1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC. 25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 26 * LLNL-CODE-403049. 27 * Rewritten for Linux by: 28 * Rohan Puri <rohan.puri15@gmail.com> 29 * Brian Behlendorf <behlendorf1@llnl.gov> 30 * Copyright (c) 2013 by Delphix. All rights reserved. 31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. 32 * Copyright (c) 2018 George Melikov. All Rights Reserved. 33 * Copyright (c) 2019 Datto, Inc. All rights reserved. 34 * Copyright (c) 2020 The MathWorks, Inc. All rights reserved. 35 */ 36 37 /* 38 * ZFS control directory (a.k.a. ".zfs") 39 * 40 * This directory provides a common location for all ZFS meta-objects. 41 * Currently, this is only the 'snapshot' and 'shares' directory, but this may 42 * expand in the future. The elements are built dynamically, as the hierarchy 43 * does not actually exist on disk. 44 * 45 * For 'snapshot', we don't want to have all snapshots always mounted, because 46 * this would take up a huge amount of space in /etc/mnttab. We have three 47 * types of objects: 48 * 49 * ctldir ------> snapshotdir -------> snapshot 50 * | 51 * | 52 * V 53 * mounted fs 54 * 55 * The 'snapshot' node contains just enough information to lookup '..' and act 56 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 57 * perform an automount of the underlying filesystem and return the 58 * corresponding inode. 59 * 60 * All mounts are handled automatically by an user mode helper which invokes 61 * the mount procedure. Unmounts are handled by allowing the mount 62 * point to expire so the kernel may automatically unmount it. 63 * 64 * The '.zfs', '.zfs/snapshot', and all directories created under 65 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same 66 * zfsvfs_t as the head filesystem (what '.zfs' lives under). 67 * 68 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths 69 * (ie: snapshots) are complete ZFS filesystems and have their own unique 70 * zfsvfs_t. However, the fsid reported by these mounts will be the same 71 * as that used by the parent zfsvfs_t to make NFS happy. 72 */ 73 74 #include <sys/types.h> 75 #include <sys/param.h> 76 #include <sys/time.h> 77 #include <sys/sysmacros.h> 78 #include <sys/pathname.h> 79 #include <sys/vfs.h> 80 #include <sys/zfs_ctldir.h> 81 #include <sys/zfs_ioctl.h> 82 #include <sys/zfs_vfsops.h> 83 #include <sys/zfs_vnops.h> 84 #include <sys/stat.h> 85 #include <sys/dmu.h> 86 #include <sys/dmu_objset.h> 87 #include <sys/dsl_destroy.h> 88 #include <sys/dsl_deleg.h> 89 #include <sys/zpl.h> 90 #include <sys/mntent.h> 91 #include "zfs_namecheck.h" 92 93 /* 94 * Two AVL trees are maintained which contain all currently automounted 95 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t 96 * entry which MUST: 97 * 98 * - be attached to both trees, and 99 * - be unique, no duplicate entries are allowed. 100 * 101 * The zfs_snapshots_by_name tree is indexed by the full dataset name 102 * while the zfs_snapshots_by_objsetid tree is indexed by the unique 103 * objsetid. This allows for fast lookups either by name or objsetid. 104 */ 105 static avl_tree_t zfs_snapshots_by_name; 106 static avl_tree_t zfs_snapshots_by_objsetid; 107 static krwlock_t zfs_snapshot_lock; 108 109 /* 110 * Control Directory Tunables (.zfs) 111 */ 112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT; 113 static int zfs_admin_snapshot = 0; 114 115 typedef struct { 116 char *se_name; /* full snapshot name */ 117 char *se_path; /* full mount path */ 118 spa_t *se_spa; /* pool spa */ 119 uint64_t se_objsetid; /* snapshot objset id */ 120 struct dentry *se_root_dentry; /* snapshot root dentry */ 121 krwlock_t se_taskqid_lock; /* scheduled unmount taskqid lock */ 122 taskqid_t se_taskqid; /* scheduled unmount taskqid */ 123 avl_node_t se_node_name; /* zfs_snapshots_by_name link */ 124 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */ 125 zfs_refcount_t se_refcount; /* reference count */ 126 } zfs_snapentry_t; 127 128 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay); 129 130 /* 131 * Allocate a new zfs_snapentry_t being careful to make a copy of the 132 * the snapshot name and provided mount point. No reference is taken. 133 */ 134 static zfs_snapentry_t * 135 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa, 136 uint64_t objsetid, struct dentry *root_dentry) 137 { 138 zfs_snapentry_t *se; 139 140 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP); 141 142 se->se_name = kmem_strdup(full_name); 143 se->se_path = kmem_strdup(full_path); 144 se->se_spa = spa; 145 se->se_objsetid = objsetid; 146 se->se_root_dentry = root_dentry; 147 se->se_taskqid = TASKQID_INVALID; 148 rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL); 149 150 zfs_refcount_create(&se->se_refcount); 151 152 return (se); 153 } 154 155 /* 156 * Free a zfs_snapentry_t the caller must ensure there are no active 157 * references. 