xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c (revision eaff4c4f92dc447cf5f0bbf80449cad7738fdf39)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  * Copyright (c) 2023, 2024, Klara Inc.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_disk.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/vdev_trim.h>
35 #include <sys/abd.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zio.h>
38 #include <linux/blkpg.h>
39 #include <linux/msdos_fs.h>
40 #include <linux/vfs_compat.h>
41 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
42 #include <linux/blk-cgroup.h>
43 #endif
44 
45 /*
46  * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
47  * block_device. Since it carries the block_device inside, its convenient to
48  * just use the handle as a proxy. For pre-6.8, we just emulate this with
49  * a cast, since we don't need any of the other fields inside the handle.
50  */
51 #ifdef HAVE_BDEV_OPEN_BY_PATH
52 typedef struct bdev_handle zfs_bdev_handle_t;
53 #define	BDH_BDEV(bdh)		((bdh)->bdev)
54 #define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
55 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
56 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
57 #else
58 typedef void zfs_bdev_handle_t;
59 #define	BDH_BDEV(bdh)		((struct block_device *)bdh)
60 #define	BDH_IS_ERR(bdh)		(IS_ERR(BDH_BDEV(bdh)))
61 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(BDH_BDEV(bdh)))
62 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
63 #endif
64 
65 typedef struct vdev_disk {
66 	zfs_bdev_handle_t		*vd_bdh;
67 	krwlock_t			vd_lock;
68 } vdev_disk_t;
69 
70 /*
71  * Maximum number of segments to add to a bio (min 4). If this is higher than
72  * the maximum allowed by the device queue or the kernel itself, it will be
73  * clamped. Setting it to zero will cause the kernel's ideal size to be used.
74  */
75 uint_t zfs_vdev_disk_max_segs = 0;
76 
77 /*
78  * Unique identifier for the exclusive vdev holder.
79  */
80 static void *zfs_vdev_holder = VDEV_HOLDER;
81 
82 /*
83  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
84  * device is missing. The missing path may be transient since the links
85  * can be briefly removed and recreated in response to udev events.
86  */
87 static uint_t zfs_vdev_open_timeout_ms = 1000;
88 
89 /*
90  * Size of the "reserved" partition, in blocks.
91  */
92 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
93 
94 /*
95  * BIO request failfast mask.
96  */
97 
98 static unsigned int zfs_vdev_failfast_mask = 1;
99 
100 /*
101  * Convert SPA mode flags into bdev open mode flags.
102  */
103 #ifdef HAVE_BLK_MODE_T
104 typedef blk_mode_t vdev_bdev_mode_t;
105 #define	VDEV_BDEV_MODE_READ	BLK_OPEN_READ
106 #define	VDEV_BDEV_MODE_WRITE	BLK_OPEN_WRITE
107 #define	VDEV_BDEV_MODE_EXCL	BLK_OPEN_EXCL
108 #define	VDEV_BDEV_MODE_MASK	(BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
109 #else
110 typedef fmode_t vdev_bdev_mode_t;
111 #define	VDEV_BDEV_MODE_READ	FMODE_READ
112 #define	VDEV_BDEV_MODE_WRITE	FMODE_WRITE
113 #define	VDEV_BDEV_MODE_EXCL	FMODE_EXCL
114 #define	VDEV_BDEV_MODE_MASK	(FMODE_READ|FMODE_WRITE|FMODE_EXCL)
115 #endif
116 
117 static vdev_bdev_mode_t
118 vdev_bdev_mode(spa_mode_t smode)
119 {
120 	ASSERT3U(smode, !=, SPA_MODE_UNINIT);
121 	ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
122 
123 	vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
124 
125 	if (smode & SPA_MODE_READ)
126 		bmode |= VDEV_BDEV_MODE_READ;
127 
128 	if (smode & SPA_MODE_WRITE)
129 		bmode |= VDEV_BDEV_MODE_WRITE;
130 
131 	ASSERT(bmode & VDEV_BDEV_MODE_MASK);
132 	ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
133 
134 	return (bmode);
135 }
136 
137 /*
138  * Returns the usable capacity (in bytes) for the partition or disk.
139  */
140 static uint64_t
141 bdev_capacity(struct block_device *bdev)
142 {
143 	return (i_size_read(bdev->bd_inode));
144 }
145 
146 #if !defined(HAVE_BDEV_WHOLE)
147 static inline struct block_device *
148 bdev_whole(struct block_device *bdev)
149 {
150 	return (bdev->bd_contains);
151 }
152 #endif
153 
154 #if defined(HAVE_BDEVNAME)
155 #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
156 #else
157 static inline void
158 vdev_bdevname(struct block_device *bdev, char *name)
159 {
160 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
161 }
162 #endif
163 
164 /*
165  * Returns the maximum expansion capacity of the block device (in bytes).
166  *
167  * It is possible to expand a vdev when it has been created as a wholedisk
168  * and the containing block device has increased in capacity.  Or when the
169  * partition containing the pool has been manually increased in size.
170  *
171  * This function is only responsible for calculating the potential expansion
172  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
173  * responsible for verifying the expected partition layout in the wholedisk
174  * case, and updating the partition table if appropriate.  Once the partition
175  * size has been increased the additional capacity will be visible using
176  * bdev_capacity().
177  *
178  * The returned maximum expansion capacity is always expected to be larger, or
179  * at the very least equal, to its usable capacity to prevent overestimating
180  * the pool expandsize.
181  */
182 static uint64_t
183 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
184 {
185 	uint64_t psize;
186 	int64_t available;
187 
188 	if (wholedisk && bdev != bdev_whole(bdev)) {
189 		/*
190 		 * When reporting maximum expansion capacity for a wholedisk
191 		 * deduct any capacity which is expected to be lost due to
192 		 * alignment restrictions.  Over reporting this value isn't
193 		 * harmful and would only result in slightly less capacity
194 		 * than expected post expansion.
195 		 * The estimated available space may be slightly smaller than
196 		 * bdev_capacity() for devices where the number of sectors is
197 		 * not a multiple of the alignment size and the partition layout
198 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
199 		 * "reserved" EFI partition: in such cases return the device
200 		 * usable capacity.
201 		 */
202 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
203 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
204 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
205 		psize = MAX(available, bdev_capacity(bdev));
206 	} else {
207 		psize = bdev_capacity(bdev);
208 	}
209 
210 	return (psize);
211 }
212 
213 static void
214 vdev_disk_error(zio_t *zio)
215 {
216 	/*
217 	 * This function can be called in interrupt context, for instance while
218 	 * handling IRQs coming from a misbehaving disk device; use printk()
219 	 * which is safe from any context.
