xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 
41 typedef struct vdev_disk {
42 	struct block_device		*vd_bdev;
43 	krwlock_t			vd_lock;
44 } vdev_disk_t;
45 
46 /*
47  * Unique identifier for the exclusive vdev holder.
48  */
49 static void *zfs_vdev_holder = VDEV_HOLDER;
50 
51 /*
52  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
53  * device is missing. The missing path may be transient since the links
54  * can be briefly removed and recreated in response to udev events.
55  */
56 static unsigned zfs_vdev_open_timeout_ms = 1000;
57 
58 /*
59  * Size of the "reserved" partition, in blocks.
60  */
61 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
62 
63 /*
64  * Virtual device vector for disks.
65  */
66 typedef struct dio_request {
67 	zio_t			*dr_zio;	/* Parent ZIO */
68 	atomic_t		dr_ref;		/* References */
69 	int			dr_error;	/* Bio error */
70 	int			dr_bio_count;	/* Count of bio's */
71 	struct bio		*dr_bio[0];	/* Attached bio's */
72 } dio_request_t;
73 
74 static fmode_t
75 vdev_bdev_mode(spa_mode_t spa_mode)
76 {
77 	fmode_t mode = 0;
78 
79 	if (spa_mode & SPA_MODE_READ)
80 		mode |= FMODE_READ;
81 
82 	if (spa_mode & SPA_MODE_WRITE)
83 		mode |= FMODE_WRITE;
84 
85 	return (mode);
86 }
87 
88 /*
89  * Returns the usable capacity (in bytes) for the partition or disk.
90  */
91 static uint64_t
92 bdev_capacity(struct block_device *bdev)
93 {
94 	return (i_size_read(bdev->bd_inode));
95 }
96 
97 /*
98  * Returns the maximum expansion capacity of the block device (in bytes).
99  *
100  * It is possible to expand a vdev when it has been created as a wholedisk
101  * and the containing block device has increased in capacity.  Or when the
102  * partition containing the pool has been manually increased in size.
103  *
104  * This function is only responsible for calculating the potential expansion
105  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
106  * responsible for verifying the expected partition layout in the wholedisk
107  * case, and updating the partition table if appropriate.  Once the partition
108  * size has been increased the additional capacity will be visible using
109  * bdev_capacity().
110  *
111  * The returned maximum expansion capacity is always expected to be larger, or
112  * at the very least equal, to its usable capacity to prevent overestimating
113  * the pool expandsize.
114  */
115 static uint64_t
116 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
117 {
118 	uint64_t psize;
119 	int64_t available;
120 
121 	if (wholedisk && bdev->bd_part != NULL && bdev != bdev->bd_contains) {
122 		/*
123 		 * When reporting maximum expansion capacity for a wholedisk
124 		 * deduct any capacity which is expected to be lost due to
125 		 * alignment restrictions.  Over reporting this value isn't
126 		 * harmful and would only result in slightly less capacity
127 		 * than expected post expansion.
128 		 * The estimated available space may be slightly smaller than
129 		 * bdev_capacity() for devices where the number of sectors is
130 		 * not a multiple of the alignment size and the partition layout
131 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
132 		 * "reserved" EFI partition: in such cases return the device
133 		 * usable capacity.
134 		 */
135 		available = i_size_read(bdev->bd_contains->bd_inode) -
136 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
137 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
138 		psize = MAX(available, bdev_capacity(bdev));
139 	} else {
140 		psize = bdev_capacity(bdev);
141 	}
142 
143 	return (psize);
144 }
145 
146 static void
147 vdev_disk_error(zio_t *zio)
148 {
149 	/*
150 	 * This function can be called in interrupt context, for instance while
151 	 * handling IRQs coming from a misbehaving disk device; use printk()
152 	 * which is safe from any context.