158 */ 159 static void 160 zfsctl_snapshot_free(zfs_snapentry_t *se) 161 { 162 zfs_refcount_destroy(&se->se_refcount); 163 kmem_strfree(se->se_name); 164 kmem_strfree(se->se_path); 165 rw_destroy(&se->se_taskqid_lock); 166 167 kmem_free(se, sizeof (zfs_snapentry_t)); 168 } 169 170 /* 171 * Hold a reference on the zfs_snapentry_t. 172 */ 173 static void 174 zfsctl_snapshot_hold(zfs_snapentry_t *se) 175 { 176 zfs_refcount_add(&se->se_refcount, NULL); 177 } 178 179 /* 180 * Release a reference on the zfs_snapentry_t. When the number of 181 * references drops to zero the structure will be freed. 182 */ 183 static void 184 zfsctl_snapshot_rele(zfs_snapentry_t *se) 185 { 186 if (zfs_refcount_remove(&se->se_refcount, NULL) == 0) 187 zfsctl_snapshot_free(se); 188 } 189 190 /* 191 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and 192 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part 193 * of the trees a reference is held. 194 */ 195 static void 196 zfsctl_snapshot_add(zfs_snapentry_t *se) 197 { 198 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock)); 199 zfsctl_snapshot_hold(se); 200 avl_add(&zfs_snapshots_by_name, se); 201 avl_add(&zfs_snapshots_by_objsetid, se); 202 } 203 204 /* 205 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and 206 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped, 207 * this can result in the structure being freed if that was the last 208 * remaining reference. 209 */ 210 static void 211 zfsctl_snapshot_remove(zfs_snapentry_t *se) 212 { 213 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock)); 214 avl_remove(&zfs_snapshots_by_name, se); 215 avl_remove(&zfs_snapshots_by_objsetid, se); 216 zfsctl_snapshot_rele(se); 217 } 218 219 /* 220 * Snapshot name comparison function for the zfs_snapshots_by_name. 221 */ 222 static int 223 snapentry_compare_by_name(const void *a, const void *b) 224 { 225 const zfs_snapentry_t *se_a = a; 226 const zfs_snapentry_t *se_b = b; 227 int ret; 228 229 ret = strcmp(se_a->se_name, se_b->se_name); 230 231 if (ret < 0) 232 return (-1); 233 else if (ret > 0) 234 return (1); 235 else 236 return (0); 237 } 238 239 /* 240 * Snapshot name comparison function for the zfs_snapshots_by_objsetid. 241 */ 242 static int 243 snapentry_compare_by_objsetid(const void *a, const void *b) 244 { 245 const zfs_snapentry_t *se_a = a; 246 const zfs_snapentry_t *se_b = b; 247 248 if (se_a->se_spa != se_b->se_spa) 249 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1); 250 251 if (se_a->se_objsetid < se_b->se_objsetid) 252 return (-1); 253 else if (se_a->se_objsetid > se_b->se_objsetid) 254 return (1); 255 else 256 return (0); 257 } 258 259 /* 260 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname 261 * is found a pointer to the zfs_snapentry_t is returned and a reference 262 * taken on the structure. The caller is responsible for dropping the 263 * reference with zfsctl_snapshot_rele(). If the snapname is not found 264 * NULL will be returned. 265 */ 266 static zfs_snapentry_t * 267 zfsctl_snapshot_find_by_name(const char *snapname) 268 { 269 zfs_snapentry_t *se, search; 270 271 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock)); 272 273 search.se_name = (char *)snapname; 274 se = avl_find(&zfs_snapshots_by_name, &search, NULL); 275 if (se) 276 zfsctl_snapshot_hold(se); 277 278 return (se); 279 } 280 281 /* 282 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id 283 * rather than the snapname. In all other respects it behaves the same 284 * as zfsctl_snapshot_find_by_name(). 285 */ 286 static zfs_snapentry_t * 287 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid) 288 { 289 zfs_snapentry_t *se, search; 290 291 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock)); 292 293 search.se_spa = spa; 294 search.se_objsetid = objsetid; 295 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL); 296 if (se) 297 zfsctl_snapshot_hold(se); 298 299 return (se); 300 } 301 302 /* 303 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is 304 * removed, renamed, and added back to the new correct location in the tree. 305 */ 306 static int 307 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname) 308 { 309 zfs_snapentry_t *se; 310 311 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock)); 312 313 se = zfsctl_snapshot_find_by_name(old_snapname); 314 if (se == NULL) 315 return (SET_ERROR(ENOENT)); 316 317 zfsctl_snapshot_remove(se); 318 kmem_strfree(se->se_name); 319 se->se_name = kmem_strdup(new_snapname); 320 zfsctl_snapshot_add(se); 321 zfsctl_snapshot_rele(se); 322 323 return (0); 324 } 325 326 /* 327 * Delayed task responsible for unmounting an expired automounted snapshot. 