220 	 */
221 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
222 	    "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
223 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
224 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
225 	    zio->io_flags);
226 }
227 
228 static void
229 vdev_disk_kobj_evt_post(vdev_t *v)
230 {
231 	vdev_disk_t *vd = v->vdev_tsd;
232 	if (vd && vd->vd_bdh) {
233 		spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
234 	} else {
235 		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
236 		    v->vdev_path);
237 	}
238 }
239 
240 static zfs_bdev_handle_t *
241 vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
242 {
243 	vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
244 
245 #if defined(HAVE_BDEV_OPEN_BY_PATH)
246 	return (bdev_open_by_path(path, bmode, holder, NULL));
247 #elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
248 	return (blkdev_get_by_path(path, bmode, holder, NULL));
249 #else
250 	return (blkdev_get_by_path(path, bmode, holder));
251 #endif
252 }
253 
254 static void
255 vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
256 {
257 #if defined(HAVE_BDEV_RELEASE)
258 	return (bdev_release(bdh));
259 #elif defined(HAVE_BLKDEV_PUT_HOLDER)
260 	return (blkdev_put(BDH_BDEV(bdh), holder));
261 #else
262 	return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
263 #endif
264 }
265 
266 static int
267 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
268     uint64_t *logical_ashift, uint64_t *physical_ashift)
269 {
270 	zfs_bdev_handle_t *bdh;
271 	spa_mode_t smode = spa_mode(v->vdev_spa);
272 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
273 	vdev_disk_t *vd;
274 
275 	/* Must have a pathname and it must be absolute. */
276 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
277 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
278 		vdev_dbgmsg(v, "invalid vdev_path");
279 		return (SET_ERROR(EINVAL));
280 	}
281 
282 	/*
283 	 * Reopen the device if it is currently open.  When expanding a
284 	 * partition force re-scanning the partition table if userland
285 	 * did not take care of this already. We need to do this while closed
286 	 * in order to get an accurate updated block device size.  Then
287 	 * since udev may need to recreate the device links increase the
288 	 * open retry timeout before reporting the device as unavailable.
289 	 */
290 	vd = v->vdev_tsd;
291 	if (vd) {
292 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
293 		boolean_t reread_part = B_FALSE;
294 
295 		rw_enter(&vd->vd_lock, RW_WRITER);
296 		bdh = vd->vd_bdh;
297 		vd->vd_bdh = NULL;
298 
299 		if (bdh) {
300 			struct block_device *bdev = BDH_BDEV(bdh);
301 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
302 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
303 				/*
304 				 * If userland has BLKPG_RESIZE_PARTITION,
305 				 * then it should have updated the partition
306 				 * table already. We can detect this by
307 				 * comparing our current physical size
308 				 * with that of the device. If they are
309 				 * the same, then we must not have
310 				 * BLKPG_RESIZE_PARTITION or it failed to
311 				 * update the partition table online. We
312 				 * fallback to rescanning the partition
313 				 * table from the kernel below. However,
314 				 * if the capacity already reflects the
315 				 * updated partition, then we skip
316 				 * rescanning the partition table here.
317 				 */
318 				if (v->vdev_psize == bdev_capacity(bdev))
319 					reread_part = B_TRUE;
320 			}
321 
322 			vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
323 		}
324 
325 		if (reread_part) {
326 			bdh = vdev_blkdev_get_by_path(disk_name, smode,
327 			    zfs_vdev_holder);
328 			if (!BDH_IS_ERR(bdh)) {
329 				int error =
330 				    vdev_bdev_reread_part(BDH_BDEV(bdh));
331 				vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
332 				if (error == 0) {
333 					timeout = MSEC2NSEC(
334 					    zfs_vdev_open_timeout_ms * 2);
335 				}
336 			}
337 		}
338 	} else {
339 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
340 
341 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
342 		rw_enter(&vd->vd_lock, RW_WRITER);
343 	}
344 
345 	/*
346 	 * Devices are always opened by the path provided at configuration
347 	 * time.  This means that if the provided path is a udev by-id path
348 	 * then drives may be re-cabled without an issue.  If the provided
349 	 * path is a udev by-path path, then the physical location information
350 	 * will be preserved.  This can be critical for more complicated
351 	 * configurations where drives are located in specific physical
352 	 * locations to maximize the systems tolerance to component failure.
353 	 *
354 	 * Alternatively, you can provide your own udev rule to flexibly map
355 	 * the drives as you see fit.  It is not advised that you use the
356 	 * /dev/[hd]d devices which may be reordered due to probing order.
357 	 * Devices in the wrong locations will be detected by the higher
358 	 * level vdev validation.
359 	 *
360 	 * The specified paths may be briefly removed and recreated in
361 	 * response to udev events.  This should be exceptionally unlikely
362 	 * because the zpool command makes every effort to verify these paths
363 	 * have already settled prior to reaching this point.  Therefore,
364 	 * a ENOENT failure at this point is highly likely to be transient
365 	 * and it is reasonable to sleep and retry before giving up.  In
366 	 * practice delays have been observed to be on the order of 100ms.
367 	 *
368 	 * When ERESTARTSYS is returned it indicates the block device is
369 	 * a zvol which could not be opened due to the deadlock detection
370 	 * logic in zvol_open().  Extend the timeout and retry the open
371 	 * subsequent attempts are expected to eventually succeed.
