xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c (revision f126890ac5386406dadf7c4cfa9566cbb56537c5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
41 #include <linux/blk-cgroup.h>
42 #endif
43 
44 /*
45  * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
46  * block_device. Since it carries the block_device inside, its convenient to
47  * just use the handle as a proxy. For pre-6.8, we just emulate this with
48  * a cast, since we don't need any of the other fields inside the handle.
49  */
50 #ifdef HAVE_BDEV_OPEN_BY_PATH
51 typedef struct bdev_handle zfs_bdev_handle_t;
52 #define	BDH_BDEV(bdh)		((bdh)->bdev)
53 #define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
54 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
55 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
56 #else
57 typedef void zfs_bdev_handle_t;
58 #define	BDH_BDEV(bdh)		((struct block_device *)bdh)
59 #define	BDH_IS_ERR(bdh)		(IS_ERR(BDH_BDEV(bdh)))
60 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(BDH_BDEV(bdh)))
61 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
62 #endif
63 
64 typedef struct vdev_disk {
65 	zfs_bdev_handle_t		*vd_bdh;
66 	krwlock_t			vd_lock;
67 } vdev_disk_t;
68 
69 /*
70  * Unique identifier for the exclusive vdev holder.
71  */
72 static void *zfs_vdev_holder = VDEV_HOLDER;
73 
74 /*
75  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
76  * device is missing. The missing path may be transient since the links
77  * can be briefly removed and recreated in response to udev events.
78  */
79 static uint_t zfs_vdev_open_timeout_ms = 1000;
80 
81 /*
82  * Size of the "reserved" partition, in blocks.
83  */
84 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
85 
86 /*
87  * Virtual device vector for disks.
88  */
89 typedef struct dio_request {
90 	zio_t			*dr_zio;	/* Parent ZIO */
91 	atomic_t		dr_ref;		/* References */
92 	int			dr_error;	/* Bio error */
93 	int			dr_bio_count;	/* Count of bio's */
94 	struct bio		*dr_bio[];	/* Attached bio's */
95 } dio_request_t;
96 
97 /*
98  * BIO request failfast mask.
99  */
100 
101 static unsigned int zfs_vdev_failfast_mask = 1;
102 
103 #ifdef HAVE_BLK_MODE_T
104 static blk_mode_t
105 #else
106 static fmode_t
107 #endif
108 vdev_bdev_mode(spa_mode_t spa_mode, boolean_t exclusive)
109 {
110 #ifdef HAVE_BLK_MODE_T
111 	blk_mode_t mode = 0;
112 
113 	if (spa_mode & SPA_MODE_READ)
114 		mode |= BLK_OPEN_READ;
115 
116 	if (spa_mode & SPA_MODE_WRITE)
117 		mode |= BLK_OPEN_WRITE;
118 
119 	if (exclusive)
120 		mode |= BLK_OPEN_EXCL;
121 #else
122 	fmode_t mode = 0;
123 
124 	if (spa_mode & SPA_MODE_READ)
125 		mode |= FMODE_READ;
126 
127 	if (spa_mode & SPA_MODE_WRITE)
128 		mode |= FMODE_WRITE;
129 
130 	if (exclusive)
131 		mode |= FMODE_EXCL;
132 #endif
133 
134 	return (mode);
135 }
136 
137 /*
138  * Returns the usable capacity (in bytes) for the partition or disk.
139  */
140 static uint64_t
141 bdev_capacity(struct block_device *bdev)
142 {
143 	return (i_size_read(bdev->bd_inode));
144 }
145 
146 #if !defined(HAVE_BDEV_WHOLE)
147 static inline struct block_device *
148 bdev_whole(struct block_device *bdev)
149 {
150 	return (bdev->bd_contains);
151 }
152 #endif
153 
154 #if defined(HAVE_BDEVNAME)
155 #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
156 #else
157 static inline void
158 vdev_bdevname(struct block_device *bdev, char *name)
159 {
160 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
161 }
162 #endif
163 
164 /*
165  * Returns the maximum expansion capacity of the block device (in bytes).
166  *
167  * It is possible to expand a vdev when it has been created as a wholedisk
168  * and the containing block device has increased in capacity.  Or when the
169  * partition containing the pool has been manually increased in size.
170  *
171  * This function is only responsible for calculating the potential expansion
172  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
173  * responsible for verifying the expected partition layout in the wholedisk
174  * case, and updating the partition table if appropriate.  Once the partition
175  * size has been increased the additional capacity will be visible using
176  * bdev_capacity().