153 	 */
154 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
155 	    "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
156 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
157 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
158 	    zio->io_flags);
159 }
160 
161 static int
162 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
163     uint64_t *logical_ashift, uint64_t *physical_ashift)
164 {
165 	struct block_device *bdev;
166 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
167 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
168 	vdev_disk_t *vd;
169 
170 	/* Must have a pathname and it must be absolute. */
171 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
172 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
173 		vdev_dbgmsg(v, "invalid vdev_path");
174 		return (SET_ERROR(EINVAL));
175 	}
176 
177 	/*
178 	 * Reopen the device if it is currently open.  When expanding a
179 	 * partition force re-scanning the partition table if userland
180 	 * did not take care of this already. We need to do this while closed
181 	 * in order to get an accurate updated block device size.  Then
182 	 * since udev may need to recreate the device links increase the
183 	 * open retry timeout before reporting the device as unavailable.
184 	 */
185 	vd = v->vdev_tsd;
186 	if (vd) {
187 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
188 		boolean_t reread_part = B_FALSE;
189 
190 		rw_enter(&vd->vd_lock, RW_WRITER);
191 		bdev = vd->vd_bdev;
192 		vd->vd_bdev = NULL;
193 
194 		if (bdev) {
195 			if (v->vdev_expanding && bdev != bdev->bd_contains) {
196 				bdevname(bdev->bd_contains, disk_name + 5);
197 				/*
198 				 * If userland has BLKPG_RESIZE_PARTITION,
199 				 * then it should have updated the partition
200 				 * table already. We can detect this by
201 				 * comparing our current physical size
202 				 * with that of the device. If they are
203 				 * the same, then we must not have
204 				 * BLKPG_RESIZE_PARTITION or it failed to
205 				 * update the partition table online. We
206 				 * fallback to rescanning the partition
207 				 * table from the kernel below. However,
208 				 * if the capacity already reflects the
209 				 * updated partition, then we skip
210 				 * rescanning the partition table here.
211 				 */
212 				if (v->vdev_psize == bdev_capacity(bdev))
213 					reread_part = B_TRUE;
214 			}
215 
216 			blkdev_put(bdev, mode | FMODE_EXCL);
217 		}
218 
219 		if (reread_part) {
220 			bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
221 			    zfs_vdev_holder);
222 			if (!IS_ERR(bdev)) {
223 				int error = vdev_bdev_reread_part(bdev);
224 				blkdev_put(bdev, mode | FMODE_EXCL);
225 				if (error == 0) {
226 					timeout = MSEC2NSEC(
227 					    zfs_vdev_open_timeout_ms * 2);
228 				}
229 			}
230 		}
231 	} else {
232 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
233 
234 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
235 		rw_enter(&vd->vd_lock, RW_WRITER);
236 	}
237 
238 	/*
239 	 * Devices are always opened by the path provided at configuration
240 	 * time.  This means that if the provided path is a udev by-id path
241 	 * then drives may be re-cabled without an issue.  If the provided
242 	 * path is a udev by-path path, then the physical location information
243 	 * will be preserved.  This can be critical for more complicated
244 	 * configurations where drives are located in specific physical
245 	 * locations to maximize the systems tolerance to component failure.
246 	 *
247 	 * Alternatively, you can provide your own udev rule to flexibly map
248 	 * the drives as you see fit.  It is not advised that you use the
249 	 * /dev/[hd]d devices which may be reordered due to probing order.
250 	 * Devices in the wrong locations will be detected by the higher
251 	 * level vdev validation.
252 	 *
253 	 * The specified paths may be briefly removed and recreated in
254 	 * response to udev events.  This should be exceptionally unlikely
255 	 * because the zpool command makes every effort to verify these paths
256 	 * have already settled prior to reaching this point.  Therefore,
257 	 * a ENOENT failure at this point is highly likely to be transient
258 	 * and it is reasonable to sleep and retry before giving up.  In
259 	 * practice delays have been observed to be on the order of 100ms.
