xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_ctldir.c (revision 18a870751b036f1dc78b36084ccb993d139a11bb)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  *
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
26  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
27  * LLNL-CODE-403049.
28  * Rewritten for Linux by:
29  *   Rohan Puri <rohan.puri15@gmail.com>
30  *   Brian Behlendorf <behlendorf1@llnl.gov>
31  * Copyright (c) 2013 by Delphix. All rights reserved.
32  * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
33  * Copyright (c) 2018 George Melikov. All Rights Reserved.
34  * Copyright (c) 2019 Datto, Inc. All rights reserved.
35  * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
36  */
37 
38 /*
39  * ZFS control directory (a.k.a. ".zfs")
40  *
41  * This directory provides a common location for all ZFS meta-objects.
42  * Currently, this is only the 'snapshot' and 'shares' directory, but this may
43  * expand in the future.  The elements are built dynamically, as the hierarchy
44  * does not actually exist on disk.
45  *
46  * For 'snapshot', we don't want to have all snapshots always mounted, because
47  * this would take up a huge amount of space in /etc/mnttab.  We have three
48  * types of objects:
49  *
50  *	ctldir ------> snapshotdir -------> snapshot
51  *                                             |
52  *                                             |
53  *                                             V
54  *                                         mounted fs
55  *
56  * The 'snapshot' node contains just enough information to lookup '..' and act
57  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
58  * perform an automount of the underlying filesystem and return the
59  * corresponding inode.
60  *
61  * All mounts are handled automatically by an user mode helper which invokes
62  * the mount procedure.  Unmounts are handled by allowing the mount
63  * point to expire so the kernel may automatically unmount it.
64  *
65  * The '.zfs', '.zfs/snapshot', and all directories created under
66  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
67  * zfsvfs_t as the head filesystem (what '.zfs' lives under).
68  *
69  * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
70  * (ie: snapshots) are complete ZFS filesystems and have their own unique
71  * zfsvfs_t.  However, the fsid reported by these mounts will be the same
72  * as that used by the parent zfsvfs_t to make NFS happy.
73  */
74 
75 #include <sys/types.h>
76 #include <sys/param.h>
77 #include <sys/time.h>
78 #include <sys/sysmacros.h>
79 #include <sys/pathname.h>
80 #include <sys/vfs.h>
81 #include <sys/zfs_ctldir.h>
82 #include <sys/zfs_ioctl.h>
83 #include <sys/zfs_vfsops.h>
84 #include <sys/zfs_vnops.h>
85 #include <sys/stat.h>
86 #include <sys/dmu.h>
87 #include <sys/dmu_objset.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/dsl_deleg.h>
90 #include <sys/zpl.h>
91 #include <sys/mntent.h>
92 #include "zfs_namecheck.h"
93 
94 /*
95  * Two AVL trees are maintained which contain all currently automounted
96  * snapshots.  Every automounted snapshots maps to a single zfs_snapentry_t
97  * entry which MUST:
98  *
99  *   - be attached to both trees, and
100  *   - be unique, no duplicate entries are allowed.
101  *
102  * The zfs_snapshots_by_name tree is indexed by the full dataset name
103  * while the zfs_snapshots_by_objsetid tree is indexed by the unique
104  * objsetid.  This allows for fast lookups either by name or objsetid.
105  */
106 static avl_tree_t zfs_snapshots_by_name;
107 static avl_tree_t zfs_snapshots_by_objsetid;
108 static krwlock_t zfs_snapshot_lock;
109 
110 /*
111  * Control Directory Tunables (.zfs)
112  */
113 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
114 static int zfs_admin_snapshot = 0;
115 static int zfs_snapshot_no_setuid = 0;
116 
117 typedef struct {
118 	char		*se_name;	/* full snapshot name */
119 	char		*se_path;	/* full mount path */
120 	spa_t		*se_spa;	/* pool spa */
121 	uint64_t	se_objsetid;	/* snapshot objset id */
122 	struct dentry   *se_root_dentry; /* snapshot root dentry */
123 	krwlock_t	se_taskqid_lock;  /* scheduled unmount taskqid lock */
124 	taskqid_t	se_taskqid;	/* scheduled unmount taskqid */
125 	avl_node_t	se_node_name;	/* zfs_snapshots_by_name link */
126 	avl_node_t	se_node_objsetid; /* zfs_snapshots_by_objsetid link */
127 	zfs_refcount_t	se_refcount;	/* reference count */
128 } zfs_snapentry_t;
129 
130 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
131 
132 /*
133  * Allocate a new zfs_snapentry_t being careful to make a copy of the
134  * the snapshot name and provided mount point.  No reference is taken.
135  */
136 static zfs_snapentry_t *
137 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
138     uint64_t objsetid, struct dentry *root_dentry)
139 {
140 	zfs_snapentry_t *se;
141 
142 	se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
143 
144 	se->se_name = kmem_strdup(full_name);
145 	se->se_path = kmem_strdup(full_path);
146 	se->se_spa = spa;
147 	se->se_objsetid = objsetid;
148 	se->se_root_dentry = root_dentry;
149 	se->se_taskqid = TASKQID_INVALID;
150 	rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL);
151 
152 	zfs_refcount_create(&se->se_refcount);
153 
154 	return (se);
155 }
156 
157 /*
158  * Free a zfs_snapentry_t the caller must ensure there are no active
159  * references.
160  */
161 static void
162 zfsctl_snapshot_free(zfs_snapentry_t *se)
163 {
164 	zfs_refcount_destroy(&se->se_refcount);
165 	kmem_strfree(se->se_name);
166 	kmem_strfree(se->se_path);
167 	rw_destroy(&se->se_taskqid_lock);
168 
169 	kmem_free(se, sizeof (zfs_snapentry_t));
170 }
171 
172 /*
173  * Hold a reference on the zfs_snapentry_t.