372 	 */
373 	hrtime_t start = gethrtime();
374 	bdh = BDH_ERR_PTR(-ENXIO);
375 	while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
376 		bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
377 		    zfs_vdev_holder);
378 		if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
379 			/*
380 			 * There is no point of waiting since device is removed
381 			 * explicitly
382 			 */
383 			if (v->vdev_removed)
384 				break;
385 
386 			schedule_timeout(MSEC_TO_TICK(10));
387 		} else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
388 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
389 			continue;
390 		} else if (BDH_IS_ERR(bdh)) {
391 			break;
392 		}
393 	}
394 
395 	if (BDH_IS_ERR(bdh)) {
396 		int error = -BDH_PTR_ERR(bdh);
397 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
398 		    (u_longlong_t)(gethrtime() - start),
399 		    (u_longlong_t)timeout);
400 		vd->vd_bdh = NULL;
401 		v->vdev_tsd = vd;
402 		rw_exit(&vd->vd_lock);
403 		return (SET_ERROR(error));
404 	} else {
405 		vd->vd_bdh = bdh;
406 		v->vdev_tsd = vd;
407 		rw_exit(&vd->vd_lock);
408 	}
409 
410 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
411 
412 	/*  Determine the physical block size */
413 	int physical_block_size = bdev_physical_block_size(bdev);
414 
415 	/*  Determine the logical block size */
416 	int logical_block_size = bdev_logical_block_size(bdev);
417 
418 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
419 	v->vdev_nowritecache = B_FALSE;
420 
421 	/* Set when device reports it supports TRIM. */
422 	v->vdev_has_trim = bdev_discard_supported(bdev);
423 
424 	/* Set when device reports it supports secure TRIM. */
425 	v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
426 
427 	/* Inform the ZIO pipeline that we are non-rotational */
428 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
429 
430 	/* Physical volume size in bytes for the partition */
431 	*psize = bdev_capacity(bdev);
432 
433 	/* Physical volume size in bytes including possible expansion space */
434 	*max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
435 
436 	/* Based on the minimum sector size set the block size */
437 	*physical_ashift = highbit64(MAX(physical_block_size,
438 	    SPA_MINBLOCKSIZE)) - 1;
439 
440 	*logical_ashift = highbit64(MAX(logical_block_size,
441 	    SPA_MINBLOCKSIZE)) - 1;
442 
443 	return (0);
444 }
445 
446 static void
447 vdev_disk_close(vdev_t *v)
448 {
449 	vdev_disk_t *vd = v->vdev_tsd;
450 
451 	if (v->vdev_reopening || vd == NULL)
452 		return;
453 
454 	if (vd->vd_bdh != NULL)
455 		vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
456 		    zfs_vdev_holder);
457 
458 	rw_destroy(&vd->vd_lock);
459 	kmem_free(vd, sizeof (vdev_disk_t));
460 	v->vdev_tsd = NULL;
461 }
462 
463 static inline void
464 vdev_submit_bio_impl(struct bio *bio)
465 {
466 #ifdef HAVE_1ARG_SUBMIT_BIO
467 	(void) submit_bio(bio);
468 #else
469 	(void) submit_bio(bio_data_dir(bio), bio);
470 #endif
471 }
472 
473 /*
474  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
475  * replace it with preempt_schedule under the following condition:
476  */
477 #if defined(CONFIG_ARM64) && \
478     defined(CONFIG_PREEMPTION) && \
479     defined(CONFIG_BLK_CGROUP)
480 #define	preempt_schedule_notrace(x) preempt_schedule(x)
481 #endif
482 
483 /*
484  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
485  * as an argument removing the need to set it with bio_set_dev().  This
486  * removes the need for all of the following compatibility code.
487  */
488 #if !defined(HAVE_BIO_ALLOC_4ARG)
489 
490 #ifdef HAVE_BIO_SET_DEV
491 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
492 /*
493  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
494  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
495  * As a side effect the function was converted to GPL-only.  Define our
496  * own version when needed which uses rcu_read_lock_sched().
497  *
498  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
499  * part, moving blkg_tryget into the private one. Define our own version.
500  */
501 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
502 static inline bool
503 vdev_blkg_tryget(struct blkcg_gq *blkg)
504 {
505 	struct percpu_ref *ref = &blkg->refcnt;
506 	unsigned long __percpu *count;
507 	bool rc;
508 
509 	rcu_read_lock_sched();
510 
511 	if (__ref_is_percpu(ref, &count)) {
512 		this_cpu_inc(*count);
513 		rc = true;
514 	} else {
515 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
516 		rc = atomic_long_inc_not_zero(&ref->data->count);
517 #else
518 		rc = atomic_long_inc_not_zero(&ref->count);
519 #endif
520 	}
521 
522 	rcu_read_unlock_sched();
523 
524 	return (rc);
525 }
526 #else
527 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
528 #endif
529 #ifdef HAVE_BIO_SET_DEV_MACRO
530 /*
531  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
532  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
533  * the entire macro.  Provide a minimal version which always assigns the
534  * request queue's root_blkg to the bio.
535  */
536 static inline void
537 vdev_bio_associate_blkg(struct bio *bio)
538 {
539 #if defined(HAVE_BIO_BDEV_DISK)
540 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
541 #else
542 	struct request_queue *q = bio->bi_disk->queue;
543 #endif
544 
545 	ASSERT3P(q, !=, NULL);
546 	ASSERT3P(bio->bi_blkg, ==, NULL);
547 
548 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
549 		bio->bi_blkg = q->root_blkg;
550 }
551 
552 #define	bio_associate_blkg vdev_bio_associate_blkg
553 #else
554 static inline void
555 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
556 {
557 #if defined(HAVE_BIO_BDEV_DISK)
558 	struct request_queue *q = bdev->bd_disk->queue;
559 #else
560 	struct request_queue *q = bio->bi_disk->queue;
561 #endif
562 	bio_clear_flag(bio, BIO_REMAPPED);
563 	if (bio->bi_bdev != bdev)
564 		bio_clear_flag(bio, BIO_THROTTLED);
565 	bio->bi_bdev = bdev;
566 
567 	ASSERT3P(q, !=, NULL);
568 	ASSERT3P(bio->bi_blkg, ==, NULL);
569 
570 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
571 		bio->bi_blkg = q->root_blkg;
572 }
573 #define	bio_set_dev		vdev_bio_set_dev
574 #endif
575 #endif
576 #else
577 /*
578  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
579  */
580 static inline void
581 bio_set_dev(struct bio *bio, struct block_device *bdev)
582 {
583 	bio->bi_bdev = bdev;
584 }
585 #endif /* HAVE_BIO_SET_DEV */
586 #endif /* !HAVE_BIO_ALLOC_4ARG */
587 
588 static inline void
589 vdev_submit_bio(struct bio *bio)
590 {
591 	struct bio_list *bio_list = current->bio_list;
592 	current->bio_list = NULL;
593 	vdev_submit_bio_impl(bio);
594 	current->bio_list = bio_list;
595 }
596 
597 static inline struct bio *
598 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
599     unsigned short nr_vecs)
600 {
601 	struct bio *bio;
602 
603 #ifdef HAVE_BIO_ALLOC_4ARG
604 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
605 #else
606 	bio = bio_alloc(gfp_mask, nr_vecs);
607 	if (likely(bio != NULL))
608 		bio_set_dev(bio, bdev);
609 #endif
610 
611 	return (bio);
612 }
613 
614 static inline uint_t
615 vdev_bio_max_segs(struct block_device *bdev)
616 {
617 	/*
618 	 * Smallest of the device max segs and the tuneable max segs. Minimum
619 	 * 4, so there's room to finish split pages if they come up.
