xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  * Copyright (c) 2023, 2024, Klara Inc.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_disk.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/vdev_trim.h>
35 #include <sys/abd.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/zio.h>
38 #include <linux/blkpg.h>
39 #include <linux/msdos_fs.h>
40 #include <linux/vfs_compat.h>
41 #include <linux/blk-cgroup.h>
42 
43 /*
44  * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
45  * block_device. Since it carries the block_device inside, its convenient to
46  * just use the handle as a proxy.
47  *
48  * Linux 6.9.x uses a file for the same purpose.
49  *
50  * For pre-6.8, we just emulate this with a cast, since we don't need any of
51  * the other fields inside the handle.
52  */
53 #if defined(HAVE_BDEV_OPEN_BY_PATH)
54 typedef struct bdev_handle zfs_bdev_handle_t;
55 #define	BDH_BDEV(bdh)		((bdh)->bdev)
56 #define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
57 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
58 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
59 #elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
60 typedef struct file zfs_bdev_handle_t;
61 #define	BDH_BDEV(bdh)		(file_bdev(bdh))
62 #define	BDH_IS_ERR(bdh)		(IS_ERR(bdh))
63 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(bdh))
64 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
65 #else
66 typedef void zfs_bdev_handle_t;
67 #define	BDH_BDEV(bdh)		((struct block_device *)bdh)
68 #define	BDH_IS_ERR(bdh)		(IS_ERR(BDH_BDEV(bdh)))
69 #define	BDH_PTR_ERR(bdh)	(PTR_ERR(BDH_BDEV(bdh)))
70 #define	BDH_ERR_PTR(err)	(ERR_PTR(err))
71 #endif
72 
73 typedef struct vdev_disk {
74 	zfs_bdev_handle_t		*vd_bdh;
75 	krwlock_t			vd_lock;
76 } vdev_disk_t;
77 
78 /*
79  * Maximum number of segments to add to a bio (min 4). If this is higher than
80  * the maximum allowed by the device queue or the kernel itself, it will be
81  * clamped. Setting it to zero will cause the kernel's ideal size to be used.
82  */
83 uint_t zfs_vdev_disk_max_segs = 0;
84 
85 /*
86  * Unique identifier for the exclusive vdev holder.
87  */
88 static void *zfs_vdev_holder = VDEV_HOLDER;
89 
90 /*
91  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
92  * device is missing. The missing path may be transient since the links
93  * can be briefly removed and recreated in response to udev events.
94  */
95 static uint_t zfs_vdev_open_timeout_ms = 1000;
96 
97 /*
98  * Size of the "reserved" partition, in blocks.
99  */
100 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
101 
102 /*
103  * BIO request failfast mask.
104  */
105 
106 static unsigned int zfs_vdev_failfast_mask = 1;
107 
108 /*
109  * Convert SPA mode flags into bdev open mode flags.
110  */
111 #ifdef HAVE_BLK_MODE_T
112 typedef blk_mode_t vdev_bdev_mode_t;
113 #define	VDEV_BDEV_MODE_READ	BLK_OPEN_READ
114 #define	VDEV_BDEV_MODE_WRITE	BLK_OPEN_WRITE
115 #define	VDEV_BDEV_MODE_EXCL	BLK_OPEN_EXCL
116 #define	VDEV_BDEV_MODE_MASK	(BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
117 #else
118 typedef fmode_t vdev_bdev_mode_t;
119 #define	VDEV_BDEV_MODE_READ	FMODE_READ
120 #define	VDEV_BDEV_MODE_WRITE	FMODE_WRITE
121 #define	VDEV_BDEV_MODE_EXCL	FMODE_EXCL
122 #define	VDEV_BDEV_MODE_MASK	(FMODE_READ|FMODE_WRITE|FMODE_EXCL)
123 #endif
124 
125 static vdev_bdev_mode_t
vdev_bdev_mode(spa_mode_t smode)126 vdev_bdev_mode(spa_mode_t smode)
127 {
128 	ASSERT3U(smode, !=, SPA_MODE_UNINIT);
129 	ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
130 
131 	vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
132 
133 	if (smode & SPA_MODE_READ)
134 		bmode |= VDEV_BDEV_MODE_READ;
135 
136 	if (smode & SPA_MODE_WRITE)
137 		bmode |= VDEV_BDEV_MODE_WRITE;
138 
139 	ASSERT(bmode & VDEV_BDEV_MODE_MASK);
140 	ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
141 
142 	return (bmode);
143 }
144 
145 /*
146  * Returns the usable capacity (in bytes) for the partition or disk.