260 	 */
261 	hrtime_t start = gethrtime();
262 	bdev = ERR_PTR(-ENXIO);
263 	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
264 		bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
265 		    zfs_vdev_holder);
266 		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
267 			schedule_timeout(MSEC_TO_TICK(10));
268 		} else if (IS_ERR(bdev)) {
269 			break;
270 		}
271 	}
272 
273 	if (IS_ERR(bdev)) {
274 		int error = -PTR_ERR(bdev);
275 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
276 		    (u_longlong_t)(gethrtime() - start),
277 		    (u_longlong_t)timeout);
278 		vd->vd_bdev = NULL;
279 		v->vdev_tsd = vd;
280 		rw_exit(&vd->vd_lock);
281 		return (SET_ERROR(error));
282 	} else {
283 		vd->vd_bdev = bdev;
284 		v->vdev_tsd = vd;
285 		rw_exit(&vd->vd_lock);
286 	}
287 
288 	struct request_queue *q = bdev_get_queue(vd->vd_bdev);
289 
290 	/*  Determine the physical block size */
291 	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
292 
293 	/*  Determine the logical block size */
294 	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
295 
296 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
297 	v->vdev_nowritecache = B_FALSE;
298 
299 	/* Set when device reports it supports TRIM. */
300 	v->vdev_has_trim = !!blk_queue_discard(q);
301 
302 	/* Set when device reports it supports secure TRIM. */
303 	v->vdev_has_securetrim = !!blk_queue_discard_secure(q);
304 
305 	/* Inform the ZIO pipeline that we are non-rotational */
306 	v->vdev_nonrot = blk_queue_nonrot(q);
307 
308 	/* Physical volume size in bytes for the partition */
309 	*psize = bdev_capacity(vd->vd_bdev);
310 
311 	/* Physical volume size in bytes including possible expansion space */
312 	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
313 
314 	/* Based on the minimum sector size set the block size */
315 	*physical_ashift = highbit64(MAX(physical_block_size,
316 	    SPA_MINBLOCKSIZE)) - 1;
317 
318 	*logical_ashift = highbit64(MAX(logical_block_size,
319 	    SPA_MINBLOCKSIZE)) - 1;
320 
321 	return (0);
322 }
323 
324 static void
325 vdev_disk_close(vdev_t *v)
326 {
327 	vdev_disk_t *vd = v->vdev_tsd;
328 
329 	if (v->vdev_reopening || vd == NULL)
330 		return;
331 
332 	if (vd->vd_bdev != NULL) {
333 		blkdev_put(vd->vd_bdev,
334 		    vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
335 	}
336 
337 	rw_destroy(&vd->vd_lock);
338 	kmem_free(vd, sizeof (vdev_disk_t));
339 	v->vdev_tsd = NULL;
340 }
341 
342 static dio_request_t *
343 vdev_disk_dio_alloc(int bio_count)
344 {
345 	dio_request_t *dr;
346 	int i;
347 
348 	dr = kmem_zalloc(sizeof (dio_request_t) +
349 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
350 	if (dr) {
351 		atomic_set(&dr->dr_ref, 0);
352 		dr->dr_bio_count = bio_count;
353 		dr->dr_error = 0;
354 
355 		for (i = 0; i < dr->dr_bio_count; i++)
356 			dr->dr_bio[i] = NULL;
357 	}
358 
359 	return (dr);
360 }
361 
362 static void
363 vdev_disk_dio_free(dio_request_t *dr)
364 {
365 	int i;
366 
367 	for (i = 0; i < dr->dr_bio_count; i++)
368 		if (dr->dr_bio[i])
369 			bio_put(dr->dr_bio[i]);
370 
371 	kmem_free(dr, sizeof (dio_request_t) +
372 	    sizeof (struct bio *) * dr->dr_bio_count);
373 }
374 
375 static void
376 vdev_disk_dio_get(dio_request_t *dr)
377 {
378 	atomic_inc(&dr->dr_ref);
379 }
380 
381 static int
382 vdev_disk_dio_put(dio_request_t *dr)
383 {
384 	int rc = atomic_dec_return(&dr->dr_ref);
385 
386 	/*
387 	 * Free the dio_request when the last reference is dropped and
388 	 * ensure zio_interpret is called only once with the correct zio
389 	 */
390 	if (rc == 0) {
391 		zio_t *zio = dr->dr_zio;
392 		int error = dr->dr_error;
393 
394 		vdev_disk_dio_free(dr);