328 */ 329 static void 330 snapentry_expire(void *data) 331 { 332 zfs_snapentry_t *se = (zfs_snapentry_t *)data; 333 spa_t *spa = se->se_spa; 334 uint64_t objsetid = se->se_objsetid; 335 336 if (zfs_expire_snapshot <= 0) { 337 zfsctl_snapshot_rele(se); 338 return; 339 } 340 341 rw_enter(&se->se_taskqid_lock, RW_WRITER); 342 se->se_taskqid = TASKQID_INVALID; 343 rw_exit(&se->se_taskqid_lock); 344 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE); 345 zfsctl_snapshot_rele(se); 346 347 /* 348 * Reschedule the unmount if the zfs_snapentry_t wasn't removed. 349 * This can occur when the snapshot is busy. 350 */ 351 rw_enter(&zfs_snapshot_lock, RW_READER); 352 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) { 353 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot); 354 zfsctl_snapshot_rele(se); 355 } 356 rw_exit(&zfs_snapshot_lock); 357 } 358 359 /* 360 * Cancel an automatic unmount of a snapname. This callback is responsible 361 * for dropping the reference on the zfs_snapentry_t which was taken when 362 * during dispatch. 363 */ 364 static void 365 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se) 366 { 367 int err = 0; 368 rw_enter(&se->se_taskqid_lock, RW_WRITER); 369 err = taskq_cancel_id(system_delay_taskq, se->se_taskqid); 370 /* 371 * if we get ENOENT, the taskq couldn't be found to be 372 * canceled, so we can just mark it as invalid because 373 * it's already gone. If we got EBUSY, then we already 374 * blocked until it was gone _anyway_, so we don't care. 375 */ 376 se->se_taskqid = TASKQID_INVALID; 377 rw_exit(&se->se_taskqid_lock); 378 if (err == 0) { 379 zfsctl_snapshot_rele(se); 380 } 381 } 382 383 /* 384 * Dispatch the unmount task for delayed handling with a hold protecting it. 385 */ 386 static void 387 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay) 388 { 389 390 if (delay <= 0) 391 return; 392 393 zfsctl_snapshot_hold(se); 394 rw_enter(&se->se_taskqid_lock, RW_WRITER); 395 /* 396 * If this condition happens, we managed to: 397 * - dispatch once 398 * - want to dispatch _again_ before it returned 399 * 400 * So let's just return - if that task fails at unmounting, 401 * we'll eventually dispatch again, and if it succeeds, 402 * no problem. 403 */ 404 if (se->se_taskqid != TASKQID_INVALID) { 405 rw_exit(&se->se_taskqid_lock); 406 zfsctl_snapshot_rele(se); 407 return; 408 } 409 se->se_taskqid = taskq_dispatch_delay(system_delay_taskq, 410 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ); 411 rw_exit(&se->se_taskqid_lock); 412 } 413 414 /* 415 * Schedule an automatic unmount of objset id to occur in delay seconds from 416 * now. Any previous delayed unmount will be cancelled in favor of the 417 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name() 418 * and held until the outstanding task is handled or cancelled. 419 */ 420 int 421 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay) 422 { 423 zfs_snapentry_t *se; 424 int error = ENOENT; 425 426 rw_enter(&zfs_snapshot_lock, RW_READER); 427 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) { 428 zfsctl_snapshot_unmount_cancel(se); 429 zfsctl_snapshot_unmount_delay_impl(se, delay); 430 zfsctl_snapshot_rele(se); 431 error = 0; 432 } 433 rw_exit(&zfs_snapshot_lock); 434 435 return (error); 436 } 437 438 /* 439 * Check if snapname is currently mounted. Returned non-zero when mounted 440 * and zero when unmounted. 441 */ 442 static boolean_t 443 zfsctl_snapshot_ismounted(const char *snapname) 444 { 445 zfs_snapentry_t *se; 446 boolean_t ismounted = B_FALSE; 447 448 rw_enter(&zfs_snapshot_lock, RW_READER); 449 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) { 450 zfsctl_snapshot_rele(se); 451 ismounted = B_TRUE; 452 } 453 rw_exit(&zfs_snapshot_lock); 454 455 return (ismounted); 456 } 457 458 /* 459 * Check if the given inode is a part of the virtual .zfs directory. 460 */ 461 boolean_t 462 zfsctl_is_node(struct inode *ip) 463 { 464 return (ITOZ(ip)->z_is_ctldir); 465 } 466 467 /* 468 * Check if the given inode is a .zfs/snapshots/snapname directory. 