177  *
178  * The returned maximum expansion capacity is always expected to be larger, or
179  * at the very least equal, to its usable capacity to prevent overestimating
180  * the pool expandsize.
181  */
182 static uint64_t
183 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
184 {
185 	uint64_t psize;
186 	int64_t available;
187 
188 	if (wholedisk && bdev != bdev_whole(bdev)) {
189 		/*
190 		 * When reporting maximum expansion capacity for a wholedisk
191 		 * deduct any capacity which is expected to be lost due to
192 		 * alignment restrictions.  Over reporting this value isn't
193 		 * harmful and would only result in slightly less capacity
194 		 * than expected post expansion.
195 		 * The estimated available space may be slightly smaller than
196 		 * bdev_capacity() for devices where the number of sectors is
197 		 * not a multiple of the alignment size and the partition layout
198 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
199 		 * "reserved" EFI partition: in such cases return the device
200 		 * usable capacity.
201 		 */
202 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
203 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
204 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
205 		psize = MAX(available, bdev_capacity(bdev));
206 	} else {
207 		psize = bdev_capacity(bdev);
208 	}
209 
210 	return (psize);
211 }
212 
213 static void
214 vdev_disk_error(zio_t *zio)
215 {
216 	/*
217 	 * This function can be called in interrupt context, for instance while
218 	 * handling IRQs coming from a misbehaving disk device; use printk()
219 	 * which is safe from any context.
220 	 */
221 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
222 	    "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
223 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
224 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
225 	    zio->io_flags);
226 }
227 
228 static void
229 vdev_disk_kobj_evt_post(vdev_t *v)
230 {
231 	vdev_disk_t *vd = v->vdev_tsd;
232 	if (vd && vd->vd_bdh) {
233 		spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
234 	} else {
235 		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
236 		    v->vdev_path);
237 	}
238 }
239 
240 static zfs_bdev_handle_t *
241 vdev_blkdev_get_by_path(const char *path, spa_mode_t mode, void *holder)
242 {
243 #if defined(HAVE_BDEV_OPEN_BY_PATH)
244 	return (bdev_open_by_path(path,
245 	    vdev_bdev_mode(mode, B_TRUE), holder, NULL));
246 #elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
247 	return (blkdev_get_by_path(path,
248 	    vdev_bdev_mode(mode, B_TRUE), holder, NULL));
249 #else
250 	return (blkdev_get_by_path(path,
251 	    vdev_bdev_mode(mode, B_TRUE), holder));
252 #endif
253 }
254 
255 static void
256 vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t mode, void *holder)
257 {
258 #if defined(HAVE_BDEV_RELEASE)
259 	return (bdev_release(bdh));
260 #elif defined(HAVE_BLKDEV_PUT_HOLDER)
261 	return (blkdev_put(BDH_BDEV(bdh), holder));
262 #else
263 	return (blkdev_put(BDH_BDEV(bdh),
264 	    vdev_bdev_mode(mode, B_TRUE)));
265 #endif
266 }
267 
268 static int
269 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
270     uint64_t *logical_ashift, uint64_t *physical_ashift)
271 {
272 	zfs_bdev_handle_t *bdh;
273 #ifdef HAVE_BLK_MODE_T
274 	blk_mode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa), B_FALSE);
275 #else
276 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa), B_FALSE);
277 #endif
278 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
279 	vdev_disk_t *vd;
280 
281 	/* Must have a pathname and it must be absolute. */
282 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
283 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
284 		vdev_dbgmsg(v, "invalid vdev_path");
285 		return (SET_ERROR(EINVAL));
286 	}
287 
288 	/*
289 	 * Reopen the device if it is currently open.  When expanding a
290 	 * partition force re-scanning the partition table if userland
291 	 * did not take care of this already. We need to do this while closed
292 	 * in order to get an accurate updated block device size.  Then
293 	 * since udev may need to recreate the device links increase the
294 	 * open retry timeout before reporting the device as unavailable.
295 	 */
296 	vd = v->vdev_tsd;
297 	if (vd) {
298 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
299 		boolean_t reread_part = B_FALSE;
300 
301 		rw_enter(&vd->vd_lock, RW_WRITER);
302 		bdh = vd->vd_bdh;
303 		vd->vd_bdh = NULL;
304 
305 		if (bdh) {
306 			struct block_device *bdev = BDH_BDEV(bdh);
307 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
308 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
309 				/*
310 				 * If userland has BLKPG_RESIZE_PARTITION,
311 				 * then it should have updated the partition
312 				 * table already. We can detect this by
313 				 * comparing our current physical size
314 				 * with that of the device. If they are
315 				 * the same, then we must not have
316 				 * BLKPG_RESIZE_PARTITION or it failed to
317 				 * update the partition table online. We
318 				 * fallback to rescanning the partition
319 				 * table from the kernel below. However,
320 				 * if the capacity already reflects the
321 				 * updated partition, then we skip
322 				 * rescanning the partition table here.