174  */
175 static void
176 zfsctl_snapshot_hold(zfs_snapentry_t *se)
177 {
178 	zfs_refcount_add(&se->se_refcount, NULL);
179 }
180 
181 /*
182  * Release a reference on the zfs_snapentry_t.  When the number of
183  * references drops to zero the structure will be freed.
184  */
185 static void
186 zfsctl_snapshot_rele(zfs_snapentry_t *se)
187 {
188 	if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
189 		zfsctl_snapshot_free(se);
190 }
191 
192 /*
193  * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
194  * zfs_snapshots_by_objsetid trees.  While the zfs_snapentry_t is part
195  * of the trees a reference is held.
196  */
197 static void
198 zfsctl_snapshot_add(zfs_snapentry_t *se)
199 {
200 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
201 	zfsctl_snapshot_hold(se);
202 	avl_add(&zfs_snapshots_by_name, se);
203 	avl_add(&zfs_snapshots_by_objsetid, se);
204 }
205 
206 /*
207  * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
208  * zfs_snapshots_by_objsetid trees.  Upon removal a reference is dropped,
209  * this can result in the structure being freed if that was the last
210  * remaining reference.
211  */
212 static void
213 zfsctl_snapshot_remove(zfs_snapentry_t *se)
214 {
215 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
216 	avl_remove(&zfs_snapshots_by_name, se);
217 	avl_remove(&zfs_snapshots_by_objsetid, se);
218 	zfsctl_snapshot_rele(se);
219 }
220 
221 /*
222  * Snapshot name comparison function for the zfs_snapshots_by_name.
223  */
224 static int
225 snapentry_compare_by_name(const void *a, const void *b)
226 {
227 	const zfs_snapentry_t *se_a = a;
228 	const zfs_snapentry_t *se_b = b;
229 	int ret;
230 
231 	ret = strcmp(se_a->se_name, se_b->se_name);
232 
233 	if (ret < 0)
234 		return (-1);
235 	else if (ret > 0)
236 		return (1);
237 	else
238 		return (0);
239 }
240 
241 /*
242  * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
243  */
244 static int
245 snapentry_compare_by_objsetid(const void *a, const void *b)
246 {
247 	const zfs_snapentry_t *se_a = a;
248 	const zfs_snapentry_t *se_b = b;
249 
250 	if (se_a->se_spa != se_b->se_spa)
251 		return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
252 
253 	if (se_a->se_objsetid < se_b->se_objsetid)
254 		return (-1);
255 	else if (se_a->se_objsetid > se_b->se_objsetid)
256 		return (1);
257 	else
258 		return (0);
259 }
260 
261 /*
262  * Find a zfs_snapentry_t in zfs_snapshots_by_name.  If the snapname
263  * is found a pointer to the zfs_snapentry_t is returned and a reference
264  * taken on the structure.  The caller is responsible for dropping the
265  * reference with zfsctl_snapshot_rele().  If the snapname is not found
266  * NULL will be returned.
267  */
268 static zfs_snapentry_t *
269 zfsctl_snapshot_find_by_name(const char *snapname)
270 {
271 	zfs_snapentry_t *se, search;
272 
273 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
274 
275 	search.se_name = (char *)snapname;
276 	se = avl_find(&zfs_snapshots_by_name, &search, NULL);
277 	if (se)
278 		zfsctl_snapshot_hold(se);
279 
280 	return (se);
281 }
282 
283 /*
284  * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
285  * rather than the snapname.  In all other respects it behaves the same
286  * as zfsctl_snapshot_find_by_name().
287  */
288 static zfs_snapentry_t *
289 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
290 {
291 	zfs_snapentry_t *se, search;
292 
293 	ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
294 
295 	search.se_spa = spa;
296 	search.se_objsetid = objsetid;
297 	se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
298 	if (se)
299 		zfsctl_snapshot_hold(se);
300 
301 	return (se);
302 }
303 
304 /*
305  * Rename a zfs_snapentry_t in the zfs_snapshots_by_name.  The structure is
306  * removed, renamed, and added back to the new correct location in the tree.
307  */
308 static int
309 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
310 {
311 	zfs_snapentry_t *se;
312 
313 	ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
314 
315 	se = zfsctl_snapshot_find_by_name(old_snapname);
316 	if (se == NULL)
317 		return (SET_ERROR(ENOENT));
318 
319 	zfsctl_snapshot_remove(se);
320 	kmem_strfree(se->se_name);
321 	se->se_name = kmem_strdup(new_snapname);
322 	zfsctl_snapshot_add(se);
323 	zfsctl_snapshot_rele(se);
324 
325 	return (0);
326 }
327 
328 /*
329  * Delayed task responsible for unmounting an expired automounted snapshot.
330  */
331 static void
332 snapentry_expire(void *data)
333 {
334 	zfs_snapentry_t *se = (zfs_snapentry_t *)data;
335 	spa_t *spa = se->se_spa;
336 	uint64_t objsetid = se->se_objsetid;
337 
338 	if (zfs_expire_snapshot <= 0) {
339 		zfsctl_snapshot_rele(se);
340 		return;
341 	}
342 
343 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
344 	se->se_taskqid = TASKQID_INVALID;
345 	rw_exit(&se->se_taskqid_lock);
346 	(void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
347 	zfsctl_snapshot_rele(se);
348 
349 	/*
350 	 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
351 	 * This can occur when the snapshot is busy.