620 	 */
621 	const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
622 	const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
623 	    MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
624 	const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
625 
626 #ifdef HAVE_BIO_MAX_SEGS
627 	return (bio_max_segs(max_segs));
628 #else
629 	return (MIN(max_segs, BIO_MAX_PAGES));
630 #endif
631 }
632 
633 static inline uint_t
634 vdev_bio_max_bytes(struct block_device *bdev)
635 {
636 	return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
637 }
638 
639 
640 /*
641  * Virtual block IO object (VBIO)
642  *
643  * Linux block IO (BIO) objects have a limit on how many data segments (pages)
644  * they can hold. Depending on how they're allocated and structured, a large
645  * ZIO can require more than one BIO to be submitted to the kernel, which then
646  * all have to complete before we can return the completed ZIO back to ZFS.
647  *
648  * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
649  * translate a ZIO down into the kernel block layer and back again.
650  *
651  * Note that these are only used for data ZIOs (read/write). Meta-operations
652  * (flush/trim) don't need multiple BIOs and so can just make the call
653  * directly.
654  */
655 typedef struct {
656 	zio_t		*vbio_zio;	/* parent zio */
657 
658 	struct block_device *vbio_bdev;	/* blockdev to submit bios to */
659 
660 	abd_t		*vbio_abd;	/* abd carrying borrowed linear buf */
661 
662 	uint_t		vbio_max_segs;	/* max segs per bio */
663 
664 	uint_t		vbio_max_bytes;	/* max bytes per bio */
665 	uint_t		vbio_lbs_mask;	/* logical block size mask */
666 
667 	uint64_t	vbio_offset;	/* start offset of next bio */
668 
669 	struct bio	*vbio_bio;	/* pointer to the current bio */
670 	int		vbio_flags;	/* bio flags */
671 } vbio_t;
672 
673 static vbio_t *
674 vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
675 {
676 	vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
677 
678 	vbio->vbio_zio = zio;
679 	vbio->vbio_bdev = bdev;
680 	vbio->vbio_abd = NULL;
681 	vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
682 	vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
683 	vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
684 	vbio->vbio_offset = zio->io_offset;
685 	vbio->vbio_bio = NULL;
686 	vbio->vbio_flags = flags;
687 
688 	return (vbio);
689 }
690 
691 BIO_END_IO_PROTO(vbio_completion, bio, error);
692 
693 static int
694 vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
695 {
696 	struct bio *bio = vbio->vbio_bio;
697 	uint_t ssize;
698 
699 	while (size > 0) {
700 		if (bio == NULL) {
701 			/* New BIO, allocate and set up */
702 			bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
703 			    vbio->vbio_max_segs);
704 			VERIFY(bio);
705 
706 			BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
707 			bio_set_op_attrs(bio,
708 			    vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
709 			    WRITE : READ, vbio->vbio_flags);
710 
711 			if (vbio->vbio_bio) {
712 				bio_chain(vbio->vbio_bio, bio);
713 				vdev_submit_bio(vbio->vbio_bio);
714 			}
715 			vbio->vbio_bio = bio;
716 		}
717 
718 		/*
719 		 * Only load as much of the current page data as will fit in
720 		 * the space left in the BIO, respecting lbs alignment. Older
721 		 * kernels will error if we try to overfill the BIO, while
722 		 * newer ones will accept it and split the BIO. This ensures
723 		 * everything works on older kernels, and avoids an additional
724 		 * overhead on the new.
725 		 */
726 		ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
727 		    vbio->vbio_lbs_mask);
728 		if (ssize > 0 &&
729 		    bio_add_page(bio, page, ssize, offset) == ssize) {
730 			/* Accepted, adjust and load any remaining. */
731 			size -= ssize;
732 			offset += ssize;
733 			continue;
734 		}
735 
736 		/* No room, set up for a new BIO and loop */
737 		vbio->vbio_offset += BIO_BI_SIZE(bio);
738 
739 		/* Signal new BIO allocation wanted */
740 		bio = NULL;
741 	}
742 
743 	return (0);
744 }
745 
746 /* Iterator callback to submit ABD pages to the vbio. */
747 static int
748 vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
749 {
750 	vbio_t *vbio = priv;
751 	return (vbio_add_page(vbio, page, len, off));
752 }
753 
754 /* Create some BIOs, fill them with data and submit them */
755 static void
756 vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
757 {
758 	ASSERT(vbio->vbio_bdev);
759 
760 	/*
761 	 * We plug so we can submit the BIOs as we go and only unplug them when
762 	 * they are fully created and submitted. This is important; if we don't
763 	 * plug, then the kernel may start executing earlier BIOs while we're
764 	 * still creating and executing later ones, and if the device goes
765 	 * away while that's happening, older kernels can get confused and
766 	 * trample memory.
767 	 */
768 	struct blk_plug plug;
769 	blk_start_plug(&plug);
770 
771 	(void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
772 	ASSERT(vbio->vbio_bio);
773 
774 	vbio->vbio_bio->bi_end_io = vbio_completion;
775 	vbio->vbio_bio->bi_private = vbio;
776 
777 	vdev_submit_bio(vbio->vbio_bio);
778 
779 	blk_finish_plug(&plug);
780 
781 	vbio->vbio_bio = NULL;
782 	vbio->vbio_bdev = NULL;
783 }
784 
785 /* IO completion callback */
786 BIO_END_IO_PROTO(vbio_completion, bio, error)
787 {
788 	vbio_t *vbio = bio->bi_private;
789 	zio_t *zio = vbio->vbio_zio;
790 
791 	ASSERT(zio);
792 
793 	/* Capture and log any errors */
794 #ifdef HAVE_1ARG_BIO_END_IO_T
795 	zio->io_error = BIO_END_IO_ERROR(bio);
796 #else
797 	zio->io_error = 0;
798 	if (error)
799 		zio->io_error = -(error);
800 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
801 		zio->io_error = EIO;
802 #endif
803 	ASSERT3U(zio->io_error, >=, 0);
804 
805 	if (zio->io_error)
806 		vdev_disk_error(zio);
807 
808 	/* Return the BIO to the kernel */
809 	bio_put(bio);
810 
811 	/*
812 	 * If we copied the ABD before issuing it, clean up and return the copy
813 	 * to the ADB, with changes if appropriate.