323 				 */
324 				if (v->vdev_psize == bdev_capacity(bdev))
325 					reread_part = B_TRUE;
326 			}
327 
328 			vdev_blkdev_put(bdh, mode, zfs_vdev_holder);
329 		}
330 
331 		if (reread_part) {
332 			bdh = vdev_blkdev_get_by_path(disk_name, mode,
333 			    zfs_vdev_holder);
334 			if (!BDH_IS_ERR(bdh)) {
335 				int error =
336 				    vdev_bdev_reread_part(BDH_BDEV(bdh));
337 				vdev_blkdev_put(bdh, mode, zfs_vdev_holder);
338 				if (error == 0) {
339 					timeout = MSEC2NSEC(
340 					    zfs_vdev_open_timeout_ms * 2);
341 				}
342 			}
343 		}
344 	} else {
345 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
346 
347 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
348 		rw_enter(&vd->vd_lock, RW_WRITER);
349 	}
350 
351 	/*
352 	 * Devices are always opened by the path provided at configuration
353 	 * time.  This means that if the provided path is a udev by-id path
354 	 * then drives may be re-cabled without an issue.  If the provided
355 	 * path is a udev by-path path, then the physical location information
356 	 * will be preserved.  This can be critical for more complicated
357 	 * configurations where drives are located in specific physical
358 	 * locations to maximize the systems tolerance to component failure.
359 	 *
360 	 * Alternatively, you can provide your own udev rule to flexibly map
361 	 * the drives as you see fit.  It is not advised that you use the
362 	 * /dev/[hd]d devices which may be reordered due to probing order.
363 	 * Devices in the wrong locations will be detected by the higher
364 	 * level vdev validation.
365 	 *
366 	 * The specified paths may be briefly removed and recreated in
367 	 * response to udev events.  This should be exceptionally unlikely
368 	 * because the zpool command makes every effort to verify these paths
369 	 * have already settled prior to reaching this point.  Therefore,
370 	 * a ENOENT failure at this point is highly likely to be transient
371 	 * and it is reasonable to sleep and retry before giving up.  In
372 	 * practice delays have been observed to be on the order of 100ms.
373 	 *
374 	 * When ERESTARTSYS is returned it indicates the block device is
375 	 * a zvol which could not be opened due to the deadlock detection
376 	 * logic in zvol_open().  Extend the timeout and retry the open
377 	 * subsequent attempts are expected to eventually succeed.
378 	 */
379 	hrtime_t start = gethrtime();
380 	bdh = BDH_ERR_PTR(-ENXIO);
381 	while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
382 		bdh = vdev_blkdev_get_by_path(v->vdev_path, mode,
383 		    zfs_vdev_holder);
384 		if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
385 			/*
386 			 * There is no point of waiting since device is removed
387 			 * explicitly
388 			 */
389 			if (v->vdev_removed)
390 				break;
391 
392 			schedule_timeout(MSEC_TO_TICK(10));
393 		} else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
394 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
395 			continue;
396 		} else if (BDH_IS_ERR(bdh)) {
397 			break;
398 		}
399 	}
400 
401 	if (BDH_IS_ERR(bdh)) {
402 		int error = -BDH_PTR_ERR(bdh);
403 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
404 		    (u_longlong_t)(gethrtime() - start),
405 		    (u_longlong_t)timeout);
406 		vd->vd_bdh = NULL;
407 		v->vdev_tsd = vd;
408 		rw_exit(&vd->vd_lock);
409 		return (SET_ERROR(error));
410 	} else {
411 		vd->vd_bdh = bdh;
412 		v->vdev_tsd = vd;
413 		rw_exit(&vd->vd_lock);
414 	}
415 
416 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
417 
418 	/*  Determine the physical block size */
419 	int physical_block_size = bdev_physical_block_size(bdev);
420 
421 	/*  Determine the logical block size */
422 	int logical_block_size = bdev_logical_block_size(bdev);
423 
424 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
425 	v->vdev_nowritecache = B_FALSE;
426 
427 	/* Set when device reports it supports TRIM. */
428 	v->vdev_has_trim = bdev_discard_supported(bdev);
429 
430 	/* Set when device reports it supports secure TRIM. */
431 	v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