147  */
148 static uint64_t
bdev_capacity(struct block_device * bdev)149 bdev_capacity(struct block_device *bdev)
150 {
151 #ifdef HAVE_BDEV_NR_BYTES
152 	return (bdev_nr_bytes(bdev));
153 #else
154 	return (i_size_read(bdev->bd_inode));
155 #endif
156 }
157 
158 #if !defined(HAVE_BDEV_WHOLE)
159 static inline struct block_device *
bdev_whole(struct block_device * bdev)160 bdev_whole(struct block_device *bdev)
161 {
162 	return (bdev->bd_contains);
163 }
164 #endif
165 
166 #if defined(HAVE_BDEVNAME)
167 #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
168 #else
169 static inline void
vdev_bdevname(struct block_device * bdev,char * name)170 vdev_bdevname(struct block_device *bdev, char *name)
171 {
172 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
173 }
174 #endif
175 
176 /*
177  * Returns the maximum expansion capacity of the block device (in bytes).
178  *
179  * It is possible to expand a vdev when it has been created as a wholedisk
180  * and the containing block device has increased in capacity.  Or when the
181  * partition containing the pool has been manually increased in size.
182  *
183  * This function is only responsible for calculating the potential expansion
184  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
185  * responsible for verifying the expected partition layout in the wholedisk
186  * case, and updating the partition table if appropriate.  Once the partition
187  * size has been increased the additional capacity will be visible using
188  * bdev_capacity().
189  *
190  * The returned maximum expansion capacity is always expected to be larger, or
191  * at the very least equal, to its usable capacity to prevent overestimating
192  * the pool expandsize.
193  */
194 static uint64_t
bdev_max_capacity(struct block_device * bdev,uint64_t wholedisk)195 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
196 {
197 	uint64_t psize;
198 	int64_t available;
199 
200 	if (wholedisk && bdev != bdev_whole(bdev)) {
201 		/*
202 		 * When reporting maximum expansion capacity for a wholedisk
203 		 * deduct any capacity which is expected to be lost due to
204 		 * alignment restrictions.  Over reporting this value isn't
205 		 * harmful and would only result in slightly less capacity
206 		 * than expected post expansion.
207 		 * The estimated available space may be slightly smaller than
208 		 * bdev_capacity() for devices where the number of sectors is
209 		 * not a multiple of the alignment size and the partition layout
210 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
211 		 * "reserved" EFI partition: in such cases return the device
212 		 * usable capacity.
213 		 */
214 		available = bdev_capacity(bdev_whole(bdev)) -
215 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
216 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
217 		psize = MAX(available, bdev_capacity(bdev));
218 	} else {
219 		psize = bdev_capacity(bdev);
220 	}
221 
222 	return (psize);
223 }
224 
225 static void
vdev_disk_error(zio_t * zio)226 vdev_disk_error(zio_t *zio)
227 {
228 	/*
229 	 * This function can be called in interrupt context, for instance while
230 	 * handling IRQs coming from a misbehaving disk device; use printk()
231 	 * which is safe from any context.
232 	 */
233 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
234 	    "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
235 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
236 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
237 	    zio->io_flags);
238 }
239 
240 static void
vdev_disk_kobj_evt_post(vdev_t * v)241 vdev_disk_kobj_evt_post(vdev_t *v)
242 {
243 	vdev_disk_t *vd = v->vdev_tsd;
244 	if (vd && vd->vd_bdh) {
245 		spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
246 	} else {
247 		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
248 		    v->vdev_path);
249 	}
250 }
251 
252 static zfs_bdev_handle_t *
vdev_blkdev_get_by_path(const char * path,spa_mode_t smode,void * holder)253 vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
254 {
255 	vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
256 
257 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
258 	return (bdev_file_open_by_path(path, bmode, holder, NULL));
259 #elif defined(HAVE_BDEV_OPEN_BY_PATH)
260 	return (bdev_open_by_path(path, bmode, holder, NULL));
261 #elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
262 	return (blkdev_get_by_path(path, bmode, holder, NULL));
263 #else
264 	return (blkdev_get_by_path(path, bmode, holder));
265 #endif
266 }
267 
268 static void
vdev_blkdev_put(zfs_bdev_handle_t * bdh,spa_mode_t smode,void * holder)269 vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
270 {
271 #if defined(HAVE_BDEV_RELEASE)
272 	return (bdev_release(bdh));
273 #elif defined(HAVE_BLKDEV_PUT_HOLDER)
274 	return (blkdev_put(BDH_BDEV(bdh), holder));
275 #elif defined(HAVE_BLKDEV_PUT)
276 	return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
277 #else
278 	fput(bdh);
279 #endif
280 }
281 
282 static int
vdev_disk_open(vdev_t * v,uint64_t * psize,uint64_t * max_psize,uint64_t * logical_ashift,uint64_t * physical_ashift)283 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
284     uint64_t *logical_ashift, uint64_t *physical_ashift)
285 {
286 	zfs_bdev_handle_t *bdh;
287 	spa_mode_t smode = spa_mode(v->vdev_spa);
288 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
289 	vdev_disk_t *vd;
290 
291 	/* Must have a pathname and it must be absolute. */
292 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
293 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
294 		vdev_dbgmsg(v, "invalid vdev_path");
295 		return (SET_ERROR(EINVAL));
296 	}
297 
298 	/*
299 	 * Reopen the device if it is currently open.  When expanding a
300 	 * partition force re-scanning the partition table if userland
301 	 * did not take care of this already. We need to do this while closed
302 	 * in order to get an accurate updated block device size.  Then
303 	 * since udev may need to recreate the device links increase the
304 	 * open retry timeout before reporting the device as unavailable.
