.se_objsetid = objsetid; 296 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL); 297 if (se) 298 zfsctl_snapshot_hold(se); 299 300 return (se); 301 } 302 303 /* 304 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is 305 * removed, renamed, and added back to the new correct location in the tree. 306 */ 307 static int 308 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname) 309 { 310 zfs_snapentry_t *se; 311 312 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock)); 313 314 se = zfsctl_snapshot_find_by_name(old_snapname); 315 if (se == NULL) 316 return (SET_ERROR(ENOENT)); 317 318 zfsctl_snapshot_remove(se); 319 kmem_strfree(se->se_name); 320 se->se_name = kmem_strdup(new_snapname); 321 zfsctl_snapshot_add(se); 322 zfsctl_snapshot_rele(se); 323 324 return (0); 325 } 326 327 /* 328 * Delayed task responsible for unmounting an expired automounted snapshot. 329 */ 330 static void 331 snapentry_expire(void *data) 332 { 333 zfs_snapentry_t *se = (zfs_snapentry_t *)data; 334 spa_t *spa = se->se_spa; 335 uint64_t objsetid = se->se_objsetid; 336 337 if (zfs_expire_snapshot <= 0) { 338 zfsctl_snapshot_rele(se); 339 return; 340 } 341 342 rw_enter(&se->se_taskqid_lock, RW_WRITER); 343 se->se_taskqid = TASKQID_INVALID; 344 rw_exit(&se->se_taskqid_lock); 345 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE); 346 zfsctl_snapshot_rele(se); 347 348 /* 349 * Reschedule the unmount if the zfs_snapentry_t wasn't removed. 350 * This can occur when the snapshot is busy. 351 */ 352 rw_enter(&zfs_snapshot_lock, RW_READER); 353 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) { 354 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot); 355 zfsctl_snapshot_rele(se); 356 } 357 rw_exit(&zfs_snapshot_lock); 358 } 359 360 /* 361 * Cancel an automatic unmount of a snapname. This callback is responsible 362 * for dropping the reference on the zfs_snapentry_t which was taken when 363 * during dispatch. 364 */ 365 static void 366 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se) 367 { 368 int err = 0; 369 rw_enter(&se->se_taskqid_lock, RW_WRITER); 370 err = taskq_cancel_id(system_delay_taskq, se->se_taskqid); 371 /* 372 * if we get ENOENT, the taskq couldn't be found to be 373 * canceled, so we can just mark it as invalid because 374 * it's already gone. If we got EBUSY, then we already 375 * blocked until it was gone _anyway_, so we don't care. 376 */ 377 se->se_taskqid = TASKQID_INVALID; 378 rw_exit(&se->se_taskqid_lock); 379 if (err == 0) { 380 zfsctl_snapshot_rele(se); 381 } 382 } 383 384 /* 385 * Dispatch the unmount task for delayed handling with a hold protecting it. 386 */ 387 static void 388 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay) 389 { 390 391 if (delay <= 0) 392 return; 393 394 zfsctl_snapshot_hold(se); 395 rw_enter(&se->se_taskqid_lock, RW_WRITER); 396 /* 397 * If this condition happens, we managed to: 398 * - dispatch once 399 * - want to dispatch _again_ before it returned 400 * 401 * So let's just return - if that task fails at unmounting, 402 * we'll eventually dispatch again, and if it succeeds, 403 * no problem. 404 */ 405 if (se->se_taskqid != TASKQID_INVALID) { 406 rw_exit(&se->se_taskqid_lock); 407 zfsctl_snapshot_rele(se); 408 return; 409 } 410 se->se_taskqid = taskq_dispatch_delay(system_delay_taskq, 411 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ); 412 rw_exit(&se->se_taskqid_lock); 413 } 414 415 /* 416 * Schedule an automatic unmount of objset id to occur in delay seconds from 417 * now. Any previous delayed unmount will be cancelled in favor of the 418 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name() 419 * and held until the outstanding task is handled or cancelled. 