432 
433 	/* Inform the ZIO pipeline that we are non-rotational */
434 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
435 
436 	/* Physical volume size in bytes for the partition */
437 	*psize = bdev_capacity(bdev);
438 
439 	/* Physical volume size in bytes including possible expansion space */
440 	*max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
441 
442 	/* Based on the minimum sector size set the block size */
443 	*physical_ashift = highbit64(MAX(physical_block_size,
444 	    SPA_MINBLOCKSIZE)) - 1;
445 
446 	*logical_ashift = highbit64(MAX(logical_block_size,
447 	    SPA_MINBLOCKSIZE)) - 1;
448 
449 	return (0);
450 }
451 
452 static void
453 vdev_disk_close(vdev_t *v)
454 {
455 	vdev_disk_t *vd = v->vdev_tsd;
456 
457 	if (v->vdev_reopening || vd == NULL)
458 		return;
459 
460 	if (vd->vd_bdh != NULL) {
461 		vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
462 		    zfs_vdev_holder);
463 	}
464 
465 	rw_destroy(&vd->vd_lock);
466 	kmem_free(vd, sizeof (vdev_disk_t));
467 	v->vdev_tsd = NULL;
468 }
469 
470 static dio_request_t *
471 vdev_disk_dio_alloc(int bio_count)
472 {
473 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
474 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
475 	atomic_set(&dr->dr_ref, 0);
476 	dr->dr_bio_count = bio_count;
477 	dr->dr_error = 0;
478 
479 	for (int i = 0; i < dr->dr_bio_count; i++)
480 		dr->dr_bio[i] = NULL;
481 
482 	return (dr);
483 }
484 
485 static void
486 vdev_disk_dio_free(dio_request_t *dr)
487 {
488 	int i;
489 
490 	for (i = 0; i < dr->dr_bio_count; i++)
491 		if (dr->dr_bio[i])
492 			bio_put(dr->dr_bio[i]);
493 
494 	kmem_free(dr, sizeof (dio_request_t) +
495 	    sizeof (struct bio *) * dr->dr_bio_count);
496 }
497 
498 static void
499 vdev_disk_dio_get(dio_request_t *dr)
500 {
501 	atomic_inc(&dr->dr_ref);
502 }
503 
504 static void
505 vdev_disk_dio_put(dio_request_t *dr)
506 {
507 	int rc = atomic_dec_return(&dr->dr_ref);
508 
509 	/*
510 	 * Free the dio_request when the last reference is dropped and
511 	 * ensure zio_interpret is called only once with the correct zio
512 	 */
513 	if (rc == 0) {
514 		zio_t *zio = dr->dr_zio;
515 		int error = dr->dr_error;
516 
517 		vdev_disk_dio_free(dr);
518 
519 		if (zio) {
520 			zio->io_error = error;
521 			ASSERT3S(zio->io_error, >=, 0);
522 			if (zio->io_error)
523 				vdev_disk_error(zio);
524 
525 			zio_delay_interrupt(zio);
526 		}
527 	}
528 }
529 
530 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
531 {
532 	dio_request_t *dr = bio->bi_private;
533 
534 	if (dr->dr_error == 0) {
535 #ifdef HAVE_1ARG_BIO_END_IO_T
536 		dr->dr_error = BIO_END_IO_ERROR(bio);
537 #else
538 		if (error)
539 			dr->dr_error = -(error);
540 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
541 			dr->dr_error = EIO;
542 #endif
543 	}
544 
545 	/* Drop reference acquired by __vdev_disk_physio */
546 	vdev_disk_dio_put(dr);
547 }
548 
549 static inline void
550 vdev_submit_bio_impl(struct bio *bio)
551 {
552 #ifdef HAVE_1ARG_SUBMIT_BIO
553 	(void) submit_bio(bio);
554 #else
555 	(void) submit_bio(bio_data_dir(bio), bio);
556 #endif
557 }
558 
559 /*
560  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
561  * replace it with preempt_schedule under the following condition:
562  */
563 #if defined(CONFIG_ARM64) && \
564     defined(CONFIG_PREEMPTION) && \
565     defined(CONFIG_BLK_CGROUP)
566 #define	preempt_schedule_notrace(x) preempt_schedule(x)
567 #endif
568 
569 /*
570  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
571  * as an argument removing the need to set it with bio_set_dev().  This
572  * removes the need for all of the following compatibility code.
573  */
574 #if !defined(HAVE_BIO_ALLOC_4ARG)
575 
576 #ifdef HAVE_BIO_SET_DEV
577 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
578 /*
579  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
580  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
581  * As a side effect the function was converted to GPL-only.  Define our
582  * own version when needed which uses rcu_read_lock_sched().