305 	 */
306 	vd = v->vdev_tsd;
307 	if (vd) {
308 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
309 		boolean_t reread_part = B_FALSE;
310 
311 		rw_enter(&vd->vd_lock, RW_WRITER);
312 		bdh = vd->vd_bdh;
313 		vd->vd_bdh = NULL;
314 
315 		if (bdh) {
316 			struct block_device *bdev = BDH_BDEV(bdh);
317 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
318 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
319 				/*
320 				 * If userland has BLKPG_RESIZE_PARTITION,
321 				 * then it should have updated the partition
322 				 * table already. We can detect this by
323 				 * comparing our current physical size
324 				 * with that of the device. If they are
325 				 * the same, then we must not have
326 				 * BLKPG_RESIZE_PARTITION or it failed to
327 				 * update the partition table online. We
328 				 * fallback to rescanning the partition
329 				 * table from the kernel below. However,
330 				 * if the capacity already reflects the
331 				 * updated partition, then we skip
332 				 * rescanning the partition table here.
333 				 */
334 				if (v->vdev_psize == bdev_capacity(bdev))
335 					reread_part = B_TRUE;
336 			}
337 
338 			vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
339 		}
340 
341 		if (reread_part) {
342 			bdh = vdev_blkdev_get_by_path(disk_name, smode,
343 			    zfs_vdev_holder);
344 			if (!BDH_IS_ERR(bdh)) {
345 				int error =
346 				    vdev_bdev_reread_part(BDH_BDEV(bdh));
347 				vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
348 				if (error == 0) {
349 					timeout = MSEC2NSEC(
350 					    zfs_vdev_open_timeout_ms * 2);
351 				}
352 			}
353 		}
354 	} else {
355 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
356 
357 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
358 		rw_enter(&vd->vd_lock, RW_WRITER);
359 	}
360 
361 	/*
362 	 * Devices are always opened by the path provided at configuration
363 	 * time.  This means that if the provided path is a udev by-id path
364 	 * then drives may be re-cabled without an issue.  If the provided
365 	 * path is a udev by-path path, then the physical location information
366 	 * will be preserved.  This can be critical for more complicated
367 	 * configurations where drives are located in specific physical
368 	 * locations to maximize the systems tolerance to component failure.
369 	 *
370 	 * Alternatively, you can provide your own udev rule to flexibly map
371 	 * the drives as you see fit.  It is not advised that you use the
372 	 * /dev/[hd]d devices which may be reordered due to probing order.
373 	 * Devices in the wrong locations will be detected by the higher
374 	 * level vdev validation.
375 	 *
376 	 * The specified paths may be briefly removed and recreated in
377 	 * response to udev events.  This should be exceptionally unlikely
378 	 * because the zpool command makes every effort to verify these paths
379 	 * have already settled prior to reaching this point.  Therefore,
380 	 * a ENOENT failure at this point is highly likely to be transient
381 	 * and it is reasonable to sleep and retry before giving up.  In
382 	 * practice delays have been observed to be on the order of 100ms.
383 	 *
384 	 * When ERESTARTSYS is returned it indicates the block device is
385 	 * a zvol which could not be opened due to the deadlock detection
386 	 * logic in zvol_open().  Extend the timeout and retry the open
387 	 * subsequent attempts are expected to eventually succeed.