352 	 */
353 	rw_enter(&zfs_snapshot_lock, RW_READER);
354 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
355 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
356 		zfsctl_snapshot_rele(se);
357 	}
358 	rw_exit(&zfs_snapshot_lock);
359 }
360 
361 /*
362  * Cancel an automatic unmount of a snapname.  This callback is responsible
363  * for dropping the reference on the zfs_snapentry_t which was taken when
364  * during dispatch.
365  */
366 static void
367 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
368 {
369 	int err = 0;
370 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
371 	err = taskq_cancel_id(system_delay_taskq, se->se_taskqid);
372 	/*
373 	 * if we get ENOENT, the taskq couldn't be found to be
374 	 * canceled, so we can just mark it as invalid because
375 	 * it's already gone. If we got EBUSY, then we already
376 	 * blocked until it was gone _anyway_, so we don't care.
377 	 */
378 	se->se_taskqid = TASKQID_INVALID;
379 	rw_exit(&se->se_taskqid_lock);
380 	if (err == 0) {
381 		zfsctl_snapshot_rele(se);
382 	}
383 }
384 
385 /*
386  * Dispatch the unmount task for delayed handling with a hold protecting it.
387  */
388 static void
389 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
390 {
391 
392 	if (delay <= 0)
393 		return;
394 
395 	zfsctl_snapshot_hold(se);
396 	rw_enter(&se->se_taskqid_lock, RW_WRITER);
397 	/*
398 	 * If this condition happens, we managed to:
399 	 * - dispatch once
400 	 * - want to dispatch _again_ before it returned
401 	 *
402 	 * So let's just return - if that task fails at unmounting,
403 	 * we'll eventually dispatch again, and if it succeeds,
404 	 * no problem.
405 	 */
406 	if (se->se_taskqid != TASKQID_INVALID) {
407 		rw_exit(&se->se_taskqid_lock);
408 		zfsctl_snapshot_rele(se);
409 		return;
410 	}
411 	se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
412 	    snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
413 	rw_exit(&se->se_taskqid_lock);
414 }
415 
416 /*
417  * Schedule an automatic unmount of objset id to occur in delay seconds from
418  * now.  Any previous delayed unmount will be cancelled in favor of the
419  * updated deadline.  A reference is taken by zfsctl_snapshot_find_by_name()
420  * and held until the outstanding task is handled or cancelled.
421  */
422 int
423 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
424 {
425 	zfs_snapentry_t *se;
426 	int error = ENOENT;
427 
428 	rw_enter(&zfs_snapshot_lock, RW_READER);
429 	if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
430 		zfsctl_snapshot_unmount_cancel(se);
431 		zfsctl_snapshot_unmount_delay_impl(se, delay);
432 		zfsctl_snapshot_rele(se);
433 		error = 0;
434 	}
435 	rw_exit(&zfs_snapshot_lock);
436 
437 	return (error);
438 }
439 
440 /*
441  * Check if snapname is currently mounted.  Returned non-zero when mounted
442  * and zero when unmounted.
443  */
444 static boolean_t
445 zfsctl_snapshot_ismounted(const char *snapname)
446 {
447 	zfs_snapentry_t *se;
448 	boolean_t ismounted = B_FALSE;
449 
450 	rw_enter(&zfs_snapshot_lock, RW_READER);
451 	if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
452 		zfsctl_snapshot_rele(se);
453 		ismounted = B_TRUE;
454 	}
455 	rw_exit(&zfs_snapshot_lock);
456 
457 	return (ismounted);
458 }
459 
460 /*
461  * Check if the given inode is a part of the virtual .zfs directory.
462  */
463 boolean_t
464 zfsctl_is_node(struct inode *ip)
465 {
466 	return (ITOZ(ip)->z_is_ctldir);
467 }
468 
469 /*
470  * Check if the given inode is a .zfs/snapshots/snapname directory.
471  */
472 boolean_t
473 zfsctl_is_snapdir(struct inode *ip)
474 {
475 	return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
476 }
477 
478 /*
479  * Allocate a new inode with the passed id and ops.
480  */
481 static struct inode *
482 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
483     const struct file_operations *fops, const struct inode_operations *ops,
484     uint64_t creation)
485 {
486 	struct inode *ip;
487 	znode_t *zp;
488 	inode_timespec_t now = {.tv_sec = creation};
489 
490 	ip = new_inode(zfsvfs->z_sb);
491 	if (ip == NULL)
492 		return (NULL);
493 
494 	if (!creation)
495 		now = current_time(ip);
496 	zp = ITOZ(ip);
497 	ASSERT0P(zp->z_dirlocks);
498 	ASSERT0P(zp->z_acl_cached);
499 	ASSERT0P(zp->z_xattr_cached);
500 	zp->z_id = id;
501 	zp->z_unlinked = B_FALSE;
502 	zp->z_atime_dirty = B_FALSE;
503 	zp->z_zn_prefetch = B_FALSE;
504 	zp->z_is_sa = B_FALSE;
505 	zp->z_is_ctldir = B_TRUE;
506 	zp->z_sa_hdl = NULL;
507 	zp->z_blksz = 0;
508 	zp->z_seq = 0;
509 	zp->z_mapcnt = 0;
510 	zp->z_size = 0;
511 	zp->z_pflags = 0;
512 	zp->z_mode = 0;
513 	zp->z_sync_cnt = 0;
514 	ip->i_generation = 0;
515 	ip->i_ino = id;
516 	ip->i_mode = (S_IFDIR | S_IRWXUGO);
517 	ip->i_uid = SUID_TO_KUID(0);
518 	ip->i_gid = SGID_TO_KGID(0);
519 	ip->i_blkbits = SPA_MINBLOCKSHIFT;
520 	zpl_inode_set_atime_to_ts(ip, now);
521 	zpl_inode_set_mtime_to_ts(ip, now);
522 	zpl_inode_set_ctime_to_ts(ip, now);
523 	ip->i_fop = fops;
524 	ip->i_op = ops;
525 #if defined(IOP_XATTR)
526 	ip->i_opflags &= ~IOP_XATTR;
527 #endif
528 
529 	if (insert_inode_locked(ip)) {
530 		unlock_new_inode(ip);
531 		iput(ip);
532 		return (NULL);
533 	}
534 
535 	mutex_enter(&zfsvfs->z_znodes_lock);
536 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
537 	membar_producer();
538 	mutex_exit(&zfsvfs->z_znodes_lock);
539 
540 	unlock_new_inode(ip);
541 
542 	return (ip);
543 }
544 
545 /*
546  * Lookup the inode with given id, it will be allocated if needed.