469 */ 470 boolean_t 471 zfsctl_is_snapdir(struct inode *ip) 472 { 473 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS)); 474 } 475 476 /* 477 * Allocate a new inode with the passed id and ops. 478 */ 479 static struct inode * 480 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id, 481 const struct file_operations *fops, const struct inode_operations *ops, 482 uint64_t creation) 483 { 484 struct inode *ip; 485 znode_t *zp; 486 inode_timespec_t now = {.tv_sec = creation}; 487 488 ip = new_inode(zfsvfs->z_sb); 489 if (ip == NULL) 490 return (NULL); 491 492 if (!creation) 493 now = current_time(ip); 494 zp = ITOZ(ip); 495 ASSERT3P(zp->z_dirlocks, ==, NULL); 496 ASSERT3P(zp->z_acl_cached, ==, NULL); 497 ASSERT3P(zp->z_xattr_cached, ==, NULL); 498 zp->z_id = id; 499 zp->z_unlinked = B_FALSE; 500 zp->z_atime_dirty = B_FALSE; 501 zp->z_zn_prefetch = B_FALSE; 502 zp->z_is_sa = B_FALSE; 503 #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE) 504 zp->z_is_mapped = B_FALSE; 505 #endif 506 zp->z_is_ctldir = B_TRUE; 507 zp->z_sa_hdl = NULL; 508 zp->z_blksz = 0; 509 zp->z_seq = 0; 510 zp->z_mapcnt = 0; 511 zp->z_size = 0; 512 zp->z_pflags = 0; 513 zp->z_mode = 0; 514 zp->z_sync_cnt = 0; 515 zp->z_sync_writes_cnt = 0; 516 zp->z_async_writes_cnt = 0; 517 ip->i_generation = 0; 518 ip->i_ino = id; 519 ip->i_mode = (S_IFDIR | S_IRWXUGO); 520 ip->i_uid = SUID_TO_KUID(0); 521 ip->i_gid = SGID_TO_KGID(0); 522 ip->i_blkbits = SPA_MINBLOCKSHIFT; 523 ip->i_atime = now; 524 ip->i_mtime = now; 525 ip->i_ctime = now; 526 ip->i_fop = fops; 527 ip->i_op = ops; 528 #if defined(IOP_XATTR) 529 ip->i_opflags &= ~IOP_XATTR; 530 #endif 531 532 if (insert_inode_locked(ip)) { 533 unlock_new_inode(ip); 534 iput(ip); 535 return (NULL); 536 } 537 538 mutex_enter(&zfsvfs->z_znodes_lock); 539 list_insert_tail(&zfsvfs->z_all_znodes, zp); 540 zfsvfs->z_nr_znodes++; 541 membar_producer(); 542 mutex_exit(&zfsvfs->z_znodes_lock); 543 544 unlock_new_inode(ip); 545 546 return (ip); 547 } 548 549 /* 550 * Lookup the inode with given id, it will be allocated if needed. 551 */ 552 static struct inode * 553 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id, 554 const struct file_operations *fops, const struct inode_operations *ops) 555 { 556 struct inode *ip = NULL; 557 uint64_t creation = 0; 558 dsl_dataset_t *snap_ds; 559 dsl_pool_t *pool; 560 561 while (ip == NULL) { 562 ip = ilookup(zfsvfs->z_sb, (unsigned long)id); 563 if (ip) 564 break; 565 566 if (id <= ZFSCTL_INO_SNAPDIRS && !creation) { 567 pool = dmu_objset_pool(zfsvfs->z_os); 568 dsl_pool_config_enter(pool, FTAG); 569 if (!dsl_dataset_hold_obj(pool, 570 ZFSCTL_INO_SNAPDIRS - id, FTAG, &snap_ds)) { 571 creation = dsl_get_creation(snap_ds); 572 dsl_dataset_rele(snap_ds, FTAG); 573 } 574 dsl_pool_config_exit(pool, FTAG); 575 } 576 577 /* May fail due to concurrent zfsctl_inode_alloc() */ 578 ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops, creation); 579 } 580 581 return (ip); 582 } 583 584 /* 585 * Create the '.zfs' directory. This directory is cached as part of the VFS 586 * structure. This results in a hold on the zfsvfs_t. The code in zfs_umount() 587 * therefore checks against a vfs_count of 2 instead of 1. This reference 588 * is removed when the ctldir is destroyed in the unmount. All other entities 589 * under the '.zfs' directory are created dynamically as needed. 590 * 591 * Because the dynamically created '.zfs' directory entries assume the use 592 * of 64-bit inode numbers this support must be disabled on 32-bit systems. 593 */ 594 int 595 zfsctl_create(zfsvfs_t *zfsvfs) 596 { 597 ASSERT(zfsvfs->z_ctldir == NULL); 598 599 zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT, 600 &zpl_fops_root, &zpl_ops_root, 0); 601 if (zfsvfs->z_ctldir == NULL) 602 return (SET_ERROR(ENOENT)); 603 604 return (0); 605 } 606 607 /* 608 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name. 609 * Only called when the filesystem is unmounted. 610 */ 611 void 612 zfsctl_destroy(zfsvfs_t *zfsvfs) 613 { 614 if (zfsvfs->z_issnap) { 615 zfs_snapentry_t *se; 616 spa_t *spa = zfsvfs->z_os->os_spa; 617 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 618 619 rw_enter(&zfs_snapshot_lock, RW_WRITER); 620 se = zfsctl_snapshot_find_by_objsetid(spa, objsetid); 621 if (se != NULL) 622 zfsctl_snapshot_remove(se); 623 rw_exit(&zfs_snapshot_lock); 624 if (se != NULL) { 625 zfsctl_snapshot_unmount_cancel(se); 626 zfsctl_snapshot_rele(se); 627 } 628 } else if (zfsvfs->z_ctldir) { 629 iput(zfsvfs->z_ctldir); 630 zfsvfs->z_ctldir = NULL; 631 } 632 } 633 634 /* 635 * Given a root znode, retrieve the associated .zfs directory. 636 * Add a hold to the vnode and return it. 637 */ 638 struct inode * 639 zfsctl_root(znode_t *zp) 640 { 641 ASSERT(zfs_has_ctldir(zp)); 642 /* Must have an existing ref, so igrab() cannot return NULL */ 643 VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL); 644 return (ZTOZSB(zp)->z_ctldir); 645 } 646 647 /* 648 * Generate a long fid to indicate a snapdir. We encode whether snapdir is 649 * already mounted in gen field. We do this because nfsd lookup will not 650 * trigger automount. Next time the nfsd does fh_to_dentry, we will notice 651 * this and do automount and return ESTALE to force nfsd revalidate and follow 652 * mount. 