395 
396 		if (zio) {
397 			zio->io_error = error;
398 			ASSERT3S(zio->io_error, >=, 0);
399 			if (zio->io_error)
400 				vdev_disk_error(zio);
401 
402 			zio_delay_interrupt(zio);
403 		}
404 	}
405 
406 	return (rc);
407 }
408 
409 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
410 {
411 	dio_request_t *dr = bio->bi_private;
412 	int rc;
413 
414 	if (dr->dr_error == 0) {
415 #ifdef HAVE_1ARG_BIO_END_IO_T
416 		dr->dr_error = BIO_END_IO_ERROR(bio);
417 #else
418 		if (error)
419 			dr->dr_error = -(error);
420 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
421 			dr->dr_error = EIO;
422 #endif
423 	}
424 
425 	/* Drop reference acquired by __vdev_disk_physio */
426 	rc = vdev_disk_dio_put(dr);
427 }
428 
429 static inline void
430 vdev_submit_bio_impl(struct bio *bio)
431 {
432 #ifdef HAVE_1ARG_SUBMIT_BIO
433 	submit_bio(bio);
434 #else
435 	submit_bio(0, bio);
436 #endif
437 }
438 
439 /*
440  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
441  * replace it with preempt_schedule under the following condition:
442  */
443 #if defined(CONFIG_ARM64) && \
444     defined(CONFIG_PREEMPTION) && \
445     defined(CONFIG_BLK_CGROUP)
446 #define	preempt_schedule_notrace(x) preempt_schedule(x)
447 #endif
448 
449 #ifdef HAVE_BIO_SET_DEV
450 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
451 /*
452  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
453  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
454  * As a side effect the function was converted to GPL-only.  Define our
455  * own version when needed which uses rcu_read_lock_sched().
456  */
457 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY)
458 static inline bool
459 vdev_blkg_tryget(struct blkcg_gq *blkg)
460 {
461 	struct percpu_ref *ref = &blkg->refcnt;
462 	unsigned long __percpu *count;
463 	bool rc;
464 
465 	rcu_read_lock_sched();
466 
467 	if (__ref_is_percpu(ref, &count)) {
468 		this_cpu_inc(*count);
469 		rc = true;
470 	} else {
471 		rc = atomic_long_inc_not_zero(&ref->count);
472 	}
473 
474 	rcu_read_unlock_sched();
475 
476 	return (rc);
477 }
478 #elif defined(HAVE_BLKG_TRYGET)
479 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
480 #endif
481 /*
482  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
483  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
484  * the entire macro.  Provide a minimal version which always assigns the
485  * request queue's root_blkg to the bio.
486  */
487 static inline void
488 vdev_bio_associate_blkg(struct bio *bio)
489 {
490 	struct request_queue *q = bio->bi_disk->queue;
491 
492 	ASSERT3P(q, !=, NULL);
493 	ASSERT3P(bio->bi_blkg, ==, NULL);
494 
495 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
496 		bio->bi_blkg = q->root_blkg;
497 }
498 #define	bio_associate_blkg vdev_bio_associate_blkg
499 #endif
500 #else
501 /*
502  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
503  */
504 static inline void
505 bio_set_dev(struct bio *bio, struct block_device *bdev)
506 {
507 	bio->bi_bdev = bdev;
508 }
509 #endif /* HAVE_BIO_SET_DEV */
510 
511 static inline void
512 vdev_submit_bio(struct bio *bio)
513 {
514 	struct bio_list *bio_list = current->bio_list;
515 	current->bio_list = NULL;
516 	vdev_submit_bio_impl(bio);
517 	current->bio_list = bio_list;
518 }
519 
520 static int
521 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
522     size_t io_size, uint64_t io_offset, int rw, int flags)
523 {
524 	dio_request_t *dr;
525 	uint64_t abd_offset;
526 	uint64_t bio_offset;
527 	int bio_size, bio_count = 16;
528 	int i = 0, error = 0;
529 	struct blk_plug plug;
530 
531 	/*
532 	 * Accessing outside the block device is never allowed.