420 */ 421 int 422 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay) 423 { 424 zfs_snapentry_t *se; 425 int error = ENOENT; 426 427 rw_enter(&zfs_snapshot_lock, RW_READER); 428 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) { 429 zfsctl_snapshot_unmount_cancel(se); 430 zfsctl_snapshot_unmount_delay_impl(se, delay); 431 zfsctl_snapshot_rele(se); 432 error = 0; 433 } 434 rw_exit(&zfs_snapshot_lock); 435 436 return (error); 437 } 438 439 /* 440 * Check if snapname is currently mounted. Returned non-zero when mounted 441 * and zero when unmounted. 442 */ 443 static boolean_t 444 zfsctl_snapshot_ismounted(const char *snapname) 445 { 446 zfs_snapentry_t *se; 447 boolean_t ismounted = B_FALSE; 448 449 rw_enter(&zfs_snapshot_lock, RW_READER); 450 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) { 451 zfsctl_snapshot_rele(se); 452 ismounted = B_TRUE; 453 } 454 rw_exit(&zfs_snapshot_lock); 455 456 return (ismounted); 457 } 458 459 /* 460 * Check if the given inode is a part of the virtual .zfs directory. 461 */ 462 boolean_t 463 zfsctl_is_node(struct inode *ip) 464 { 465 return (ITOZ(ip)->z_is_ctldir); 466 } 467 468 /* 469 * Check if the given inode is a .zfs/snapshots/snapname directory. 470 */ 471 boolean_t 472 zfsctl_is_snapdir(struct inode *ip) 473 { 474 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS)); 475 } 476 477 /* 478 * Allocate a new inode with the passed id and ops. 479 */ 480 static struct inode * 481 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id, 482 const struct file_operations *fops, const struct inode_operations *ops, 483 uint64_t creation) 484 { 485 struct inode *ip; 486 znode_t *zp; 487 inode_timespec_t now = {.tv_sec = creation}; 488 489 ip = new_inode(zfsvfs->z_sb); 490 if (ip == NULL) 491 return (NULL); 492 493 if (!creation) 494 now = current_time(ip); 495 zp = ITOZ(ip); 496 ASSERT3P(zp->z_dirlocks, ==, NULL); 497 ASSERT3P(zp->z_acl_cached, ==, NULL); 498 ASSERT3P(zp->z_xattr_cached, ==, NULL); 499 zp->z_id = id; 500 zp->z_unlinked = B_FALSE; 501 zp->z_atime_dirty = B_FALSE; 502 zp->z_zn_prefetch = B_FALSE; 503 zp->z_is_sa = B_FALSE; 504 zp->z_is_ctldir = B_TRUE; 505 zp->z_sa_hdl = NULL; 506 zp->z_blksz = 0; 507 zp->z_seq = 0; 508 zp->z_mapcnt = 0; 509 zp->z_size = 0; 510 zp->z_pflags = 0; 511 zp->z_mode = 0; 512 zp->z_sync_cnt = 0; 513 zp->z_sync_writes_cnt = 0; 514 zp->z_async_writes_cnt = 0; 515 ip->i_generation = 0; 516 ip->i_ino = id; 517 ip->i_mode = (S_IFDIR | S_IRWXUGO); 518 ip->i_uid = SUID_TO_KUID(0); 519 ip->i_gid = SGID_TO_KGID(0); 520 ip->i_blkbits = SPA_MINBLOCKSHIFT; 521 zpl_inode_set_atime_to_ts(ip, now); 522 zpl_inode_set_mtime_to_ts(ip, now); 523 zpl_inode_set_ctime_to_ts(ip, now); 524 ip->i_fop = fops; 525 ip->i_op = ops; 526 #if defined(IOP_XATTR) 527 ip->i_opflags &= ~IOP_XATTR; 528 #endif 529 530 if (insert_inode_locked(ip)) { 531 unlock_new_inode(ip); 532 iput(ip); 533 return (NULL); 534 } 535 536 mutex_enter(&zfsvfs->z_znodes_lock); 537 list_insert_tail(&zfsvfs->z_all_znodes, zp); 538 membar_producer(); 539 mutex_exit(&zfsvfs->z_znodes_lock); 540 541 unlock_new_inode(ip); 542 543 return (ip); 544 } 545 546 /* 547 * Lookup the inode with given id, it will be allocated if needed. 