814 	 */
815 	if (vbio->vbio_abd != NULL) {
816 		void *buf = abd_to_buf(vbio->vbio_abd);
817 		abd_free(vbio->vbio_abd);
818 		vbio->vbio_abd = NULL;
819 
820 		if (zio->io_type == ZIO_TYPE_READ)
821 			abd_return_buf_copy(zio->io_abd, buf, zio->io_size);
822 		else
823 			abd_return_buf(zio->io_abd, buf, zio->io_size);
824 	}
825 
826 	/* Final cleanup */
827 	kmem_free(vbio, sizeof (vbio_t));
828 
829 	/* All done, submit for processing */
830 	zio_delay_interrupt(zio);
831 }
832 
833 /*
834  * Iterator callback to count ABD pages and check their size & alignment.
835  *
836  * On Linux, each BIO segment can take a page pointer, and an offset+length of
837  * the data within that page. A page can be arbitrarily large ("compound"
838  * pages) but we still have to ensure the data portion is correctly sized and
839  * aligned to the logical block size, to ensure that if the kernel wants to
840  * split the BIO, the two halves will still be properly aligned.
841  */
842 typedef struct {
843 	uint_t  bmask;
844 	uint_t  npages;
845 	uint_t  end;
846 } vdev_disk_check_pages_t;
847 
848 static int
849 vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv)
850 {
851 	vdev_disk_check_pages_t *s = priv;
852 
853 	/*
854 	 * If we didn't finish on a block size boundary last time, then there
855 	 * would be a gap if we tried to use this ABD as-is, so abort.
856 	 */
857 	if (s->end != 0)
858 		return (1);
859 
860 	/*
861 	 * Note if we're taking less than a full block, so we can check it
862 	 * above on the next call.
863 	 */
864 	s->end = len & s->bmask;
865 
866 	/* All blocks after the first must start on a block size boundary. */
867 	if (s->npages != 0 && (off & s->bmask) != 0)
868 		return (1);
869 
870 	s->npages++;
871 	return (0);
872 }
873 
874 /*
875  * Check if we can submit the pages in this ABD to the kernel as-is. Returns
876  * the number of pages, or 0 if it can't be submitted like this.
877  */
878 static boolean_t
879 vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev)
880 {
881 	vdev_disk_check_pages_t s = {
882 	    .bmask = bdev_logical_block_size(bdev)-1,
883 	    .npages = 0,
884 	    .end = 0,
885 	};
886 
887 	if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s))
888 		return (B_FALSE);
889 
890 	return (B_TRUE);
891 }
892 
893 static int
894 vdev_disk_io_rw(zio_t *zio)
895 {
896 	vdev_t *v = zio->io_vd;
897 	vdev_disk_t *vd = v->vdev_tsd;
898 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
899 	int flags = 0;
900 
901 	/*
902 	 * Accessing outside the block device is never allowed.
903 	 */
904 	if (zio->io_offset + zio->io_size > bdev->bd_inode->i_size) {
905 		vdev_dbgmsg(zio->io_vd,
906 		    "Illegal access %llu size %llu, device size %llu",
907 		    (u_longlong_t)zio->io_offset,
908 		    (u_longlong_t)zio->io_size,
909 		    (u_longlong_t)i_size_read(bdev->bd_inode));
910 		return (SET_ERROR(EIO));
911 	}
912 
913 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
914 	    v->vdev_failfast == B_TRUE) {
915 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
916 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
917 	}
918 
919 	/*
920 	 * Check alignment of the incoming ABD. If any part of it would require
921 	 * submitting a page that is not aligned to the logical block size,
922 	 * then we take a copy into a linear buffer and submit that instead.
923 	 * This should be impossible on a 512b LBS, and fairly rare on 4K,
924 	 * usually requiring abnormally-small data blocks (eg gang blocks)
925 	 * mixed into the same ABD as larger ones (eg aggregated).
926 	 */
927 	abd_t *abd = zio->io_abd;
928 	if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) {
929 		void *buf;
930 		if (zio->io_type == ZIO_TYPE_READ)
931 			buf = abd_borrow_buf(zio->io_abd, zio->io_size);
932 		else
933 			buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size);
934 
935 		/*
936 		 * Wrap the copy in an abd_t, so we can use the same iterators
937 		 * to count and fill the vbio later.
938 		 */
939 		abd = abd_get_from_buf(buf, zio->io_size);
940 
941 		/*
942 		 * False here would mean the borrowed copy has an invalid
943 		 * alignment too, which would mean we've somehow been passed a
944 		 * linear ABD with an interior page that has a non-zero offset
945 		 * or a size not a multiple of PAGE_SIZE. This is not possible.
946 		 * It would mean either zio_buf_alloc() or its underlying
947 		 * allocators have done something extremely strange, or our
948 		 * math in vdev_disk_check_pages() is wrong. In either case,
949 		 * something in seriously wrong and its not safe to continue.
950 		 */
951 		VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev));
952 	}
953 
954 	/* Allocate vbio, with a pointer to the borrowed ABD if necessary */
955 	vbio_t *vbio = vbio_alloc(zio, bdev, flags);
956 	if (abd != zio->io_abd)
957 		vbio->vbio_abd = abd;
958 
959 	/* Fill it with data pages and submit it to the kernel */
960 	vbio_submit(vbio, abd, zio->io_size);
961 	return (0);
962 }
963 
964 /* ========== */
965 
966 /*
967  * This is the classic, battle-tested BIO submission code. Until we're totally
968  * sure that the new code is safe and correct in all cases, this will remain
969  * available and can be enabled by setting zfs_vdev_disk_classic=1 at module
970  * load time.
971  *
972  * These functions have been renamed to vdev_classic_* to make it clear what
973  * they belong to, but their implementations are unchanged.
974  */
975 
976 /*
977  * Virtual device vector for disks.