583  *
584  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
585  * part, moving blkg_tryget into the private one. Define our own version.
586  */
587 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
588 static inline bool
589 vdev_blkg_tryget(struct blkcg_gq *blkg)
590 {
591 	struct percpu_ref *ref = &blkg->refcnt;
592 	unsigned long __percpu *count;
593 	bool rc;
594 
595 	rcu_read_lock_sched();
596 
597 	if (__ref_is_percpu(ref, &count)) {
598 		this_cpu_inc(*count);
599 		rc = true;
600 	} else {
601 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
602 		rc = atomic_long_inc_not_zero(&ref->data->count);
603 #else
604 		rc = atomic_long_inc_not_zero(&ref->count);
605 #endif
606 	}
607 
608 	rcu_read_unlock_sched();
609 
610 	return (rc);
611 }
612 #else
613 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
614 #endif
615 #ifdef HAVE_BIO_SET_DEV_MACRO
616 /*
617  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
618  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
619  * the entire macro.  Provide a minimal version which always assigns the
620  * request queue's root_blkg to the bio.
621  */
622 static inline void
623 vdev_bio_associate_blkg(struct bio *bio)
624 {
625 #if defined(HAVE_BIO_BDEV_DISK)
626 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
627 #else
628 	struct request_queue *q = bio->bi_disk->queue;
629 #endif
630 
631 	ASSERT3P(q, !=, NULL);
632 	ASSERT3P(bio->bi_blkg, ==, NULL);
633 
634 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
635 		bio->bi_blkg = q->root_blkg;
636 }
637 
638 #define	bio_associate_blkg vdev_bio_associate_blkg
639 #else
640 static inline void
641 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
642 {
643 #if defined(HAVE_BIO_BDEV_DISK)
644 	struct request_queue *q = bdev->bd_disk->queue;
645 #else
646 	struct request_queue *q = bio->bi_disk->queue;
647 #endif
648 	bio_clear_flag(bio, BIO_REMAPPED);
649 	if (bio->bi_bdev != bdev)
650 		bio_clear_flag(bio, BIO_THROTTLED);
651 	bio->bi_bdev = bdev;
652 
653 	ASSERT3P(q, !=, NULL);
654 	ASSERT3P(bio->bi_blkg, ==, NULL);
655 
656 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
657 		bio->bi_blkg = q->root_blkg;
658 }
659 #define	bio_set_dev		vdev_bio_set_dev
660 #endif
661 #endif
662 #else
663 /*
664  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
665  */
666 static inline void
667 bio_set_dev(struct bio *bio, struct block_device *bdev)
668 {
669 	bio->bi_bdev = bdev;
670 }
671 #endif /* HAVE_BIO_SET_DEV */
672 #endif /* !HAVE_BIO_ALLOC_4ARG */
673 
674 static inline void
675 vdev_submit_bio(struct bio *bio)
676 {
677 	struct bio_list *bio_list = current->bio_list;
678 	current->bio_list = NULL;
679 	vdev_submit_bio_impl(bio);
680 	current->bio_list = bio_list;
681 }
682 
683 static inline struct bio *
684 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
685     unsigned short nr_vecs)
686 {
687 	struct bio *bio;
688 
689 #ifdef HAVE_BIO_ALLOC_4ARG
690 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
691 #else
692 	bio = bio_alloc(gfp_mask, nr_vecs);
693 	if (likely(bio != NULL))
694 		bio_set_dev(bio, bdev);
695 #endif
696 
697 	return (bio);
698 }
699 
700 static inline unsigned int
701 vdev_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
702 {
703 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
704 	    bio_size, abd_offset);
705 
706 #ifdef HAVE_BIO_MAX_SEGS
707 	return (bio_max_segs(nr_segs));
708 #else
709 	return (MIN(nr_segs, BIO_MAX_PAGES));
710 #endif
711 }
712 
713 static int
714 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
715     size_t io_size, uint64_t io_offset, int rw, int flags)
716 {
717 	dio_request_t *dr;
718 	uint64_t abd_offset;
719 	uint64_t bio_offset;
720 	int bio_size;
721 	int bio_count = 16;
722 	int error = 0;
723 	struct blk_plug plug;
724 	unsigned short nr_vecs;
725 
726 	/*
727 	 * Accessing outside the block device is never allowed.