547  */
548 static struct inode *
549 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
550     const struct file_operations *fops, const struct inode_operations *ops)
551 {
552 	struct inode *ip = NULL;
553 	uint64_t creation = 0;
554 	dsl_dataset_t *snap_ds;
555 	dsl_pool_t *pool;
556 
557 	while (ip == NULL) {
558 		ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
559 		if (ip)
560 			break;
561 
562 		if (id <= ZFSCTL_INO_SNAPDIRS && !creation) {
563 			pool = dmu_objset_pool(zfsvfs->z_os);
564 			dsl_pool_config_enter(pool, FTAG);
565 			if (!dsl_dataset_hold_obj(pool,
566 			    ZFSCTL_INO_SNAPDIRS - id, FTAG, &snap_ds)) {
567 				creation = dsl_get_creation(snap_ds);
568 				dsl_dataset_rele(snap_ds, FTAG);
569 			}
570 			dsl_pool_config_exit(pool, FTAG);
571 		}
572 
573 		/* May fail due to concurrent zfsctl_inode_alloc() */
574 		ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops, creation);
575 	}
576 
577 	return (ip);
578 }
579 
580 /*
581  * Create the '.zfs' directory.  This directory is cached as part of the VFS
582  * structure.  This results in a hold on the zfsvfs_t.  The code in zfs_umount()
583  * therefore checks against a vfs_count of 2 instead of 1.  This reference
584  * is removed when the ctldir is destroyed in the unmount.  All other entities
585  * under the '.zfs' directory are created dynamically as needed.
586  *
587  * Because the dynamically created '.zfs' directory entries assume the use
588  * of 64-bit inode numbers this support must be disabled on 32-bit systems.
589  */
590 int
591 zfsctl_create(zfsvfs_t *zfsvfs)
592 {
593 	ASSERT0P(zfsvfs->z_ctldir);
594 
595 	zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
596 	    &zpl_fops_root, &zpl_ops_root, 0);
597 	if (zfsvfs->z_ctldir == NULL)
598 		return (SET_ERROR(ENOENT));
599 
600 	return (0);
601 }
602 
603 /*
604  * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
605  * Only called when the filesystem is unmounted.
606  */
607 void
608 zfsctl_destroy(zfsvfs_t *zfsvfs)
609 {
610 	if (zfsvfs->z_issnap) {
611 		zfs_snapentry_t *se;
612 		spa_t *spa = zfsvfs->z_os->os_spa;
613 		uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
614 
615 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
616 		se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
617 		if (se != NULL)
618 			zfsctl_snapshot_remove(se);
619 		rw_exit(&zfs_snapshot_lock);
620 		if (se != NULL) {
621 			zfsctl_snapshot_unmount_cancel(se);
622 			zfsctl_snapshot_rele(se);
623 		}
624 	} else if (zfsvfs->z_ctldir) {
625 		iput(zfsvfs->z_ctldir);
626 		zfsvfs->z_ctldir = NULL;
627 	}
628 }
629 
630 /*
631  * Given a root znode, retrieve the associated .zfs directory.
632  * Add a hold to the vnode and return it.
633  */
634 struct inode *
635 zfsctl_root(znode_t *zp)
636 {
637 	ASSERT(zfs_has_ctldir(zp));
638 	/* Must have an existing ref, so igrab() cannot return NULL */
639 	VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL);
640 	return (ZTOZSB(zp)->z_ctldir);
641 }
642 
643 /*
644  * Generate a long fid to indicate a snapdir. We encode whether snapdir is
645  * already mounted in gen field. We do this because nfsd lookup will not
646  * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
647  * this and do automount and return ESTALE to force nfsd revalidate and follow
648  * mount.
649  */
650 static int
651 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
652 {
653 	zfid_short_t *zfid = (zfid_short_t *)fidp;
654 	zfid_long_t *zlfid = (zfid_long_t *)fidp;
655 	uint32_t gen = 0;
656 	uint64_t object;
657 	uint64_t objsetid;
658 	int i;
659 	struct dentry *dentry;
660 
661 	if (fidp->fid_len < LONG_FID_LEN) {
662 		fidp->fid_len = LONG_FID_LEN;
663 		return (SET_ERROR(ENOSPC));
664 	}
665 
666 	object = ip->i_ino;
667 	objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
668 	zfid->zf_len = LONG_FID_LEN;
669 
670 	dentry = d_obtain_alias(igrab(ip));
671 	if (!IS_ERR(dentry)) {
672 		gen = !!d_mountpoint(dentry);
673 		dput(dentry);
674 	}
675 
676 	for (i = 0; i < sizeof (zfid->zf_object); i++)
677 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
678 
679 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
680 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
681 
682 	for (i = 0; i < sizeof (zlfid->zf_setid); i++)
683 		zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
684 
685 	for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
686 		zlfid->zf_setgen[i] = 0;
687 
688 	return (0);
689 }
690 
691 /*
692  * Generate an appropriate fid for an entry in the .zfs directory.