978  */
979 typedef struct dio_request {
980 	zio_t			*dr_zio;	/* Parent ZIO */
981 	atomic_t		dr_ref;		/* References */
982 	int			dr_error;	/* Bio error */
983 	int			dr_bio_count;	/* Count of bio's */
984 	struct bio		*dr_bio[];	/* Attached bio's */
985 } dio_request_t;
986 
987 static dio_request_t *
988 vdev_classic_dio_alloc(int bio_count)
989 {
990 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
991 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
992 	atomic_set(&dr->dr_ref, 0);
993 	dr->dr_bio_count = bio_count;
994 	dr->dr_error = 0;
995 
996 	for (int i = 0; i < dr->dr_bio_count; i++)
997 		dr->dr_bio[i] = NULL;
998 
999 	return (dr);
1000 }
1001 
1002 static void
1003 vdev_classic_dio_free(dio_request_t *dr)
1004 {
1005 	int i;
1006 
1007 	for (i = 0; i < dr->dr_bio_count; i++)
1008 		if (dr->dr_bio[i])
1009 			bio_put(dr->dr_bio[i]);
1010 
1011 	kmem_free(dr, sizeof (dio_request_t) +
1012 	    sizeof (struct bio *) * dr->dr_bio_count);
1013 }
1014 
1015 static void
1016 vdev_classic_dio_get(dio_request_t *dr)
1017 {
1018 	atomic_inc(&dr->dr_ref);
1019 }
1020 
1021 static void
1022 vdev_classic_dio_put(dio_request_t *dr)
1023 {
1024 	int rc = atomic_dec_return(&dr->dr_ref);
1025 
1026 	/*
1027 	 * Free the dio_request when the last reference is dropped and
1028 	 * ensure zio_interpret is called only once with the correct zio
1029 	 */
1030 	if (rc == 0) {
1031 		zio_t *zio = dr->dr_zio;
1032 		int error = dr->dr_error;
1033 
1034 		vdev_classic_dio_free(dr);
1035 
1036 		if (zio) {
1037 			zio->io_error = error;
1038 			ASSERT3S(zio->io_error, >=, 0);
1039 			if (zio->io_error)
1040 				vdev_disk_error(zio);
1041 
1042 			zio_delay_interrupt(zio);
1043 		}
1044 	}
1045 }
1046 
1047 BIO_END_IO_PROTO(vdev_classic_physio_completion, bio, error)
1048 {
1049 	dio_request_t *dr = bio->bi_private;
1050 
1051 	if (dr->dr_error == 0) {
1052 #ifdef HAVE_1ARG_BIO_END_IO_T
1053 		dr->dr_error = BIO_END_IO_ERROR(bio);
1054 #else
1055 		if (error)
1056 			dr->dr_error = -(error);
1057 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1058 			dr->dr_error = EIO;
1059 #endif
1060 	}
1061 
1062 	/* Drop reference acquired by vdev_classic_physio */
1063 	vdev_classic_dio_put(dr);
1064 }
1065 
1066 static inline unsigned int
1067 vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
1068 {
1069 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
1070 	    bio_size, abd_offset);
1071 
1072 #ifdef HAVE_BIO_MAX_SEGS
1073 	return (bio_max_segs(nr_segs));
1074 #else
1075 	return (MIN(nr_segs, BIO_MAX_PAGES));
1076 #endif
1077 }
1078 
1079 static int
1080 vdev_classic_physio(zio_t *zio)
1081 {
1082 	vdev_t *v = zio->io_vd;
1083 	vdev_disk_t *vd = v->vdev_tsd;
1084 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
1085 	size_t io_size = zio->io_size;
1086 	uint64_t io_offset = zio->io_offset;
1087 	int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE;
1088 	int flags = 0;
1089 
1090 	dio_request_t *dr;
1091 	uint64_t abd_offset;
1092 	uint64_t bio_offset;
1093 	int bio_size;
1094 	int bio_count = 16;
1095 	int error = 0;
1096 	struct blk_plug plug;
1097 	unsigned short nr_vecs;
1098 
1099 	/*
1100 	 * Accessing outside the block device is never allowed.
1101 	 */
1102 	if (io_offset + io_size > bdev->bd_inode->i_size) {
1103 		vdev_dbgmsg(zio->io_vd,
1104 		    "Illegal access %llu size %llu, device size %llu",
1105 		    (u_longlong_t)io_offset,
1106 		    (u_longlong_t)io_size,
1107 		    (u_longlong_t)i_size_read(bdev->bd_inode));
1108 		return (SET_ERROR(EIO));
1109 	}
1110 
1111 retry:
1112 	dr = vdev_classic_dio_alloc(bio_count);
1113 
1114 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
1115 	    zio->io_vd->vdev_failfast == B_TRUE) {
1116 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
1117 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
1118 	}
1119 
1120 	dr->dr_zio = zio;
1121 
1122 	/*
1123 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
1124 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
1125 	 * can cover at least 128KB and at most 1MB.  When the required number
1126 	 * of iovec's exceeds this, we are forced to break the IO in multiple
1127 	 * bio's and wait for them all to complete.  This is likely if the
1128 	 * recordsize property is increased beyond 1MB.  The default
1129 	 * bio_count=16 should typically accommodate the maximum-size zio of
1130 	 * 16MB.
1131 	 */
1132 
1133 	abd_offset = 0;
1134 	bio_offset = io_offset;
1135 	bio_size = io_size;
1136 	for (int i = 0; i <= dr->dr_bio_count; i++) {
1137 
1138 		/* Finished constructing bio's for given buffer */
1139 		if (bio_size <= 0)
1140 			break;
1141 
1142 		/*
1143 		 * If additional bio's are required, we have to retry, but
1144 		 * this should be rare - see the comment above.