653 */ 654 static int 655 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp) 656 { 657 zfid_short_t *zfid = (zfid_short_t *)fidp; 658 zfid_long_t *zlfid = (zfid_long_t *)fidp; 659 uint32_t gen = 0; 660 uint64_t object; 661 uint64_t objsetid; 662 int i; 663 struct dentry *dentry; 664 665 if (fidp->fid_len < LONG_FID_LEN) { 666 fidp->fid_len = LONG_FID_LEN; 667 return (SET_ERROR(ENOSPC)); 668 } 669 670 object = ip->i_ino; 671 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino; 672 zfid->zf_len = LONG_FID_LEN; 673 674 dentry = d_obtain_alias(igrab(ip)); 675 if (!IS_ERR(dentry)) { 676 gen = !!d_mountpoint(dentry); 677 dput(dentry); 678 } 679 680 for (i = 0; i < sizeof (zfid->zf_object); i++) 681 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 682 683 for (i = 0; i < sizeof (zfid->zf_gen); i++) 684 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 685 686 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 687 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 688 689 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 690 zlfid->zf_setgen[i] = 0; 691 692 return (0); 693 } 694 695 /* 696 * Generate an appropriate fid for an entry in the .zfs directory. 697 */ 698 int 699 zfsctl_fid(struct inode *ip, fid_t *fidp) 700 { 701 znode_t *zp = ITOZ(ip); 702 zfsvfs_t *zfsvfs = ITOZSB(ip); 703 uint64_t object = zp->z_id; 704 zfid_short_t *zfid; 705 int i; 706 int error; 707 708 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 709 return (error); 710 711 if (zfsctl_is_snapdir(ip)) { 712 zfs_exit(zfsvfs, FTAG); 713 return (zfsctl_snapdir_fid(ip, fidp)); 714 } 715 716 if (fidp->fid_len < SHORT_FID_LEN) { 717 fidp->fid_len = SHORT_FID_LEN; 718 zfs_exit(zfsvfs, FTAG); 719 return (SET_ERROR(ENOSPC)); 720 } 721 722 zfid = (zfid_short_t *)fidp; 723 724 zfid->zf_len = SHORT_FID_LEN; 725 726 for (i = 0; i < sizeof (zfid->zf_object); i++) 727 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 728 729 /* .zfs znodes always have a generation number of 0 */ 730 for (i = 0; i < sizeof (zfid->zf_gen); i++) 731 zfid->zf_gen[i] = 0; 732 733 zfs_exit(zfsvfs, FTAG); 734 return (0); 735 } 736 737 /* 738 * Construct a full dataset name in full_name: "pool/dataset@snap_name" 739 */ 740 static int 741 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len, 742 char *full_name) 743 { 744 objset_t *os = zfsvfs->z_os; 745 746 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0) 747 return (SET_ERROR(EILSEQ)); 748 749 dmu_objset_name(os, full_name); 750 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len) 751 return (SET_ERROR(ENAMETOOLONG)); 752 753 (void) strcat(full_name, "@"); 754 (void) strcat(full_name, snap_name); 755 756 return (0); 757 } 758 759 /* 760 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/" 761 */ 762 static int 763 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid, 764 int path_len, char *full_path) 765 { 766 objset_t *os = zfsvfs->z_os; 767 fstrans_cookie_t cookie; 768 char *snapname; 769 boolean_t case_conflict; 770 uint64_t id, pos = 0; 771 int error = 0; 772 773 if (zfsvfs->z_vfs->vfs_mntpoint == NULL) 774 return (SET_ERROR(ENOENT)); 775 776 cookie = spl_fstrans_mark(); 777 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 778 779 while (error == 0) { 780 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 781 error = dmu_snapshot_list_next(zfsvfs->z_os, 782 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos, 783 &case_conflict); 784 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 785 if (error) 786 goto out; 787 788 if (id == objsetid) 789 break; 790 } 791 792 snprintf(full_path, path_len, "%s/.zfs/snapshot/%s", 793 zfsvfs->z_vfs->vfs_mntpoint, snapname); 794 out: 795 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN); 796 spl_fstrans_unmark(cookie); 797 798 return (error); 799 } 800 801 /* 802 * Special case the handling of "..". 803 */ 804 int 805 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp, 806 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) 807 { 808 zfsvfs_t *zfsvfs = ITOZSB(dip); 809 int error = 0; 810 811 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 812 return (error); 813 814 if (strcmp(name, "..") == 0) { 815 *ipp = dip->i_sb->s_root->d_inode; 816 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) { 817 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR, 818 &zpl_fops_snapdir, &zpl_ops_snapdir); 819 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) { 820 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES, 821 &zpl_fops_shares, &zpl_ops_shares); 822 } else { 823 *ipp = NULL; 824 } 825 826 if (*ipp == NULL) 827 error = SET_ERROR(ENOENT); 828 829 zfs_exit(zfsvfs, FTAG); 830 831 return (error); 832 } 833 834 /* 835 * Lookup entry point for the 'snapshot' directory. Try to open the 836 * snapshot if it exist, creating the pseudo filesystem inode as necessary. 