728 	 */
729 	if (io_offset + io_size > bdev->bd_inode->i_size) {
730 		vdev_dbgmsg(zio->io_vd,
731 		    "Illegal access %llu size %llu, device size %llu",
732 		    (u_longlong_t)io_offset,
733 		    (u_longlong_t)io_size,
734 		    (u_longlong_t)i_size_read(bdev->bd_inode));
735 		return (SET_ERROR(EIO));
736 	}
737 
738 retry:
739 	dr = vdev_disk_dio_alloc(bio_count);
740 
741 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
742 	    zio->io_vd->vdev_failfast == B_TRUE) {
743 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
744 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
745 	}
746 
747 	dr->dr_zio = zio;
748 
749 	/*
750 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
751 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
752 	 * can cover at least 128KB and at most 1MB.  When the required number
753 	 * of iovec's exceeds this, we are forced to break the IO in multiple
754 	 * bio's and wait for them all to complete.  This is likely if the
755 	 * recordsize property is increased beyond 1MB.  The default
756 	 * bio_count=16 should typically accommodate the maximum-size zio of
757 	 * 16MB.
758 	 */
759 
760 	abd_offset = 0;
761 	bio_offset = io_offset;
762 	bio_size = io_size;
763 	for (int i = 0; i <= dr->dr_bio_count; i++) {
764 
765 		/* Finished constructing bio's for given buffer */
766 		if (bio_size <= 0)
767 			break;
768 
769 		/*
770 		 * If additional bio's are required, we have to retry, but
771 		 * this should be rare - see the comment above.
772 		 */
773 		if (dr->dr_bio_count == i) {
774 			vdev_disk_dio_free(dr);
775 			bio_count *= 2;
776 			goto retry;
777 		}
778 
779 		nr_vecs = vdev_bio_max_segs(zio, bio_size, abd_offset);
780 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
781 		if (unlikely(dr->dr_bio[i] == NULL)) {
782 			vdev_disk_dio_free(dr);
783 			return (SET_ERROR(ENOMEM));
784 		}
785 
786 		/* Matching put called by vdev_disk_physio_completion */
787 		vdev_disk_dio_get(dr);
788 
789 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
790 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
791 		dr->dr_bio[i]->bi_private = dr;
792 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
793 
794 		/* Remaining size is returned to become the new size */
795 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
796 		    bio_size, abd_offset);
797 
798 		/* Advance in buffer and construct another bio if needed */
799 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
800 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
801 	}
802 
803 	/* Extra reference to protect dio_request during vdev_submit_bio */
804 	vdev_disk_dio_get(dr);
805 
806 	if (dr->dr_bio_count > 1)
807 		blk_start_plug(&plug);
808 
809 	/* Submit all bio's associated with this dio */
810 	for (int i = 0; i < dr->dr_bio_count; i++) {
811 		if (dr->dr_bio[i])
812 			vdev_submit_bio(dr->dr_bio[i]);
813 	}
814 
815 	if (dr->dr_bio_count > 1)
816 		blk_finish_plug(&plug);
817 
818 	vdev_disk_dio_put(dr);
819 
820 	return (error);
821 }
822 
823 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
824 {
825 	zio_t *zio = bio->bi_private;
826 #ifdef HAVE_1ARG_BIO_END_IO_T
827 	zio->io_error = BIO_END_IO_ERROR(bio);
828 #else
829 	zio->io_error = -error;
830 #endif
831 
832 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
833 		zio->io_vd->vdev_nowritecache = B_TRUE;
834 
835 	bio_put(bio);
836 	ASSERT3S(zio->io_error, >=, 0);
837 	if (zio->io_error)
838 		vdev_disk_error(zio);
839 	zio_interrupt(zio);
840 }
841 
842 static int
843 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
844 {
845 	struct request_queue *q;
846 	struct bio *bio;
847 
848 	q = bdev_get_queue(bdev);
849 	if (!q)
850 		return (SET_ERROR(ENXIO));
851 
852 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
853 	if (unlikely(bio == NULL))
854 		return (SET_ERROR(ENOMEM));
855 
856 	bio->bi_end_io = vdev_disk_io_flush_completion;
857 	bio->bi_private = zio;
858 	bio_set_flush(bio);
859 	vdev_submit_bio(bio);
860 	invalidate_bdev(bdev);
861 
862 	return (0);
863 }
864 
865 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE) || \
866 	defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC)
867 BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error)
868 {
869 	zio_t *zio = bio->bi_private;
870 #ifdef HAVE_1ARG_BIO_END_IO_T
871 	zio->io_error = BIO_END_IO_ERROR(bio);
872 #else
873 	zio->io_error = -error;
874 #endif
875 	bio_put(bio);