548 */ 549 static struct inode * 550 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id, 551 const struct file_operations *fops, const struct inode_operations *ops) 552 { 553 struct inode *ip = NULL; 554 uint64_t creation = 0; 555 dsl_dataset_t *snap_ds; 556 dsl_pool_t *pool; 557 558 while (ip == NULL) { 559 ip = ilookup(zfsvfs->z_sb, (unsigned long)id); 560 if (ip) 561 break; 562 563 if (id <= ZFSCTL_INO_SNAPDIRS && !creation) { 564 pool = dmu_objset_pool(zfsvfs->z_os); 565 dsl_pool_config_enter(pool, FTAG); 566 if (!dsl_dataset_hold_obj(pool, 567 ZFSCTL_INO_SNAPDIRS - id, FTAG, &snap_ds)) { 568 creation = dsl_get_creation(snap_ds); 569 dsl_dataset_rele(snap_ds, FTAG); 570 } 571 dsl_pool_config_exit(pool, FTAG); 572 } 573 574 /* May fail due to concurrent zfsctl_inode_alloc() */ 575 ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops, creation); 576 } 577 578 return (ip); 579 } 580 581 /* 582 * Create the '.zfs' directory. This directory is cached as part of the VFS 583 * structure. This results in a hold on the zfsvfs_t. The code in zfs_umount() 584 * therefore checks against a vfs_count of 2 instead of 1. This reference 585 * is removed when the ctldir is destroyed in the unmount. All other entities 586 * under the '.zfs' directory are created dynamically as needed. 587 * 588 * Because the dynamically created '.zfs' directory entries assume the use 589 * of 64-bit inode numbers this support must be disabled on 32-bit systems. 590 */ 591 int 592 zfsctl_create(zfsvfs_t *zfsvfs) 593 { 594 ASSERT(zfsvfs->z_ctldir == NULL); 595 596 zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT, 597 &zpl_fops_root, &zpl_ops_root, 0); 598 if (zfsvfs->z_ctldir == NULL) 599 return (SET_ERROR(ENOENT)); 600 601 return (0); 602 } 603 604 /* 605 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name. 606 * Only called when the filesystem is unmounted. 607 */ 608 void 609 zfsctl_destroy(zfsvfs_t *zfsvfs) 610 { 611 if (zfsvfs->z_issnap) { 612 zfs_snapentry_t *se; 613 spa_t *spa = zfsvfs->z_os->os_spa; 614 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 615 616 rw_enter(&zfs_snapshot_lock, RW_WRITER); 617 se = zfsctl_snapshot_find_by_objsetid(spa, objsetid); 618 if (se != NULL) 619 zfsctl_snapshot_remove(se); 620 rw_exit(&zfs_snapshot_lock); 621 if (se != NULL) { 622 zfsctl_snapshot_unmount_cancel(se); 623 zfsctl_snapshot_rele(se); 624 } 625 } else if (zfsvfs->z_ctldir) { 626 iput(zfsvfs->z_ctldir); 627 zfsvfs->z_ctldir = NULL; 628 } 629 } 630 631 /* 632 * Given a root znode, retrieve the associated .zfs directory. 633 * Add a hold to the vnode and return it. 634 */ 635 struct inode * 636 zfsctl_root(znode_t *zp) 637 { 638 ASSERT(zfs_has_ctldir(zp)); 639 /* Must have an existing ref, so igrab() cannot return NULL */ 640 VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL); 641 return (ZTOZSB(zp)->z_ctldir); 642 } 643 644 /* 645 * Generate a long fid to indicate a snapdir. We encode whether snapdir is 646 * already mounted in gen field. We do this because nfsd lookup will not 647 * trigger automount. Next time the nfsd does fh_to_dentry, we will notice 648 * this and do automount and return ESTALE to force nfsd revalidate and follow 649 * mount. 650 */ 651 static int 652 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp) 653 { 654 zfid_short_t *zfid = (zfid_short_t *)fidp; 655 zfid_long_t *zlfid = (zfid_long_t *)fidp; 656 uint32_t gen = 0; 657 uint64_t object; 658 uint64_t objsetid; 659 int i; 660 struct dentry *dentry; 661 662 if (fidp->fid_len < LONG_FID_LEN) { 663 fidp->fid_len = LONG_FID_LEN; 664 return (SET_ERROR(ENOSPC)); 665 } 666 667 object = ip->i_ino; 668 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino; 669 zfid->zf_len = LONG_FID_LEN; 670 671 dentry = d_obtain_alias(igrab(ip)); 672 if (!IS_ERR(dentry)) { 673 gen = !!d_mountpoint(dentry); 674 dput(dentry); 675 } 676 677 for (i = 0; i < sizeof (zfid->zf_object); i++) 678 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 679 680 for (i = 0; i < sizeof (zfid->zf_gen); i++) 681 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 682 683 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 684 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 685 686 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 687 zlfid->zf_setgen[i] = 0; 688 689 return (0); 690 } 691 692 /* 693 * Generate an appropriate fid for an entry in the .zfs directory. 