533 	 */
534 	if (io_offset + io_size > bdev->bd_inode->i_size) {
535 		vdev_dbgmsg(zio->io_vd,
536 		    "Illegal access %llu size %llu, device size %llu",
537 		    io_offset, io_size, i_size_read(bdev->bd_inode));
538 		return (SET_ERROR(EIO));
539 	}
540 
541 retry:
542 	dr = vdev_disk_dio_alloc(bio_count);
543 	if (dr == NULL)
544 		return (SET_ERROR(ENOMEM));
545 
546 	if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
547 		bio_set_flags_failfast(bdev, &flags);
548 
549 	dr->dr_zio = zio;
550 
551 	/*
552 	 * When the IO size exceeds the maximum bio size for the request
553 	 * queue we are forced to break the IO in multiple bio's and wait
554 	 * for them all to complete.  Ideally, all pool users will set
555 	 * their volume block size to match the maximum request size and
556 	 * the common case will be one bio per vdev IO request.
557 	 */
558 
559 	abd_offset = 0;
560 	bio_offset = io_offset;
561 	bio_size   = io_size;
562 	for (i = 0; i <= dr->dr_bio_count; i++) {
563 
564 		/* Finished constructing bio's for given buffer */
565 		if (bio_size <= 0)
566 			break;
567 
568 		/*
569 		 * By default only 'bio_count' bio's per dio are allowed.
570 		 * However, if we find ourselves in a situation where more
571 		 * are needed we allocate a larger dio and warn the user.
572 		 */
573 		if (dr->dr_bio_count == i) {
574 			vdev_disk_dio_free(dr);
575 			bio_count *= 2;
576 			goto retry;
577 		}
578 
579 		/* bio_alloc() with __GFP_WAIT never returns NULL */
580 		dr->dr_bio[i] = bio_alloc(GFP_NOIO,
581 		    MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset),
582 		    BIO_MAX_PAGES));
583 		if (unlikely(dr->dr_bio[i] == NULL)) {
584 			vdev_disk_dio_free(dr);
585 			return (SET_ERROR(ENOMEM));
586 		}
587 
588 		/* Matching put called by vdev_disk_physio_completion */
589 		vdev_disk_dio_get(dr);
590 
591 		bio_set_dev(dr->dr_bio[i], bdev);
592 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
593 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
594 		dr->dr_bio[i]->bi_private = dr;
595 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
596 
597 		/* Remaining size is returned to become the new size */
598 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
599 		    bio_size, abd_offset);
600 
601 		/* Advance in buffer and construct another bio if needed */
602 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
603 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
604 	}
605 
606 	/* Extra reference to protect dio_request during vdev_submit_bio */
607 	vdev_disk_dio_get(dr);
608 
609 	if (dr->dr_bio_count > 1)
610 		blk_start_plug(&plug);
611 
612 	/* Submit all bio's associated with this dio */
613 	for (i = 0; i < dr->dr_bio_count; i++)
614 		if (dr->dr_bio[i])
615 			vdev_submit_bio(dr->dr_bio[i]);
616 
617 	if (dr->dr_bio_count > 1)
618 		blk_finish_plug(&plug);
619 
620 	(void) vdev_disk_dio_put(dr);
621 
622 	return (error);
623 }
624 
625 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
626 {
627 	zio_t *zio = bio->bi_private;
628 #ifdef HAVE_1ARG_BIO_END_IO_T
629 	zio->io_error = BIO_END_IO_ERROR(bio);
630 #else
631 	zio->io_error = -error;
632 #endif
633 
634 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
635 		zio->io_vd->vdev_nowritecache = B_TRUE;
636 
637 	bio_put(bio);
638 	ASSERT3S(zio->io_error, >=, 0);
639 	if (zio->io_error)