693  */
694 int
695 zfsctl_fid(struct inode *ip, fid_t *fidp)
696 {
697 	znode_t		*zp = ITOZ(ip);
698 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
699 	uint64_t	object = zp->z_id;
700 	zfid_short_t	*zfid;
701 	int		i;
702 	int		error;
703 
704 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
705 		return (error);
706 
707 	if (zfsctl_is_snapdir(ip)) {
708 		zfs_exit(zfsvfs, FTAG);
709 		return (zfsctl_snapdir_fid(ip, fidp));
710 	}
711 
712 	if (fidp->fid_len < SHORT_FID_LEN) {
713 		fidp->fid_len = SHORT_FID_LEN;
714 		zfs_exit(zfsvfs, FTAG);
715 		return (SET_ERROR(ENOSPC));
716 	}
717 
718 	zfid = (zfid_short_t *)fidp;
719 
720 	zfid->zf_len = SHORT_FID_LEN;
721 
722 	for (i = 0; i < sizeof (zfid->zf_object); i++)
723 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
724 
725 	/* .zfs znodes always have a generation number of 0 */
726 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
727 		zfid->zf_gen[i] = 0;
728 
729 	zfs_exit(zfsvfs, FTAG);
730 	return (0);
731 }
732 
733 /*
734  * Construct a full dataset name in full_name: "pool/dataset@snap_name"
735  */
736 static int
737 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
738     char *full_name)
739 {
740 	objset_t *os = zfsvfs->z_os;
741 
742 	if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
743 		return (SET_ERROR(EILSEQ));
744 
745 	dmu_objset_name(os, full_name);
746 	if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
747 		return (SET_ERROR(ENAMETOOLONG));
748 
749 	(void) strcat(full_name, "@");
750 	(void) strcat(full_name, snap_name);
751 
752 	return (0);
753 }
754 
755 /*
756  * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
757  */
758 static int
759 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
760     int path_len, char *full_path)
761 {
762 	objset_t *os = zfsvfs->z_os;
763 	fstrans_cookie_t cookie;
764 	char *snapname;
765 	boolean_t case_conflict;
766 	uint64_t id, pos = 0;
767 	int error = 0;
768 
769 	cookie = spl_fstrans_mark();
770 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
771 
772 	while (error == 0) {
773 		dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
774 		error = dmu_snapshot_list_next(zfsvfs->z_os,
775 		    ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
776 		    &case_conflict);
777 		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
778 		if (error)
779 			goto out;
780 
781 		if (id == objsetid)
782 			break;
783 	}
784 
785 	mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock);
786 	if (zfsvfs->z_vfs->vfs_mntpoint != NULL) {
787 		snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
788 		    zfsvfs->z_vfs->vfs_mntpoint, snapname);
789 	} else
790 		error = SET_ERROR(ENOENT);
791 	mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock);
792 
793 out:
794 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
795 	spl_fstrans_unmark(cookie);
796 
797 	return (error);
798 }
799 
800 /*
801  * Special case the handling of "..".
802  */
803 int
804 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
805     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
806 {
807 	zfsvfs_t *zfsvfs = ITOZSB(dip);
808 	int error = 0;
809 
810 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
811 		return (error);
812 
813 	if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED) {
814 		*ipp = NULL;
815 	} else if (strcmp(name, "..") == 0) {
816 		*ipp = dip->i_sb->s_root->d_inode;
817 	} else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
818 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
819 		    &zpl_fops_snapdir, &zpl_ops_snapdir);
820 	} else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
821 		*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
822 		    &zpl_fops_shares, &zpl_ops_shares);
823 	} else {
824 		*ipp = NULL;
825 	}
826 
827 	if (*ipp == NULL)
828 		error = SET_ERROR(ENOENT);
829 
830 	zfs_exit(zfsvfs, FTAG);
831 
832 	return (error);
833 }
834 
835 /*
836  * Lookup entry point for the 'snapshot' directory.  Try to open the
837  * snapshot if it exist, creating the pseudo filesystem inode as necessary.
838  */
839 int
840 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
841     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
842 {
843 	zfsvfs_t *zfsvfs = ITOZSB(dip);
844 	uint64_t id;
845 	int error;
846 
847 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
848 		return (error);
849 
850 	error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
851 	if (error) {
852 		zfs_exit(zfsvfs, FTAG);
853 		return (error);
854 	}
855 
856 	*ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
857 	    &simple_dir_operations, &simple_dir_inode_operations);
858 	if (*ipp == NULL)
859 		error = SET_ERROR(ENOENT);
860 
861 	zfs_exit(zfsvfs, FTAG);
862 
863 	return (error);
864 }
865 
866 /*
867  * Renaming a directory under '.zfs/snapshot' will automatically trigger
868  * a rename of the snapshot to the new given name.  The rename is confined
869  * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
870  */
871 int
872 zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
873     struct inode *tdip, const char *tnm, cred_t *cr, int flags)
874 {
875 	zfsvfs_t *zfsvfs = ITOZSB(sdip);
876 	char *to, *from, *real, *fsname;
877 	int error;
878 
879 	if (!zfs_admin_snapshot)
880 		return (SET_ERROR(EACCES));
881 
882 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
883 		return (error);
884 
885 	to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
886 	from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
887 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
888 	fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
889 
890 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
891 		error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
892 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
893 		if (error == 0) {
894 			snm = real;
895 		} else if (error != ENOTSUP) {
896 			goto out;
897 		}
898 	}
899 
900 	dmu_objset_name(zfsvfs->z_os, fsname);
901 
902 	error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
903 	    ZFS_MAX_DATASET_NAME_LEN, from);
904 	if (error == 0)
905 		error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
906 		    ZFS_MAX_DATASET_NAME_LEN, to);
907 	if (error == 0)
908 		error = zfs_secpolicy_rename_perms(from, to, cr);
909 	if (error != 0)
910 		goto out;
911 
912 	/*
913 	 * Cannot move snapshots out of the snapdir.