694 */ 695 int 696 zfsctl_fid(struct inode *ip, fid_t *fidp) 697 { 698 znode_t *zp = ITOZ(ip); 699 zfsvfs_t *zfsvfs = ITOZSB(ip); 700 uint64_t object = zp->z_id; 701 zfid_short_t *zfid; 702 int i; 703 int error; 704 705 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 706 return (error); 707 708 if (zfsctl_is_snapdir(ip)) { 709 zfs_exit(zfsvfs, FTAG); 710 return (zfsctl_snapdir_fid(ip, fidp)); 711 } 712 713 if (fidp->fid_len < SHORT_FID_LEN) { 714 fidp->fid_len = SHORT_FID_LEN; 715 zfs_exit(zfsvfs, FTAG); 716 return (SET_ERROR(ENOSPC)); 717 } 718 719 zfid = (zfid_short_t *)fidp; 720 721 zfid->zf_len = SHORT_FID_LEN; 722 723 for (i = 0; i < sizeof (zfid->zf_object); i++) 724 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 725 726 /* .zfs znodes always have a generation number of 0 */ 727 for (i = 0; i < sizeof (zfid->zf_gen); i++) 728 zfid->zf_gen[i] = 0; 729 730 zfs_exit(zfsvfs, FTAG); 731 return (0); 732 } 733 734 /* 735 * Construct a full dataset name in full_name: "pool/dataset@snap_name" 736 */ 737 static int 738 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len, 739 char *full_name) 740 { 741 objset_t *os = zfsvfs->z_os; 742 743 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0) 744 return (SET_ERROR(EILSEQ)); 745 746 dmu_objset_name(os, full_name); 747 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len) 748 return (SET_ERROR(ENAMETOOLONG)); 749 750 (void) strcat(full_name, "@"); 751 (void) strcat(full_name, snap_name); 752 753 return (0); 754 } 755 756 /* 757 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/" 758 */ 759 static int 760 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid, 761 int path_len, char *full_path) 762 { 763 objset_t *os = zfsvfs->z_os; 764 fstrans_cookie_t cookie; 765 char *snapname; 766 boolean_t case_conflict; 767 uint64_t id, pos = 0; 768 int error = 0; 769 770 if (zfsvfs->z_vfs->vfs_mntpoint == NULL) 771 return (SET_ERROR(ENOENT)); 772 773 cookie = spl_fstrans_mark(); 774 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 775 776 while (error == 0) { 777 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 778 error = dmu_snapshot_list_next(zfsvfs->z_os, 779 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos, 780 &case_conflict); 781 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 782 if (error) 783 goto out; 784 785 if (id == objsetid) 786 break; 787 } 788 789 snprintf(full_path, path_len, "%s/.zfs/snapshot/%s", 790 zfsvfs->z_vfs->vfs_mntpoint, snapname); 791 out: 792 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN); 793 spl_fstrans_unmark(cookie); 794 795 return (error); 796 } 797 798 /* 799 * Special case the handling of "..". 800 */ 801 int 802 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp, 803 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) 804 { 805 zfsvfs_t *zfsvfs = ITOZSB(dip); 806 int error = 0; 807 808 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 809 return (error); 810 811 if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) { 812 *ipp = NULL; 813 } else if (strcmp(name, "..") == 0) { 814 *ipp = dip->i_sb->s_root->d_inode; 815 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) { 816 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR, 817 &zpl_fops_snapdir, &zpl_ops_snapdir); 818 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) { 819 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES, 820 &zpl_fops_shares, &zpl_ops_shares); 821 } else { 822 *ipp = NULL; 823 } 824 825 if (*ipp == NULL) 826 error = SET_ERROR(ENOENT); 827 828 zfs_exit(zfsvfs, FTAG); 829 830 return (error); 831 } 832 833 /* 834 * Lookup entry point for the 'snapshot' directory. Try to open the 835 * snapshot if it exist, creating the pseudo filesystem inode as necessary. 