876 	if (zio->io_error)
877 		vdev_disk_error(zio);
878 	zio_interrupt(zio);
879 }
880 
881 static int
882 vdev_issue_discard_trim(zio_t *zio, unsigned long flags)
883 {
884 	int ret;
885 	struct bio *bio = NULL;
886 
887 #if defined(BLKDEV_DISCARD_SECURE)
888 	ret = - __blkdev_issue_discard(
889 	    BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
890 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, flags, &bio);
891 #else
892 	(void) flags;
893 	ret = - __blkdev_issue_discard(
894 	    BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
895 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, &bio);
896 #endif
897 	if (!ret && bio) {
898 		bio->bi_private = zio;
899 		bio->bi_end_io = vdev_disk_discard_end_io;
900 		vdev_submit_bio(bio);
901 	}
902 	return (ret);
903 }
904 #endif
905 
906 static int
907 vdev_disk_io_trim(zio_t *zio)
908 {
909 	unsigned long trim_flags = 0;
910 	if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
911 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
912 		return (-blkdev_issue_secure_erase(
913 		    BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
914 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
915 #elif defined(BLKDEV_DISCARD_SECURE)
916 		trim_flags |= BLKDEV_DISCARD_SECURE;
917 #endif
918 	}
919 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE) || \
920 	defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC)
921 	return (vdev_issue_discard_trim(zio, trim_flags));
922 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
923 	return (-blkdev_issue_discard(
924 	    BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
925 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
926 #else
927 #error "Unsupported kernel"
928 #endif
929 }
930 
931 static void
932 vdev_disk_io_start(zio_t *zio)
933 {
934 	vdev_t *v = zio->io_vd;
935 	vdev_disk_t *vd = v->vdev_tsd;
936 	int rw, error;
937 
938 	/*
939 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
940 	 * Nothing to be done here but return failure.
941 	 */
942 	if (vd == NULL) {
943 		zio->io_error = ENXIO;
944 		zio_interrupt(zio);
945 		return;
946 	}
947 
948 	rw_enter(&vd->vd_lock, RW_READER);
949 
950 	/*
951 	 * If the vdev is closed, it's likely due to a failed reopen and is
952 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
953 	 */
954 	if (vd->vd_bdh == NULL) {
955 		rw_exit(&vd->vd_lock);
956 		zio->io_error = ENXIO;
957 		zio_interrupt(zio);
958 		return;
959 	}
960 
961 	switch (zio->io_type) {
962 	case ZIO_TYPE_IOCTL:
963 
964 		if (!vdev_readable(v)) {
965 			rw_exit(&vd->vd_lock);
966 			zio->io_error = SET_ERROR(ENXIO);
967 			zio_interrupt(zio);
968 			return;
969 		}
970 
971 		switch (zio->io_cmd) {
972 		case DKIOCFLUSHWRITECACHE:
973 
974 			if (zfs_nocacheflush)
975 				break;
976 
977 			if (v->vdev_nowritecache) {
978 				zio->io_error = SET_ERROR(ENOTSUP);
979 				break;
980 			}
981 
982 			error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
983 			if (error == 0) {
984 				rw_exit(&vd->vd_lock);
985 				return;
986 			}
987 
988 			zio->io_error = error;
989 
990 			break;
991 
992 		default:
993 			zio->io_error = SET_ERROR(ENOTSUP);
994 		}
995 
996 		rw_exit(&vd->vd_lock);
997 		zio_execute(zio);
998 		return;
999 	case ZIO_TYPE_WRITE:
1000 		rw = WRITE;
1001 		break;
1002 
1003 	case ZIO_TYPE_READ:
1004 		rw = READ;
1005 		break;
1006 
1007 	case ZIO_TYPE_TRIM:
1008 		zio->io_error = vdev_disk_io_trim(zio);
1009 		rw_exit(&vd->vd_lock);
1010 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1011 		if (zio->io_trim_flags & ZIO_TRIM_SECURE)
1012 			zio_interrupt(zio);
1013 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
1014 		zio_interrupt(zio);
1015 #endif
1016 		return;
1017 
1018 	default:
1019 		rw_exit(&vd->vd_lock);
1020 		zio->io_error = SET_ERROR(ENOTSUP);
1021 		zio_interrupt(zio);
1022 		return;
1023 	}
1024 
1025 	zio->io_target_timestamp = zio_handle_io_delay(zio);
1026 	error = __vdev_disk_physio(BDH_BDEV(vd->vd_bdh), zio,
1027 	    zio->io_size, zio->io_offset, rw, 0);
1028 	rw_exit(&vd->vd_lock);
1029 
1030 	if (error) {
1031 		zio->io_error = error;
1032 		zio_interrupt(zio);
1033 		return;
1034 	}
1035 }
1036 
1037 static void
1038 vdev_disk_io_done(zio_t *zio)
1039 {
1040 	/*
1041 	 * If the device returned EIO, we revalidate the media.  If it is
1042 	 * determined the media has changed this triggers the asynchronous
1043 	 * removal of the device from the configuration.