914 	 */
915 	if (sdip != tdip) {
916 		error = SET_ERROR(EINVAL);
917 		goto out;
918 	}
919 
920 	/*
921 	 * No-op when names are identical.
922 	 */
923 	if (strcmp(snm, tnm) == 0) {
924 		error = 0;
925 		goto out;
926 	}
927 
928 	rw_enter(&zfs_snapshot_lock, RW_WRITER);
929 
930 	error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
931 	if (error == 0)
932 		(void) zfsctl_snapshot_rename(snm, tnm);
933 
934 	rw_exit(&zfs_snapshot_lock);
935 out:
936 	kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
937 	kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
938 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
939 	kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
940 
941 	zfs_exit(zfsvfs, FTAG);
942 
943 	return (error);
944 }
945 
946 /*
947  * Removing a directory under '.zfs/snapshot' will automatically trigger
948  * the removal of the snapshot with the given name.
949  */
950 int
951 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
952     int flags)
953 {
954 	zfsvfs_t *zfsvfs = ITOZSB(dip);
955 	char *snapname, *real;
956 	int error;
957 
958 	if (!zfs_admin_snapshot)
959 		return (SET_ERROR(EACCES));
960 
961 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
962 		return (error);
963 
964 	snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
965 	real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
966 
967 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
968 		error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
969 		    ZFS_MAX_DATASET_NAME_LEN, NULL);
970 		if (error == 0) {
971 			name = real;
972 		} else if (error != ENOTSUP) {
973 			goto out;
974 		}
975 	}
976 
977 	error = zfsctl_snapshot_name(ITOZSB(dip), name,
978 	    ZFS_MAX_DATASET_NAME_LEN, snapname);
979 	if (error == 0)
980 		error = zfs_secpolicy_destroy_perms(snapname, cr);
981 	if (error != 0)
982 		goto out;
983 
984 	error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
985 	if ((error == 0) || (error == ENOENT))
986 		error = dsl_destroy_snapshot(snapname, B_FALSE);
987 out:
988 	kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
989 	kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
990 
991 	zfs_exit(zfsvfs, FTAG);
992 
993 	return (error);
994 }
995 
996 /*
997  * Creating a directory under '.zfs/snapshot' will automatically trigger
998  * the creation of a new snapshot with the given name.
999  */
1000 int
1001 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
1002     struct inode **ipp, cred_t *cr, int flags)
1003 {
1004 	zfsvfs_t *zfsvfs = ITOZSB(dip);
1005 	char *dsname;
1006 	int error;
1007 
1008 	if (!zfs_admin_snapshot)
1009 		return (SET_ERROR(EACCES));
1010 
1011 	dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1012 
1013 	if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
1014 		error = SET_ERROR(EILSEQ);
1015 		goto out;
1016 	}
1017 
1018 	dmu_objset_name(zfsvfs->z_os, dsname);
1019 
1020 	error = zfs_secpolicy_snapshot_perms(dsname, cr);
1021 	if (error != 0)
1022 		goto out;
1023 
1024 	if (error == 0) {
1025 		error = dmu_objset_snapshot_one(dsname, dirname);
1026 		if (error != 0)
1027 			goto out;
1028 
1029 		error = zfsctl_snapdir_lookup(dip, dirname, ipp,
1030 		    0, cr, NULL, NULL);
1031 	}
1032 out:
1033 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
1034 
1035 	return (error);
1036 }
1037 
1038 /*
1039  * Flush everything out of the kernel's export table and such.
1040  * This is needed as once the snapshot is used over NFS, its
1041  * entries in svc_export and svc_expkey caches hold reference
1042  * to the snapshot mount point. There is no known way of flushing
1043  * only the entries related to the snapshot.
1044  */
1045 static void
1046 exportfs_flush(void)
1047 {
1048 	char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
1049 	char *envp[] = { NULL };
1050 
1051 	(void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1052 }
1053 
1054 /*
1055  * Returns the path in char format for given struct path. Uses
1056  * d_path exported by kernel to convert struct path to char
1057  * format. Returns the correct path for mountpoints and chroot
1058  * environments.
1059  *
1060  * If chroot environment has directories that are mounted with
1061  * --bind or --rbind flag, d_path returns the complete path inside
1062  * chroot environment but does not return the absolute path, i.e.
1063  * the path to chroot environment is missing.
1064  */
1065 static int
1066 get_root_path(struct path *path, char *buff, int len)
1067 {
1068 	char *path_buffer, *path_ptr;
1069 	int error = 0;
1070 
1071 	path_get(path);
1072 	path_buffer = kmem_zalloc(len, KM_SLEEP);
1073 	path_ptr = d_path(path, path_buffer, len);
1074 	if (IS_ERR(path_ptr))
1075 		error = SET_ERROR(-PTR_ERR(path_ptr));
1076 	else
1077 		strcpy(buff, path_ptr);
1078 
1079 	kmem_free(path_buffer, len);
1080 	path_put(path);
1081 	return (error);
1082 }
1083 
1084 /*
1085  * Returns if the current process root is chrooted or not. Linux
1086  * kernel exposes the task_struct for current process and init.
1087  * Since init process root points to actual root filesystem when
1088  * Linux runtime is reached, we can compare the current process
1089  * root with init process root to determine if root of the current
1090  * process is different from init, which can reliably determine if
1091  * current process is in chroot context or not.