836 */ 837 int 838 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp, 839 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) 840 { 841 zfsvfs_t *zfsvfs = ITOZSB(dip); 842 uint64_t id; 843 int error; 844 845 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 846 return (error); 847 848 error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id); 849 if (error) { 850 zfs_exit(zfsvfs, FTAG); 851 return (error); 852 } 853 854 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id, 855 &simple_dir_operations, &simple_dir_inode_operations); 856 if (*ipp == NULL) 857 error = SET_ERROR(ENOENT); 858 859 zfs_exit(zfsvfs, FTAG); 860 861 return (error); 862 } 863 864 /* 865 * Renaming a directory under '.zfs/snapshot' will automatically trigger 866 * a rename of the snapshot to the new given name. The rename is confined 867 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere. 868 */ 869 int 870 zfsctl_snapdir_rename(struct inode *sdip, const char *snm, 871 struct inode *tdip, const char *tnm, cred_t *cr, int flags) 872 { 873 zfsvfs_t *zfsvfs = ITOZSB(sdip); 874 char *to, *from, *real, *fsname; 875 int error; 876 877 if (!zfs_admin_snapshot) 878 return (SET_ERROR(EACCES)); 879 880 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 881 return (error); 882 883 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 884 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 885 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 886 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 887 888 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 889 error = dmu_snapshot_realname(zfsvfs->z_os, snm, real, 890 ZFS_MAX_DATASET_NAME_LEN, NULL); 891 if (error == 0) { 892 snm = real; 893 } else if (error != ENOTSUP) { 894 goto out; 895 } 896 } 897 898 dmu_objset_name(zfsvfs->z_os, fsname); 899 900 error = zfsctl_snapshot_name(ITOZSB(sdip), snm, 901 ZFS_MAX_DATASET_NAME_LEN, from); 902 if (error == 0) 903 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm, 904 ZFS_MAX_DATASET_NAME_LEN, to); 905 if (error == 0) 906 error = zfs_secpolicy_rename_perms(from, to, cr); 907 if (error != 0) 908 goto out; 909 910 /* 911 * Cannot move snapshots out of the snapdir. 912 */ 913 if (sdip != tdip) { 914 error = SET_ERROR(EINVAL); 915 goto out; 916 } 917 918 /* 919 * No-op when names are identical. 920 */ 921 if (strcmp(snm, tnm) == 0) { 922 error = 0; 923 goto out; 924 } 925 926 rw_enter(&zfs_snapshot_lock, RW_WRITER); 927 928 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE); 929 if (error == 0) 930 (void) zfsctl_snapshot_rename(snm, tnm); 931 932 rw_exit(&zfs_snapshot_lock); 933 out: 934 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN); 935 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN); 936 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN); 937 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN); 938 939 zfs_exit(zfsvfs, FTAG); 940 941 return (error); 942 } 943 944 /* 945 * Removing a directory under '.zfs/snapshot' will automatically trigger 946 * the removal of the snapshot with the given name. 947 */ 948 int 949 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr, 950 int flags) 951 { 952 zfsvfs_t *zfsvfs = ITOZSB(dip); 953 char *snapname, *real; 954 int error; 955 956 if (!zfs_admin_snapshot) 957 return (SET_ERROR(EACCES)); 958 959 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 960 return (error); 961 962 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 963 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 964 965 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 966 error = dmu_snapshot_realname(zfsvfs->z_os, name, real, 967 ZFS_MAX_DATASET_NAME_LEN, NULL); 968 if (error == 0) { 969 name = real; 970 } else if (error != ENOTSUP) { 971 goto out; 972 } 973 } 974 975 error = zfsctl_snapshot_name(ITOZSB(dip), name, 976 ZFS_MAX_DATASET_NAME_LEN, snapname); 977 if (error == 0) 978 error = zfs_secpolicy_destroy_perms(snapname, cr); 979 if (error != 0) 980 goto out; 981 982 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE); 983 if ((error == 0) || (error == ENOENT)) 984 error = dsl_destroy_snapshot(snapname, B_FALSE); 985 out: 986 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN); 987 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN); 988 989 zfs_exit(zfsvfs, FTAG); 990 991 return (error); 992 } 993 994 /* 995 * Creating a directory under '.zfs/snapshot' will automatically trigger 996 * the creation of a new snapshot with the given name. 997 */ 998 int 999 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap, 1000 struct inode **ipp, cred_t *cr, int flags) 1001 { 1002 zfsvfs_t *zfsvfs = ITOZSB(dip); 1003 char *dsname; 1004 int error; 1005 1006 if (!zfs_admin_snapshot) 1007 return (SET_ERROR(EACCES)); 1008 1009 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 1010 1011 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) { 1012 error = SET_ERROR(EILSEQ); 1013 goto out; 1014 } 1015 1016 dmu_objset_name(zfsvfs->z_os, dsname); 1017 1018 error = zfs_secpolicy_snapshot_perms(dsname, cr); 1019 if (error != 0) 1020 goto out; 1021 1022 if (error == 0) { 1023 error = dmu_objset_snapshot_one(dsname, dirname); 1024 if (error != 0) 1025 goto out; 1026 1027 error = zfsctl_snapdir_lookup(dip, dirname, ipp, 1028 0, cr, NULL, NULL); 1029 } 1030 out: 1031 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 1032 1033 return (error); 1034 } 1035 1036 /* 1037 * Flush everything out of the kernel's export table and such. 1038 * This is needed as once the snapshot is used over NFS, its 1039 * entries in svc_export and svc_expkey caches hold reference 1040 * to the snapshot mount point. There is no known way of flushing 1041 * only the entries related to the snapshot. 1042 */ 1043 static void 1044 exportfs_flush(void) 1045 { 1046 char *argv[] = { "/usr/sbin/exportfs", "-f", NULL }; 1047 char *envp[] = { NULL }; 1048 1049 (void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); 1050 } 1051 1052 /* 1053 * Attempt to unmount a snapshot by making a call to user space. 1054 * There is no assurance that this can or will succeed, is just a 1055 * best effort. In the case where it does fail, perhaps because 1056 * it's in use, the unmount will fail harmlessly. 1057 */ 1058 int 1059 zfsctl_snapshot_unmount(const char *snapname, int flags) 1060 { 1061 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL, 1062 NULL }; 1063 char *envp[] = { NULL }; 1064 zfs_snapentry_t *se; 1065 int error; 1066 1067 rw_enter(&zfs_snapshot_lock, RW_READER); 1068 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) { 1069 rw_exit(&zfs_snapshot_lock); 1070 return (SET_ERROR(ENOENT)); 1071 } 1072 rw_exit(&zfs_snapshot_lock); 1073 1074 exportfs_flush(); 1075 1076 if (flags & MNT_FORCE) 1077 argv[4] = "-fn"; 1078 argv[5] = se->se_path; 1079 dprintf("unmount; path=%s\n", se->se_path); 1080 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); 1081 zfsctl_snapshot_rele(se); 1082 1083 1084 /* 1085 * The umount system utility will return 256 on error. We must 1086 * assume this error is because the file system is busy so it is 1087 * converted to the more sensible EBUSY. 