640 		vdev_disk_error(zio);
641 	zio_interrupt(zio);
642 }
643 
644 static int
645 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
646 {
647 	struct request_queue *q;
648 	struct bio *bio;
649 
650 	q = bdev_get_queue(bdev);
651 	if (!q)
652 		return (SET_ERROR(ENXIO));
653 
654 	bio = bio_alloc(GFP_NOIO, 0);
655 	/* bio_alloc() with __GFP_WAIT never returns NULL */
656 	if (unlikely(bio == NULL))
657 		return (SET_ERROR(ENOMEM));
658 
659 	bio->bi_end_io = vdev_disk_io_flush_completion;
660 	bio->bi_private = zio;
661 	bio_set_dev(bio, bdev);
662 	bio_set_flush(bio);
663 	vdev_submit_bio(bio);
664 	invalidate_bdev(bdev);
665 
666 	return (0);
667 }
668 
669 static void
670 vdev_disk_io_start(zio_t *zio)
671 {
672 	vdev_t *v = zio->io_vd;
673 	vdev_disk_t *vd = v->vdev_tsd;
674 	unsigned long trim_flags = 0;
675 	int rw, error;
676 
677 	/*
678 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
679 	 * Nothing to be done here but return failure.
680 	 */
681 	if (vd == NULL) {
682 		zio->io_error = ENXIO;
683 		zio_interrupt(zio);
684 		return;
685 	}
686 
687 	rw_enter(&vd->vd_lock, RW_READER);
688 
689 	/*
690 	 * If the vdev is closed, it's likely due to a failed reopen and is
691 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
692 	 */
693 	if (vd->vd_bdev == NULL) {
694 		rw_exit(&vd->vd_lock);
695 		zio->io_error = ENXIO;
696 		zio_interrupt(zio);
697 		return;
698 	}
699 
700 	switch (zio->io_type) {
701 	case ZIO_TYPE_IOCTL:
702 
703 		if (!vdev_readable(v)) {
704 			rw_exit(&vd->vd_lock);
705 			zio->io_error = SET_ERROR(ENXIO);
706 			zio_interrupt(zio);
707 			return;
708 		}
709 
710 		switch (zio->io_cmd) {
711 		case DKIOCFLUSHWRITECACHE:
712 
713 			if (zfs_nocacheflush)
714 				break;
715 
716 			if (v->vdev_nowritecache) {
717 				zio->io_error = SET_ERROR(ENOTSUP);
718 				break;
719 			}
720 
721 			error = vdev_disk_io_flush(vd->vd_bdev, zio);
722 			if (error == 0) {
723 				rw_exit(&vd->vd_lock);
724 				return;
725 			}
726 
727 			zio->io_error = error;
728 
729 			break;
730 
731 		default:
732 			zio->io_error = SET_ERROR(ENOTSUP);
733 		}
734 
735 		rw_exit(&vd->vd_lock);
736 		zio_execute(zio);
737 		return;
738 	case ZIO_TYPE_WRITE:
739 		rw = WRITE;
740 		break;
741 
742 	case ZIO_TYPE_READ:
743 		rw = READ;
744 		break;
745 
746 	case ZIO_TYPE_TRIM:
747 #if defined(BLKDEV_DISCARD_SECURE)
748 		if (zio->io_trim_flags & ZIO_TRIM_SECURE)
749 			trim_flags |= BLKDEV_DISCARD_SECURE;
750 #endif
751 		zio->io_error = -blkdev_issue_discard(vd->vd_bdev,
752 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS,
753 		    trim_flags);
754 
755 		rw_exit(&vd->vd_lock);
756 		zio_interrupt(zio);
757 		return;
758 
759 	default:
760 		rw_exit(&vd->vd_lock);
761 		zio->io_error = SET_ERROR(ENOTSUP);
762 		zio_interrupt(zio);
763 		return;
764 	}
765 
766 	zio->io_target_timestamp = zio_handle_io_delay(zio);
767 	error = __vdev_disk_physio(vd->vd_bdev, zio,
768 	    zio->io_size, zio->io_offset, rw, 0);
769 	rw_exit(&vd->vd_lock);
770 
771 	if (error) {
772 		zio->io_error = error;
773 		zio_interrupt(zio);
774 		return;
775 	}
776 }
777 
778 static void
779 vdev_disk_io_done(zio_t *zio)
780 {
781 	/*
782 	 * If the device returned EIO, we revalidate the media.  If it is
783 	 * determined the media has changed this triggers the asynchronous
784 	 * removal of the device from the configuration.