1145 		 */
1146 		if (dr->dr_bio_count == i) {
1147 			vdev_classic_dio_free(dr);
1148 			bio_count *= 2;
1149 			goto retry;
1150 		}
1151 
1152 		nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset);
1153 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
1154 		if (unlikely(dr->dr_bio[i] == NULL)) {
1155 			vdev_classic_dio_free(dr);
1156 			return (SET_ERROR(ENOMEM));
1157 		}
1158 
1159 		/* Matching put called by vdev_classic_physio_completion */
1160 		vdev_classic_dio_get(dr);
1161 
1162 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
1163 		dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion;
1164 		dr->dr_bio[i]->bi_private = dr;
1165 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
1166 
1167 		/* Remaining size is returned to become the new size */
1168 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
1169 		    bio_size, abd_offset);
1170 
1171 		/* Advance in buffer and construct another bio if needed */
1172 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1173 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1174 	}
1175 
1176 	/* Extra reference to protect dio_request during vdev_submit_bio */
1177 	vdev_classic_dio_get(dr);
1178 
1179 	if (dr->dr_bio_count > 1)
1180 		blk_start_plug(&plug);
1181 
1182 	/* Submit all bio's associated with this dio */
1183 	for (int i = 0; i < dr->dr_bio_count; i++) {
1184 		if (dr->dr_bio[i])
1185 			vdev_submit_bio(dr->dr_bio[i]);
1186 	}
1187 
1188 	if (dr->dr_bio_count > 1)
1189 		blk_finish_plug(&plug);
1190 
1191 	vdev_classic_dio_put(dr);
1192 
1193 	return (error);
1194 }
1195 
1196 /* ========== */
1197 
1198 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
1199 {
1200 	zio_t *zio = bio->bi_private;
1201 #ifdef HAVE_1ARG_BIO_END_IO_T
1202 	zio->io_error = BIO_END_IO_ERROR(bio);
1203 #else
1204 	zio->io_error = -error;
1205 #endif
1206 
1207 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
1208 		zio->io_vd->vdev_nowritecache = B_TRUE;
1209 
1210 	bio_put(bio);
1211 	ASSERT3S(zio->io_error, >=, 0);
1212 	if (zio->io_error)
1213 		vdev_disk_error(zio);
1214 	zio_interrupt(zio);
1215 }
1216 
1217 static int
1218 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
1219 {
1220 	struct request_queue *q;
1221 	struct bio *bio;
1222 
1223 	q = bdev_get_queue(bdev);
1224 	if (!q)
1225 		return (SET_ERROR(ENXIO));
1226 
1227 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
1228 	if (unlikely(bio == NULL))
1229 		return (SET_ERROR(ENOMEM));
1230 
1231 	bio->bi_end_io = vdev_disk_io_flush_completion;
1232 	bio->bi_private = zio;
1233 	bio_set_flush(bio);
1234 	vdev_submit_bio(bio);
1235 	invalidate_bdev(bdev);
1236 
1237 	return (0);
1238 }
1239 
1240 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE) || \
1241 	defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC)
1242 BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error)
1243 {
1244 	zio_t *zio = bio->bi_private;
1245 #ifdef HAVE_1ARG_BIO_END_IO_T
1246 	zio->io_error = BIO_END_IO_ERROR(bio);
1247 #else
1248 	zio->io_error = -error;
1249 #endif
1250 	bio_put(bio);
1251 	if (zio->io_error)
1252 		vdev_disk_error(zio);
1253 	zio_interrupt(zio);
1254 }
1255 
1256 static int
1257 vdev_issue_discard_trim(zio_t *zio, unsigned long flags)
1258 {
1259 	int ret;
1260 	struct bio *bio = NULL;
1261 
1262 #if defined(BLKDEV_DISCARD_SECURE)
1263 	ret = - __blkdev_issue_discard(
1264 	    BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
1265 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, flags, &bio);
1266 #else
1267 	(void) flags;
1268 	ret = - __blkdev_issue_discard(
1269 	    BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
1270 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, &bio);
1271 #endif
1272 	if (!ret && bio) {
1273 		bio->bi_private = zio;
1274 		bio->bi_end_io = vdev_disk_discard_end_io;
1275 		vdev_submit_bio(bio);
1276 	}
1277 	return (ret);
1278 }
1279 #endif
1280 
1281 static int
1282 vdev_disk_io_trim(zio_t *zio)
1283 {
1284 	unsigned long trim_flags = 0;
1285 	if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
1286 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1287 		return (-blkdev_issue_secure_erase(
1288 		    BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
1289 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
1290 #elif defined(BLKDEV_DISCARD_SECURE)
1291 		trim_flags |= BLKDEV_DISCARD_SECURE;
1292 #endif
1293 	}
1294 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE) || \
1295 	defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC)
1296 	return (vdev_issue_discard_trim(zio, trim_flags));
1297 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
1298 	return (-blkdev_issue_discard(
1299 	    BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
1300 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
1301 #else
1302 #error "Unsupported kernel"
1303 #endif
1304 }
1305 
1306 int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL;
1307 
1308 static void
1309 vdev_disk_io_start(zio_t *zio)
1310 {
1311 	vdev_t *v = zio->io_vd;
1312 	vdev_disk_t *vd = v->vdev_tsd;
1313 	int error;
1314 
1315 	/*
1316 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
1317 	 * Nothing to be done here but return failure.
1318 	 */
1319 	if (vd == NULL) {
1320 		zio->io_error = ENXIO;
1321 		zio_interrupt(zio);
1322 		return;
1323 	}
1324 
1325 	rw_enter(&vd->vd_lock, RW_READER);
1326 
1327 	/*
1328 	 * If the vdev is closed, it's likely due to a failed reopen and is
1329 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
1330 	 */
1331 	if (vd->vd_bdh == NULL) {
1332 		rw_exit(&vd->vd_lock);
1333 		zio->io_error = ENXIO;
1334 		zio_interrupt(zio);
1335 		return;
1336 	}
1337 
1338 	switch (zio->io_type) {
1339 	case ZIO_TYPE_IOCTL:
1340 
1341 		if (!vdev_readable(v)) {
1342 			rw_exit(&vd->vd_lock);
1343 			zio->io_error = SET_ERROR(ENXIO);
1344 			zio_interrupt(zio);
1345 			return;
1346 		}
1347 
1348 		switch (zio->io_cmd) {
1349 		case DKIOCFLUSHWRITECACHE:
1350 
1351 			if (zfs_nocacheflush)
1352 				break;
1353 
1354 			if (v->vdev_nowritecache) {
1355 				zio->io_error = SET_ERROR(ENOTSUP);
1356 				break;
1357 			}
1358 
1359 			error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
1360 			if (error == 0) {
1361 				rw_exit(&vd->vd_lock);
1362 				return;
1363 			}
1364 
1365 			zio->io_error = error;
1366 
1367 			break;
1368 
1369 		default:
1370 			zio->io_error = SET_ERROR(ENOTSUP);
1371 		}
1372 
1373 		rw_exit(&vd->vd_lock);
1374 		zio_execute(zio);
1375 		return;
1376 
1377 	case ZIO_TYPE_TRIM:
1378 		zio->io_error = vdev_disk_io_trim(zio);
1379 		rw_exit(&vd->vd_lock);
1380 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1381 		if (zio->io_trim_flags & ZIO_TRIM_SECURE)
1382 			zio_interrupt(zio);
1383 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
1384 		zio_interrupt(zio);
1385 #endif
1386 		return;
1387 
1388 	case ZIO_TYPE_READ:
1389 	case ZIO_TYPE_WRITE:
1390 		zio->io_target_timestamp = zio_handle_io_delay(zio);
1391 		error = vdev_disk_io_rw_fn(zio);
1392 		rw_exit(&vd->vd_lock);
1393 		if (error) {
1394 			zio->io_error = error;
1395 			zio_interrupt(zio);
1396 		}
1397 		return;
1398 
1399 	default:
1400 		/*
1401 		 * Getting here means our parent vdev has made a very strange
1402 		 * request of us, and shouldn't happen. Assert here to force a
1403 		 * crash in dev builds, but in production return the IO
1404 		 * unhandled. The pool will likely suspend anyway but that's
1405 		 * nicer than crashing the kernel.