837 */ 838 int 839 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp, 840 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) 841 { 842 zfsvfs_t *zfsvfs = ITOZSB(dip); 843 uint64_t id; 844 int error; 845 846 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 847 return (error); 848 849 error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id); 850 if (error) { 851 zfs_exit(zfsvfs, FTAG); 852 return (error); 853 } 854 855 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id, 856 &simple_dir_operations, &simple_dir_inode_operations); 857 if (*ipp == NULL) 858 error = SET_ERROR(ENOENT); 859 860 zfs_exit(zfsvfs, FTAG); 861 862 return (error); 863 } 864 865 /* 866 * Renaming a directory under '.zfs/snapshot' will automatically trigger 867 * a rename of the snapshot to the new given name. The rename is confined 868 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere. 869 */ 870 int 871 zfsctl_snapdir_rename(struct inode *sdip, const char *snm, 872 struct inode *tdip, const char *tnm, cred_t *cr, int flags) 873 { 874 zfsvfs_t *zfsvfs = ITOZSB(sdip); 875 char *to, *from, *real, *fsname; 876 int error; 877 878 if (!zfs_admin_snapshot) 879 return (SET_ERROR(EACCES)); 880 881 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 882 return (error); 883 884 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 885 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 886 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 887 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 888 889 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 890 error = dmu_snapshot_realname(zfsvfs->z_os, snm, real, 891 ZFS_MAX_DATASET_NAME_LEN, NULL); 892 if (error == 0) { 893 snm = real; 894 } else if (error != ENOTSUP) { 895 goto out; 896 } 897 } 898 899 dmu_objset_name(zfsvfs->z_os, fsname); 900 901 error = zfsctl_snapshot_name(ITOZSB(sdip), snm, 902 ZFS_MAX_DATASET_NAME_LEN, from); 903 if (error == 0) 904 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm, 905 ZFS_MAX_DATASET_NAME_LEN, to); 906 if (error == 0) 907 error = zfs_secpolicy_rename_perms(from, to, cr); 908 if (error != 0) 909 goto out; 910 911 /* 912 * Cannot move snapshots out of the snapdir. 913 */ 914 if (sdip != tdip) { 915 error = SET_ERROR(EINVAL); 916 goto out; 917 } 918 919 /* 920 * No-op when names are identical. 921 */ 922 if (strcmp(snm, tnm) == 0) { 923 error = 0; 924 goto out; 925 } 926 927 rw_enter(&zfs_snapshot_lock, RW_WRITER); 928 929 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE); 930 if (error == 0) 931 (void) zfsctl_snapshot_rename(snm, tnm); 932 933 rw_exit(&zfs_snapshot_lock); 934 out: 935 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN); 936 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN); 937 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN); 938 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN); 939 940 zfs_exit(zfsvfs, FTAG); 941 942 return (error); 943 } 944 945 /* 946 * Removing a directory under '.zfs/snapshot' will automatically trigger 947 * the removal of the snapshot with the given name. 948 */ 949 int 950 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr, 951 int flags) 952 { 953 zfsvfs_t *zfsvfs = ITOZSB(dip); 954 char *snapname, *real; 955 int error; 956 957 if (!zfs_admin_snapshot) 958 return (SET_ERROR(EACCES)); 959 960 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 961 return (error); 962 963 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 964 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 965 966 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 967 error = dmu_snapshot_realname(zfsvfs->z_os, name, real, 968 ZFS_MAX_DATASET_NAME_LEN, NULL); 969 if (error == 0) { 970 name = real; 971 } else if (error != ENOTSUP) { 972 goto out; 973 } 974 } 975 976 error = zfsctl_snapshot_name(ITOZSB(dip), name, 977 ZFS_MAX_DATASET_NAME_LEN, snapname); 978 if (error == 0) 979 error = zfs_secpolicy_destroy_perms(snapname, cr); 980 if (error != 0) 981 goto out; 982 983 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE); 984 if ((error == 0) || (error == ENOENT)) 985 error = dsl_destroy_snapshot(snapname, B_FALSE); 986 out: 987 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN); 988 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN); 989 990 zfs_exit(zfsvfs, FTAG); 991 992 return (error); 993 } 994 995 /* 996 * Creating a directory under '.zfs/snapshot' will automatically trigger 997 * the creation of a new snapshot with the given name. 998 */ 999 int 1000 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap, 