1088 */ 1089 if (error) 1090 error = SET_ERROR(EBUSY); 1091 1092 return (error); 1093 } 1094 1095 int 1096 zfsctl_snapshot_mount(struct path *path, int flags) 1097 { 1098 struct dentry *dentry = path->dentry; 1099 struct inode *ip = dentry->d_inode; 1100 zfsvfs_t *zfsvfs; 1101 zfsvfs_t *snap_zfsvfs; 1102 zfs_snapentry_t *se; 1103 char *full_name, *full_path, *options; 1104 char *argv[] = { "/usr/bin/env", "mount", "-i", "-t", "zfs", "-n", 1105 "-o", NULL, NULL, NULL, NULL }; 1106 char *envp[] = { NULL }; 1107 int error; 1108 struct path spath; 1109 1110 if (ip == NULL) 1111 return (SET_ERROR(EISDIR)); 1112 1113 zfsvfs = ITOZSB(ip); 1114 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1115 return (error); 1116 1117 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 1118 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1119 options = kmem_zalloc(7, KM_SLEEP); 1120 1121 error = zfsctl_snapshot_name(zfsvfs, dname(dentry), 1122 ZFS_MAX_DATASET_NAME_LEN, full_name); 1123 if (error) 1124 goto error; 1125 1126 /* 1127 * Construct a mount point path from sb of the ctldir inode and dirent 1128 * name, instead of from d_path(), so that chroot'd process doesn't fail 1129 * on mount.zfs(8). 1130 */ 1131 snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s", 1132 zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "", 1133 dname(dentry)); 1134 1135 snprintf(options, 7, "%s", 1136 zfs_snapshot_no_setuid ? "nosuid" : "suid"); 1137 1138 /* 1139 * Multiple concurrent automounts of a snapshot are never allowed. 1140 * The snapshot may be manually mounted as many times as desired. 1141 */ 1142 if (zfsctl_snapshot_ismounted(full_name)) { 1143 error = 0; 1144 goto error; 1145 } 1146 1147 /* 1148 * Attempt to mount the snapshot from user space. Normally this 1149 * would be done using the vfs_kern_mount() function, however that 1150 * function is marked GPL-only and cannot be used. On error we 1151 * careful to log the real error to the console and return EISDIR 1152 * to safely abort the automount. This should be very rare. 1153 * 1154 * If the user mode helper happens to return EBUSY, a concurrent 1155 * mount is already in progress in which case the error is ignored. 1156 * Take note that if the program was executed successfully the return 1157 * value from call_usermodehelper() will be (exitcode << 8 + signal). 1158 */ 1159 dprintf("mount; name=%s path=%s\n", full_name, full_path); 1160 argv[7] = options; 1161 argv[8] = full_name; 1162 argv[9] = full_path; 1163 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); 1164 if (error) { 1165 if (!(error & MOUNT_BUSY << 8)) { 1166 zfs_dbgmsg("Unable to automount %s error=%d", 1167 full_path, error); 1168 error = SET_ERROR(EISDIR); 1169 } else { 1170 /* 1171 * EBUSY, this could mean a concurrent mount, or the 1172 * snapshot has already been mounted at completely 1173 * different place. We return 0 so VFS will retry. For 1174 * the latter case the VFS will retry several times 1175 * and return ELOOP, which is probably not a very good 1176 * behavior. 1177 */ 1178 error = 0; 1179 } 1180 goto error; 1181 } 1182 1183 /* 1184 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE 1185 * to identify this as an automounted filesystem. 