1092  */
1093 static int
1094 is_current_chrooted(void)
1095 {
1096 	struct task_struct *curr = current, *global = &init_task;
1097 	struct path cr_root, gl_root;
1098 
1099 	task_lock(curr);
1100 	get_fs_root(curr->fs, &cr_root);
1101 	task_unlock(curr);
1102 
1103 	task_lock(global);
1104 	get_fs_root(global->fs, &gl_root);
1105 	task_unlock(global);
1106 
1107 	int chrooted = !path_equal(&cr_root, &gl_root);
1108 	path_put(&gl_root);
1109 	path_put(&cr_root);
1110 
1111 	return (chrooted);
1112 }
1113 
1114 /*
1115  * Attempt to unmount a snapshot by making a call to user space.
1116  * There is no assurance that this can or will succeed, is just a
1117  * best effort.  In the case where it does fail, perhaps because
1118  * it's in use, the unmount will fail harmlessly.
1119  */
1120 int
1121 zfsctl_snapshot_unmount(const char *snapname, int flags)
1122 {
1123 	char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1124 	    NULL };
1125 	char *envp[] = { NULL };
1126 	zfs_snapentry_t *se;
1127 	int error;
1128 
1129 	rw_enter(&zfs_snapshot_lock, RW_READER);
1130 	if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1131 		rw_exit(&zfs_snapshot_lock);
1132 		return (SET_ERROR(ENOENT));
1133 	}
1134 	rw_exit(&zfs_snapshot_lock);
1135 
1136 	exportfs_flush();
1137 
1138 	if (flags & MNT_FORCE)
1139 		argv[4] = "-fn";
1140 	argv[5] = se->se_path;
1141 	dprintf("unmount; path=%s\n", se->se_path);
1142 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1143 	zfsctl_snapshot_rele(se);
1144 
1145 
1146 	/*
1147 	 * The umount system utility will return 256 on error.  We must
1148 	 * assume this error is because the file system is busy so it is
1149 	 * converted to the more sensible EBUSY.
1150 	 */
1151 	if (error)
1152 		error = SET_ERROR(EBUSY);
1153 
1154 	return (error);
1155 }
1156 
1157 int
1158 zfsctl_snapshot_mount(struct path *path, int flags)
1159 {
1160 	struct dentry *dentry = path->dentry;
1161 	struct inode *ip = dentry->d_inode;
1162 	zfsvfs_t *zfsvfs;
1163 	zfsvfs_t *snap_zfsvfs;
1164 	zfs_snapentry_t *se;
1165 	char *full_name, *full_path, *options;
1166 	char *argv[] = { "/usr/bin/env", "mount", "-i", "-t", "zfs", "-n",
1167 	    "-o", NULL, NULL, NULL, NULL };
1168 	char *envp[] = { NULL };
1169 	int error;
1170 	struct path spath;
1171 
1172 	if (ip == NULL)
1173 		return (SET_ERROR(EISDIR));
1174 
1175 	zfsvfs = ITOZSB(ip);
1176 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1177 		return (error);
1178 
1179 	full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1180 	full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1181 	options = kmem_zalloc(7, KM_SLEEP);
1182 
1183 	error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1184 	    ZFS_MAX_DATASET_NAME_LEN, full_name);
1185 	if (error)
1186 		goto error;
1187 
1188 	if (is_current_chrooted() == 0) {
1189 		/*
1190 		 * Current process is not in chroot context
1191 		 */
1192 
1193 		char *m = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1194 		struct path mnt_path;
1195 		mnt_path.mnt = path->mnt;
1196 		mnt_path.dentry = path->mnt->mnt_root;
1197 
1198 		/*
1199 		 * Get path to current mountpoint
1200 		 */
1201 		error = get_root_path(&mnt_path, m, MAXPATHLEN);
1202 		if (error != 0) {
1203 			kmem_free(m, MAXPATHLEN);
1204 			goto error;
1205 		}
1206 		mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock);
1207 		if (zfsvfs->z_vfs->vfs_mntpoint != NULL) {
1208 			/*
1209 			 * If current mnountpoint and vfs_mntpoint are not same,
1210 			 * store current mountpoint in vfs_mntpoint.
1211 			 */
1212 			if (strcmp(zfsvfs->z_vfs->vfs_mntpoint, m) != 0) {
1213 				kmem_strfree(zfsvfs->z_vfs->vfs_mntpoint);
1214 				zfsvfs->z_vfs->vfs_mntpoint = kmem_strdup(m);
1215 			}
1216 		} else
1217 			zfsvfs->z_vfs->vfs_mntpoint = kmem_strdup(m);
1218 		mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock);
1219 		kmem_free(m, MAXPATHLEN);
1220 	}
1221 
1222 	/*
1223 	 * Construct a mount point path from sb of the ctldir inode and dirent
1224 	 * name, instead of from d_path(), so that chroot'd process doesn't fail
1225 	 * on mount.zfs(8).
1226 	 */
1227 	mutex_enter(&zfsvfs->z_vfs->vfs_mntpt_lock);
1228 	snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
1229 	    zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
1230 	    dname(dentry));
1231 	mutex_exit(&zfsvfs->z_vfs->vfs_mntpt_lock);
1232 
1233 	snprintf(options, 7, "%s",
1234 	    zfs_snapshot_no_setuid ? "nosuid" : "suid");
1235 
1236 	/*
1237 	 * Multiple concurrent automounts of a snapshot are never allowed.
1238 	 * The snapshot may be manually mounted as many times as desired.