1001 struct inode **ipp, cred_t *cr, int flags) 1002 { 1003 zfsvfs_t *zfsvfs = ITOZSB(dip); 1004 char *dsname; 1005 int error; 1006 1007 if (!zfs_admin_snapshot) 1008 return (SET_ERROR(EACCES)); 1009 1010 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 1011 1012 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) { 1013 error = SET_ERROR(EILSEQ); 1014 goto out; 1015 } 1016 1017 dmu_objset_name(zfsvfs->z_os, dsname); 1018 1019 error = zfs_secpolicy_snapshot_perms(dsname, cr); 1020 if (error != 0) 1021 goto out; 1022 1023 if (error == 0) { 1024 error = dmu_objset_snapshot_one(dsname, dirname); 1025 if (error != 0) 1026 goto out; 1027 1028 error = zfsctl_snapdir_lookup(dip, dirname, ipp, 1029 0, cr, NULL, NULL); 1030 } 1031 out: 1032 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 1033 1034 return (error); 1035 } 1036 1037 /* 1038 * Flush everything out of the kernel's export table and such. 1039 * This is needed as once the snapshot is used over NFS, its 1040 * entries in svc_export and svc_expkey caches hold reference 1041 * to the snapshot mount point. There is no known way of flushing 1042 * only the entries related to the snapshot. 1043 */ 1044 static void 1045 exportfs_flush(void) 1046 { 1047 char *argv[] = { "/usr/sbin/exportfs", "-f", NULL }; 1048 char *envp[] = { NULL }; 1049 1050 (void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); 1051 } 1052 1053 /* 1054 * Attempt to unmount a snapshot by making a call to user space. 1055 * There is no assurance that this can or will succeed, is just a 1056 * best effort. In the case where it does fail, perhaps because 1057 * it's in use, the unmount will fail harmlessly. 1058 */ 1059 int 1060 zfsctl_snapshot_unmount(const char *snapname, int flags) 1061 { 1062 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL, 1063 NULL }; 1064 char *envp[] = { NULL }; 1065 zfs_snapentry_t *se; 1066 int error; 1067 1068 rw_enter(&zfs_snapshot_lock, RW_READER); 1069 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) { 1070 rw_exit(&zfs_snapshot_lock); 1071 return (SET_ERROR(ENOENT)); 1072 } 1073 rw_exit(&zfs_snapshot_lock); 1074 1075 exportfs_flush(); 1076 1077 if (flags & MNT_FORCE) 1078 argv[4] = "-fn"; 1079 argv[5] = se->se_path; 1080 dprintf("unmount; path=%s\n", se->se_path); 1081 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); 1082 zfsctl_snapshot_rele(se); 1083 1084 1085 /* 1086 * The umount system utility will return 256 on error. We must 1087 * assume this error is because the file system is busy so it is 1088 * converted to the more sensible EBUSY. 1089 */ 1090 if (error) 1091 error = SET_ERROR(EBUSY); 1092 1093 return (error); 1094 } 1095 1096 int 1097 zfsctl_snapshot_mount(struct path *path, int flags) 1098 { 1099 struct dentry *dentry = path->dentry; 1100 struct inode *ip = dentry->d_inode; 1101 zfsvfs_t *zfsvfs; 1102 zfsvfs_t *snap_zfsvfs; 1103 zfs_snapentry_t *se; 1104 char *full_name, *full_path; 1105 char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL, 1106 NULL }; 1107 char *envp[] = { NULL }; 1108 int error; 1109 struct path spath; 1110 1111 if (ip == NULL) 1112 return (SET_ERROR(EISDIR)); 1113 1114 zfsvfs = ITOZSB(ip); 1115 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1116 return (error); 1117 1118 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 1119 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1120 1121 error = zfsctl_snapshot_name(zfsvfs, dname(dentry), 1122 ZFS_MAX_DATASET_NAME_LEN, full_name); 1123 if (error) 1124 goto error; 1125 1126 /* 1127 * Construct a mount point path from sb of the ctldir inode and dirent 1128 * name, instead of from d_path(), so that chroot'd process doesn't fail 1129 * on mount.zfs(8). 1130 */ 1131 snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s", 1132 zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "", 1133 dname(dentry)); 1134 1135 /* 1136 * Multiple concurrent automounts of a snapshot are never allowed. 1137 * The snapshot may be manually mounted as many times as desired. 1138 */ 1139 if (zfsctl_snapshot_ismounted(full_name)) { 1140 error = 0; 1141 goto error; 1142 } 1143 1144 /* 1145 * Attempt to mount the snapshot from user space. Normally this 1146 * would be done using the vfs_kern_mount() function, however that 1147 * function is marked GPL-only and cannot be used. On error we 1148 * careful to log the real error to the console and return EISDIR 1149 * to safely abort the automount. This should be very rare. 1150 * 1151 * If the user mode helper happens to return EBUSY, a concurrent 1152 * mount is already in progress in which case the error is ignored. 1153 * Take note that if the program was executed successfully the return 1154 * value from call_usermodehelper() will be (exitcode << 8 + signal). 