1186 */ 1187 spath = *path; 1188 path_get(&spath); 1189 if (follow_down_one(&spath)) { 1190 snap_zfsvfs = ITOZSB(spath.dentry->d_inode); 1191 snap_zfsvfs->z_parent = zfsvfs; 1192 dentry = spath.dentry; 1193 spath.mnt->mnt_flags |= MNT_SHRINKABLE; 1194 1195 rw_enter(&zfs_snapshot_lock, RW_WRITER); 1196 se = zfsctl_snapshot_alloc(full_name, full_path, 1197 snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os), 1198 dentry); 1199 zfsctl_snapshot_add(se); 1200 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot); 1201 rw_exit(&zfs_snapshot_lock); 1202 } 1203 path_put(&spath); 1204 error: 1205 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN); 1206 kmem_free(full_path, MAXPATHLEN); 1207 1208 zfs_exit(zfsvfs, FTAG); 1209 1210 return (error); 1211 } 1212 1213 /* 1214 * Get the snapdir inode from fid 1215 */ 1216 int 1217 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen, 1218 struct inode **ipp) 1219 { 1220 int error; 1221 struct path path; 1222 char *mnt; 1223 struct dentry *dentry; 1224 1225 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1226 1227 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid, 1228 MAXPATHLEN, mnt); 1229 if (error) 1230 goto out; 1231 1232 /* Trigger automount */ 1233 error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path); 1234 if (error) 1235 goto out; 1236 1237 path_put(&path); 1238 /* 1239 * Get the snapdir inode. Note, we don't want to use the above 1240 * path because it contains the root of the snapshot rather 1241 * than the snapdir. 1242 */ 1243 *ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid); 1244 if (*ipp == NULL) { 1245 error = SET_ERROR(ENOENT); 1246 goto out; 1247 } 1248 1249 /* check gen, see zfsctl_snapdir_fid */ 1250 dentry = d_obtain_alias(igrab(*ipp)); 1251 if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) { 1252 iput(*ipp); 1253 *ipp = NULL; 1254 error = SET_ERROR(ENOENT); 1255 } 1256 if (!IS_ERR(dentry)) 1257 dput(dentry); 1258 out: 1259 kmem_free(mnt, MAXPATHLEN); 1260 return (error); 1261 } 1262 1263 int 1264 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp, 1265 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) 1266 { 1267 zfsvfs_t *zfsvfs = ITOZSB(dip); 1268 znode_t *zp; 1269 znode_t *dzp; 1270 int error; 1271 1272 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1273 return (error); 1274 1275 if (zfsvfs->z_shares_dir == 0) { 1276 zfs_exit(zfsvfs, FTAG); 1277 return (SET_ERROR(ENOTSUP)); 1278 } 1279 1280 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1281 error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL); 1282 zrele(dzp); 1283 } 1284 1285 zfs_exit(zfsvfs, FTAG); 1286 1287 return (error); 1288 } 1289 1290 /* 1291 * Initialize the various pieces we'll need to create and manipulate .zfs 1292 * directories. Currently this is unused but available. 1293 */ 1294 void 1295 zfsctl_init(void) 1296 { 1297 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name, 1298 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, 1299 se_node_name)); 1300 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid, 1301 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, 1302 se_node_objsetid)); 1303 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL); 1304 } 1305 1306 /* 1307 * Cleanup the various pieces we needed for .zfs directories. In particular 1308 * ensure the expiry timer is canceled safely. 1309 */ 1310 void 1311 zfsctl_fini(void) 1312 { 1313 avl_destroy(&zfs_snapshots_by_name); 1314 avl_destroy(&zfs_snapshots_by_objsetid); 1315 rw_destroy(&zfs_snapshot_lock); 1316 } 1317 1318 module_param(zfs_admin_snapshot, int, 0644); 1319 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot"); 1320 1321 module_param(zfs_expire_snapshot, int, 0644); 1322 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot"); 1323 1324 module_param(zfs_snapshot_no_setuid, int, 0644); 1325 MODULE_PARM_DESC(zfs_snapshot_no_setuid, 1326 "Disable setuid/setgid for automounts in .zfs/snapshot"); 1327