1044 	 */
1045 	if (zio->io_error == EIO) {
1046 		vdev_t *v = zio->io_vd;
1047 		vdev_disk_t *vd = v->vdev_tsd;
1048 
1049 		if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
1050 			invalidate_bdev(BDH_BDEV(vd->vd_bdh));
1051 			v->vdev_remove_wanted = B_TRUE;
1052 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
1053 		}
1054 	}
1055 }
1056 
1057 static void
1058 vdev_disk_hold(vdev_t *vd)
1059 {
1060 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1061 
1062 	/* We must have a pathname, and it must be absolute. */
1063 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
1064 		return;
1065 
1066 	/*
1067 	 * Only prefetch path and devid info if the device has
1068 	 * never been opened.
1069 	 */
1070 	if (vd->vdev_tsd != NULL)
1071 		return;
1072 
1073 }
1074 
1075 static void
1076 vdev_disk_rele(vdev_t *vd)
1077 {
1078 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1079 
1080 	/* XXX: Implement me as a vnode rele for the device */
1081 }
1082 
1083 vdev_ops_t vdev_disk_ops = {
1084 	.vdev_op_init = NULL,
1085 	.vdev_op_fini = NULL,
1086 	.vdev_op_open = vdev_disk_open,
1087 	.vdev_op_close = vdev_disk_close,
1088 	.vdev_op_asize = vdev_default_asize,
1089 	.vdev_op_min_asize = vdev_default_min_asize,
1090 	.vdev_op_min_alloc = NULL,
1091 	.vdev_op_io_start = vdev_disk_io_start,
1092 	.vdev_op_io_done = vdev_disk_io_done,
1093 	.vdev_op_state_change = NULL,
1094 	.vdev_op_need_resilver = NULL,
1095 	.vdev_op_hold = vdev_disk_hold,
1096 	.vdev_op_rele = vdev_disk_rele,
1097 	.vdev_op_remap = NULL,
1098 	.vdev_op_xlate = vdev_default_xlate,
1099 	.vdev_op_rebuild_asize = NULL,
1100 	.vdev_op_metaslab_init = NULL,
1101 	.vdev_op_config_generate = NULL,
1102 	.vdev_op_nparity = NULL,
1103 	.vdev_op_ndisks = NULL,
1104 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
1105 	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
1106 	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1107 };
1108 
1109 /*
1110  * The zfs_vdev_scheduler module option has been deprecated. Setting this
1111  * value no longer has any effect.  It has not yet been entirely removed
1112  * to allow the module to be loaded if this option is specified in the
1113  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
1114  */
1115 static int
1116 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1117 {
1118 	int error = param_set_charp(val, kp);
1119 	if (error == 0) {
1120 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1121 		    "is not supported.\n");
1122 	}
1123 
1124 	return (error);
1125 }
1126 
1127 static const char *zfs_vdev_scheduler = "unused";
1128 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1129     param_get_charp, &zfs_vdev_scheduler, 0644);
1130 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1131 
1132 int
1133 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1134 {
1135 	uint_t val;
1136 	int error;
1137 
1138 	error = kstrtouint(buf, 0, &val);
1139 	if (error < 0)
1140 		return (SET_ERROR(error));
1141 
1142 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1143 		return (SET_ERROR(-EINVAL));
1144 
1145 	error = param_set_uint(buf, kp);
1146 	if (error < 0)
1147 		return (SET_ERROR(error));
1148 
1149 	return (0);
1150 }
1151 
1152 int
1153 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1154 {
1155 	uint_t val;
1156 	int error;
1157 
1158 	error = kstrtouint(buf, 0, &val);
1159 	if (error < 0)
1160 		return (SET_ERROR(error));
1161 
1162 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1163 		return (SET_ERROR(-EINVAL));
1164 
1165 	error = param_set_uint(buf, kp);
1166 	if (error < 0)
1167 		return (SET_ERROR(error));
1168 
1169 	return (0);
1170 }
1171 
1172 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1173 	"Timeout before determining that a device is missing");
1174 
1175 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1176 	"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1177