1406 		 */
1407 		ASSERT3S(zio->io_type, ==, -1);
1408 
1409 		rw_exit(&vd->vd_lock);
1410 		zio->io_error = SET_ERROR(ENOTSUP);
1411 		zio_interrupt(zio);
1412 		return;
1413 	}
1414 
1415 	__builtin_unreachable();
1416 }
1417 
1418 static void
1419 vdev_disk_io_done(zio_t *zio)
1420 {
1421 	/*
1422 	 * If the device returned EIO, we revalidate the media.  If it is
1423 	 * determined the media has changed this triggers the asynchronous
1424 	 * removal of the device from the configuration.
1425 	 */
1426 	if (zio->io_error == EIO) {
1427 		vdev_t *v = zio->io_vd;
1428 		vdev_disk_t *vd = v->vdev_tsd;
1429 
1430 		if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
1431 			invalidate_bdev(BDH_BDEV(vd->vd_bdh));
1432 			v->vdev_remove_wanted = B_TRUE;
1433 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
1434 		}
1435 	}
1436 }
1437 
1438 static void
1439 vdev_disk_hold(vdev_t *vd)
1440 {
1441 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1442 
1443 	/* We must have a pathname, and it must be absolute. */
1444 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
1445 		return;
1446 
1447 	/*
1448 	 * Only prefetch path and devid info if the device has
1449 	 * never been opened.
1450 	 */
1451 	if (vd->vdev_tsd != NULL)
1452 		return;
1453 
1454 }
1455 
1456 static void
1457 vdev_disk_rele(vdev_t *vd)
1458 {
1459 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1460 
1461 	/* XXX: Implement me as a vnode rele for the device */
1462 }
1463 
1464 /*
1465  * BIO submission method. See comment above about vdev_classic.
1466  * Set zfs_vdev_disk_classic=0 for new, =1 for classic
1467  */
1468 static uint_t zfs_vdev_disk_classic = 0;	/* default new */
1469 
1470 /* Set submission function from module parameter */
1471 static int
1472 vdev_disk_param_set_classic(const char *buf, zfs_kernel_param_t *kp)
1473 {
1474 	int err = param_set_uint(buf, kp);
1475 	if (err < 0)
1476 		return (SET_ERROR(err));
1477 
1478 	vdev_disk_io_rw_fn =
1479 	    zfs_vdev_disk_classic ? vdev_classic_physio : vdev_disk_io_rw;
1480 
1481 	printk(KERN_INFO "ZFS: forcing %s BIO submission\n",
1482 	    zfs_vdev_disk_classic ? "classic" : "new");
1483 
1484 	return (0);
1485 }
1486 
1487 /*
1488  * At first use vdev use, set the submission function from the default value if
1489  * it hasn't been set already.
1490  */
1491 static int
1492 vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
1493 {
1494 	(void) spa;
1495 	(void) nv;
1496 	(void) tsd;
1497 
1498 	if (vdev_disk_io_rw_fn == NULL)
1499 		vdev_disk_io_rw_fn = zfs_vdev_disk_classic ?
1500 		    vdev_classic_physio : vdev_disk_io_rw;
1501 
1502 	return (0);
1503 }
1504 
1505 vdev_ops_t vdev_disk_ops = {
1506 	.vdev_op_init = vdev_disk_init,
1507 	.vdev_op_fini = NULL,
1508 	.vdev_op_open = vdev_disk_open,
1509 	.vdev_op_close = vdev_disk_close,
1510 	.vdev_op_asize = vdev_default_asize,
1511 	.vdev_op_min_asize = vdev_default_min_asize,
1512 	.vdev_op_min_alloc = NULL,
1513 	.vdev_op_io_start = vdev_disk_io_start,
1514 	.vdev_op_io_done = vdev_disk_io_done,
1515 	.vdev_op_state_change = NULL,
1516 	.vdev_op_need_resilver = NULL,
1517 	.vdev_op_hold = vdev_disk_hold,
1518 	.vdev_op_rele = vdev_disk_rele,
1519 	.vdev_op_remap = NULL,
1520 	.vdev_op_xlate = vdev_default_xlate,
1521 	.vdev_op_rebuild_asize = NULL,
1522 	.vdev_op_metaslab_init = NULL,
1523 	.vdev_op_config_generate = NULL,
1524 	.vdev_op_nparity = NULL,
1525 	.vdev_op_ndisks = NULL,
1526 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
1527 	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
1528 	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1529 };
1530 
1531 /*
1532  * The zfs_vdev_scheduler module option has been deprecated. Setting this
1533  * value no longer has any effect.  It has not yet been entirely removed
1534  * to allow the module to be loaded if this option is specified in the
1535  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
1536  */
1537 static int
1538 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1539 {
1540 	int error = param_set_charp(val, kp);
1541 	if (error == 0) {
1542 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1543 		    "is not supported.\n");
1544 	}
1545 
1546 	return (error);
1547 }
1548 
1549 static const char *zfs_vdev_scheduler = "unused";
1550 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1551     param_get_charp, &zfs_vdev_scheduler, 0644);
1552 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1553 
1554 int
1555 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1556 {
1557 	uint_t val;
1558 	int error;
1559 
1560 	error = kstrtouint(buf, 0, &val);
1561 	if (error < 0)
1562 		return (SET_ERROR(error));
1563 
1564 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1565 		return (SET_ERROR(-EINVAL));
1566 
1567 	error = param_set_uint(buf, kp);
1568 	if (error < 0)
1569 		return (SET_ERROR(error));
1570 
1571 	return (0);
1572 }
1573 
1574 int
1575 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1576 {
1577 	uint_t val;
1578 	int error;
1579 
1580 	error = kstrtouint(buf, 0, &val);
1581 	if (error < 0)
1582 		return (SET_ERROR(error));
1583 
1584 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1585 		return (SET_ERROR(-EINVAL));
1586 
1587 	error = param_set_uint(buf, kp);
1588 	if (error < 0)
1589 		return (SET_ERROR(error));
1590 
1591 	return (0);
1592 }
1593 
1594 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1595 	"Timeout before determining that a device is missing");
1596 
1597 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1598 	"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1599 
1600 ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
1601 	"Maximum number of data segments to add to an IO request (min 4)");
1602 
1603 ZFS_MODULE_PARAM_CALL(zfs_vdev_disk, zfs_vdev_disk_, classic,
1604     vdev_disk_param_set_classic, param_get_uint, ZMOD_RD,
1605 	"Use classic BIO submission method");
1606