785 	 */
786 	if (zio->io_error == EIO) {
787 		vdev_t *v = zio->io_vd;
788 		vdev_disk_t *vd = v->vdev_tsd;
789 
790 		if (check_disk_change(vd->vd_bdev)) {
791 			invalidate_bdev(vd->vd_bdev);
792 			v->vdev_remove_wanted = B_TRUE;
793 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
794 		}
795 	}
796 }
797 
798 static void
799 vdev_disk_hold(vdev_t *vd)
800 {
801 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
802 
803 	/* We must have a pathname, and it must be absolute. */
804 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
805 		return;
806 
807 	/*
808 	 * Only prefetch path and devid info if the device has
809 	 * never been opened.
810 	 */
811 	if (vd->vdev_tsd != NULL)
812 		return;
813 
814 }
815 
816 static void
817 vdev_disk_rele(vdev_t *vd)
818 {
819 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
820 
821 	/* XXX: Implement me as a vnode rele for the device */
822 }
823 
824 vdev_ops_t vdev_disk_ops = {
825 	.vdev_op_open = vdev_disk_open,
826 	.vdev_op_close = vdev_disk_close,
827 	.vdev_op_asize = vdev_default_asize,
828 	.vdev_op_io_start = vdev_disk_io_start,
829 	.vdev_op_io_done = vdev_disk_io_done,
830 	.vdev_op_state_change = NULL,
831 	.vdev_op_need_resilver = NULL,
832 	.vdev_op_hold = vdev_disk_hold,
833 	.vdev_op_rele = vdev_disk_rele,
834 	.vdev_op_remap = NULL,
835 	.vdev_op_xlate = vdev_default_xlate,
836 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
837 	.vdev_op_leaf = B_TRUE			/* leaf vdev */
838 };
839 
840 /*
841  * The zfs_vdev_scheduler module option has been deprecated. Setting this
842  * value no longer has any effect.  It has not yet been entirely removed
843  * to allow the module to be loaded if this option is specified in the
844  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
845  */
846 static int
847 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
848 {
849 	int error = param_set_charp(val, kp);
850 	if (error == 0) {
851 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
852 		    "is not supported.\n");
853 	}
854 
855 	return (error);
856 }
857 
858 char *zfs_vdev_scheduler = "unused";
859 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
860     param_get_charp, &zfs_vdev_scheduler, 0644);
861 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
862 
863 int
864 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
865 {
866 	uint64_t val;
867 	int error;
868 
869 	error = kstrtoull(buf, 0, &val);
870 	if (error < 0)
871 		return (SET_ERROR(error));
872 
873 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
874 		return (SET_ERROR(-EINVAL));
875 
876 	error = param_set_ulong(buf, kp);
877 	if (error < 0)
878 		return (SET_ERROR(error));
879 
880 	return (0);
881 }
882 
883 int
884 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
885 {
886 	uint64_t val;
887 	int error;
888 
889 	error = kstrtoull(buf, 0, &val);
890 	if (error < 0)
891 		return (SET_ERROR(error));
892 
893 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
894 		return (SET_ERROR(-EINVAL));
895 
896 	error = param_set_ulong(buf, kp);
897 	if (error < 0)
898 		return (SET_ERROR(error));
899 
900 	return (0);
901 }
902