1239 	 */
1240 	if (zfsctl_snapshot_ismounted(full_name)) {
1241 		error = 0;
1242 		goto error;
1243 	}
1244 
1245 	/*
1246 	 * Attempt to mount the snapshot from user space.  Normally this
1247 	 * would be done using the vfs_kern_mount() function, however that
1248 	 * function is marked GPL-only and cannot be used.  On error we
1249 	 * careful to log the real error to the console and return EISDIR
1250 	 * to safely abort the automount.  This should be very rare.
1251 	 *
1252 	 * If the user mode helper happens to return EBUSY, a concurrent
1253 	 * mount is already in progress in which case the error is ignored.
1254 	 * Take note that if the program was executed successfully the return
1255 	 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1256 	 */
1257 	dprintf("mount; name=%s path=%s\n", full_name, full_path);
1258 	argv[7] = options;
1259 	argv[8] = full_name;
1260 	argv[9] = full_path;
1261 	error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1262 	if (error) {
1263 		if (!(error & MOUNT_BUSY << 8)) {
1264 			zfs_dbgmsg("Unable to automount %s error=%d",
1265 			    full_path, error);
1266 			error = SET_ERROR(EISDIR);
1267 		} else {
1268 			/*
1269 			 * EBUSY, this could mean a concurrent mount, or the
1270 			 * snapshot has already been mounted at completely
1271 			 * different place. We return 0 so VFS will retry. For
1272 			 * the latter case the VFS will retry several times
1273 			 * and return ELOOP, which is probably not a very good
1274 			 * behavior.
1275 			 */
1276 			error = 0;
1277 		}
1278 		goto error;
1279 	}
1280 
1281 	/*
1282 	 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1283 	 * to identify this as an automounted filesystem.
1284 	 */
1285 	spath = *path;
1286 	path_get(&spath);
1287 	if (follow_down_one(&spath)) {
1288 		snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1289 		snap_zfsvfs->z_parent = zfsvfs;
1290 		dentry = spath.dentry;
1291 		spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1292 
1293 		rw_enter(&zfs_snapshot_lock, RW_WRITER);
1294 		se = zfsctl_snapshot_alloc(full_name, full_path,
1295 		    snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1296 		    dentry);
1297 		zfsctl_snapshot_add(se);
1298 		zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1299 		rw_exit(&zfs_snapshot_lock);
1300 	}
1301 	path_put(&spath);
1302 error:
1303 	kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1304 	kmem_free(full_path, MAXPATHLEN);
1305 
1306 	zfs_exit(zfsvfs, FTAG);
1307 
1308 	return (error);
1309 }
1310 
1311 /*
1312  * Get the snapdir inode from fid
1313  */
1314 int
1315 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1316     struct inode **ipp)
1317 {
1318 	int error;
1319 	struct path path;
1320 	char *mnt;
1321 	struct dentry *dentry;
1322 
1323 	mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1324 
1325 	error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1326 	    MAXPATHLEN, mnt);
1327 	if (error)
1328 		goto out;
1329 
1330 	/* Trigger automount */
1331 	error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1332 	if (error)
1333 		goto out;
1334 
1335 	path_put(&path);
1336 	/*
1337 	 * Get the snapdir inode. Note, we don't want to use the above
1338 	 * path because it contains the root of the snapshot rather
1339 	 * than the snapdir.
1340 	 */
1341 	*ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1342 	if (*ipp == NULL) {
1343 		error = SET_ERROR(ENOENT);
1344 		goto out;
1345 	}
1346 
1347 	/* check gen, see zfsctl_snapdir_fid */
1348 	dentry = d_obtain_alias(igrab(*ipp));
1349 	if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1350 		iput(*ipp);
1351 		*ipp = NULL;
1352 		error = SET_ERROR(ENOENT);
1353 	}
1354 	if (!IS_ERR(dentry))
1355 		dput(dentry);
1356 out:
1357 	kmem_free(mnt, MAXPATHLEN);
1358 	return (error);
1359 }
1360 
1361 int
1362 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1363     int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1364 {
1365 	zfsvfs_t *zfsvfs = ITOZSB(dip);
1366 	znode_t *zp;
1367 	znode_t *dzp;
1368 	int error;
1369 
1370 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1371 		return (error);
1372 
1373 	if (zfsvfs->z_shares_dir == 0) {
1374 		zfs_exit(zfsvfs, FTAG);
1375 		return (SET_ERROR(ENOTSUP));
1376 	}
1377 
1378 	if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1379 		error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
1380 		zrele(dzp);
1381 	}
1382 
1383 	zfs_exit(zfsvfs, FTAG);
1384 
1385 	return (error);
1386 }
1387 
1388 /*
1389  * Initialize the various pieces we'll need to create and manipulate .zfs
1390  * directories.  Currently this is unused but available.
1391  */
1392 void
1393 zfsctl_init(void)
1394 {
1395 	avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1396 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1397 	    se_node_name));
1398 	avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1399 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1400 	    se_node_objsetid));
1401 	rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1402 }
1403 
1404 /*
1405  * Cleanup the various pieces we needed for .zfs directories.  In particular
1406  * ensure the expiry timer is canceled safely.
1407  */
1408 void
1409 zfsctl_fini(void)
1410 {
1411 	avl_destroy(&zfs_snapshots_by_name);
1412 	avl_destroy(&zfs_snapshots_by_objsetid);
1413 	rw_destroy(&zfs_snapshot_lock);
1414 }
1415 
1416 module_param(zfs_admin_snapshot, int, 0644);
1417 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1418 
1419 module_param(zfs_expire_snapshot, int, 0644);
1420 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");
1421 
1422 module_param(zfs_snapshot_no_setuid, int, 0644);
1423 MODULE_PARM_DESC(zfs_snapshot_no_setuid,
1424 	"Disable setuid/setgid for automounts in .zfs/snapshot");
1425