1155 */ 1156 dprintf("mount; name=%s path=%s\n", full_name, full_path); 1157 argv[5] = full_name; 1158 argv[6] = full_path; 1159 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); 1160 if (error) { 1161 if (!(error & MOUNT_BUSY << 8)) { 1162 zfs_dbgmsg("Unable to automount %s error=%d", 1163 full_path, error); 1164 error = SET_ERROR(EISDIR); 1165 } else { 1166 /* 1167 * EBUSY, this could mean a concurrent mount, or the 1168 * snapshot has already been mounted at completely 1169 * different place. We return 0 so VFS will retry. For 1170 * the latter case the VFS will retry several times 1171 * and return ELOOP, which is probably not a very good 1172 * behavior. 1173 */ 1174 error = 0; 1175 } 1176 goto error; 1177 } 1178 1179 /* 1180 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE 1181 * to identify this as an automounted filesystem. 1182 */ 1183 spath = *path; 1184 path_get(&spath); 1185 if (follow_down_one(&spath)) { 1186 snap_zfsvfs = ITOZSB(spath.dentry->d_inode); 1187 snap_zfsvfs->z_parent = zfsvfs; 1188 dentry = spath.dentry; 1189 spath.mnt->mnt_flags |= MNT_SHRINKABLE; 1190 1191 rw_enter(&zfs_snapshot_lock, RW_WRITER); 1192 se = zfsctl_snapshot_alloc(full_name, full_path, 1193 snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os), 1194 dentry); 1195 zfsctl_snapshot_add(se); 1196 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot); 1197 rw_exit(&zfs_snapshot_lock); 1198 } 1199 path_put(&spath); 1200 error: 1201 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN); 1202 kmem_free(full_path, MAXPATHLEN); 1203 1204 zfs_exit(zfsvfs, FTAG); 1205 1206 return (error); 1207 } 1208 1209 /* 1210 * Get the snapdir inode from fid 1211 */ 1212 int 1213 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen, 1214 struct inode **ipp) 1215 { 1216 int error; 1217 struct path path; 1218 char *mnt; 1219 struct dentry *dentry; 1220 1221 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1222 1223 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid, 1224 MAXPATHLEN, mnt); 1225 if (error) 1226 goto out; 1227 1228 /* Trigger automount */ 1229 error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path); 1230 if (error) 1231 goto out; 1232 1233 path_put(&path); 1234 /* 1235 * Get the snapdir inode. Note, we don't want to use the above 1236 * path because it contains the root of the snapshot rather 1237 * than the snapdir. 1238 */ 1239 *ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid); 1240 if (*ipp == NULL) { 1241 error = SET_ERROR(ENOENT); 1242 goto out; 1243 } 1244 1245 /* check gen, see zfsctl_snapdir_fid */ 1246 dentry = d_obtain_alias(igrab(*ipp)); 1247 if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) { 1248 iput(*ipp); 1249 *ipp = NULL; 1250 error = SET_ERROR(ENOENT); 1251 } 1252 if (!IS_ERR(dentry)) 1253 dput(dentry); 1254 out: 1255 kmem_free(mnt, MAXPATHLEN); 1256 return (error); 1257 } 1258 1259 int 1260 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp, 1261 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) 1262 { 1263 zfsvfs_t *zfsvfs = ITOZSB(dip); 1264 znode_t *zp; 1265 znode_t *dzp; 1266 int error; 1267 1268 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1269 return (error); 1270 1271 if (zfsvfs->z_shares_dir == 0) { 1272 zfs_exit(zfsvfs, FTAG); 1273 return (SET_ERROR(ENOTSUP)); 1274 } 1275 1276 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1277 error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL); 1278 zrele(dzp); 1279 } 1280 1281 zfs_exit(zfsvfs, FTAG); 1282 1283 return (error); 1284 } 1285 1286 /* 1287 * Initialize the various pieces we'll need to create and manipulate .zfs 1288 * directories. Currently this is unused but available. 1289 */ 1290 void 1291 zfsctl_init(void) 1292 { 1293 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name, 1294 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, 1295 se_node_name)); 1296 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid, 1297 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, 1298 se_node_objsetid)); 1299 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL); 1300 } 1301 1302 /* 1303 * Cleanup the various pieces we needed for .zfs directories. In particular 1304 * ensure the expiry timer is canceled safely. 1305 */ 1306 void 1307 zfsctl_fini(void) 1308 { 1309 avl_destroy(&zfs_snapshots_by_name); 1310 avl_destroy(&zfs_snapshots_by_objsetid); 1311 rw_destroy(&zfs_snapshot_lock); 1312 } 1313 1314 module_param(zfs_admin_snapshot, int, 0644); 1315 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot"); 1316 1317 module_param(zfs_expire_snapshot, int, 0644); 1318 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot"); 1319