388 	 */
389 	hrtime_t start = gethrtime();
390 	bdh = BDH_ERR_PTR(-ENXIO);
391 	while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
392 		bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
393 		    zfs_vdev_holder);
394 		if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
395 			/*
396 			 * There is no point of waiting since device is removed
397 			 * explicitly
398 			 */
399 			if (v->vdev_removed)
400 				break;
401 
402 			schedule_timeout_interruptible(MSEC_TO_TICK(10));
403 		} else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
404 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
405 			continue;
406 		} else if (BDH_IS_ERR(bdh)) {
407 			break;
408 		}
409 	}
410 
411 	if (BDH_IS_ERR(bdh)) {
412 		int error = -BDH_PTR_ERR(bdh);
413 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
414 		    (u_longlong_t)(gethrtime() - start),
415 		    (u_longlong_t)timeout);
416 		vd->vd_bdh = NULL;
417 		v->vdev_tsd = vd;
418 		rw_exit(&vd->vd_lock);
419 		return (SET_ERROR(error));
420 	} else {
421 		vd->vd_bdh = bdh;
422 		v->vdev_tsd = vd;
423 		rw_exit(&vd->vd_lock);
424 	}
425 
426 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
427 
428 	/*  Determine the physical block size */
429 	int physical_block_size = bdev_physical_block_size(bdev);
430 
431 	/*  Determine the logical block size */
432 	int logical_block_size = bdev_logical_block_size(bdev);
433 
434 	/*
435 	 * If the device has a write cache, clear the nowritecache flag,
436 	 * so that we start issuing flush requests again.
437 	 */
438 	v->vdev_nowritecache = !zfs_bdev_has_write_cache(bdev);
439 
440 	/* Set when device reports it supports TRIM. */
441 	v->vdev_has_trim = bdev_discard_supported(bdev);
442 
443 	/* Set when device reports it supports secure TRIM. */
444 	v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
445 
446 	/* Inform the ZIO pipeline that we are non-rotational */
447 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
448 
449 	/* Physical volume size in bytes for the partition */
450 	*psize = bdev_capacity(bdev);
451 
452 	/* Physical volume size in bytes including possible expansion space */
453 	*max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
454 
455 	/* Based on the minimum sector size set the block size */
456 	*physical_ashift = highbit64(MAX(physical_block_size,
457 	    SPA_MINBLOCKSIZE)) - 1;
458 
459 	*logical_ashift = highbit64(MAX(logical_block_size,
460 	    SPA_MINBLOCKSIZE)) - 1;
461 
462 	return (0);
463 }
464 
465 static void
vdev_disk_close(vdev_t * v)466 vdev_disk_close(vdev_t *v)
467 {
468 	vdev_disk_t *vd = v->vdev_tsd;
469 
470 	if (v->vdev_reopening || vd == NULL)
471 		return;
472 
473 	if (vd->vd_bdh != NULL)
474 		vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
475 		    zfs_vdev_holder);
476 
477 	rw_destroy(&vd->vd_lock);
478 	kmem_free(vd, sizeof (vdev_disk_t));
479 	v->vdev_tsd = NULL;
480 }
481 
482 /*
483  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
484  * replace it with preempt_schedule under the following condition:
485  */
486 #if defined(CONFIG_ARM64) && \
487     defined(CONFIG_PREEMPTION) && \
488     defined(CONFIG_BLK_CGROUP)
489 #define	preempt_schedule_notrace(x) preempt_schedule(x)
490 #endif
491 
492 /*
493  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
494  * as an argument removing the need to set it with bio_set_dev().  This
495  * removes the need for all of the following compatibility code.
496  */
497 #if !defined(HAVE_BIO_ALLOC_4ARG)
498 
499 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
500 /*
501  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
502  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
503  * As a side effect the function was converted to GPL-only.  Define our
504  * own version when needed which uses rcu_read_lock_sched().
505  *
506  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
507  * part, moving blkg_tryget into the private one. Define our own version.
508  */
509 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
510 static inline bool
vdev_blkg_tryget(struct blkcg_gq * blkg)511 vdev_blkg_tryget(struct blkcg_gq *blkg)
512 {
513 	struct percpu_ref *ref = &blkg->refcnt;
514 	unsigned long __percpu *count;
515 	bool rc;
516 
517 	rcu_read_lock_sched();
518 
519 	if (__ref_is_percpu(ref, &count)) {
520 		this_cpu_inc(*count);
521 		rc = true;
522 	} else {
523 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
524 		rc = atomic_long_inc_not_zero(&ref->data->count);
525 #else
526 		rc = atomic_long_inc_not_zero(&ref->count);
527 #endif
528 	}
529 
530 	rcu_read_unlock_sched();
531 
532 	return (rc);
533 }
534 #else
535 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
536 #endif
537 #ifdef HAVE_BIO_SET_DEV_MACRO
538 /*
539  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
540  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
541  * the entire macro.  Provide a minimal version which always assigns the
542  * request queue's root_blkg to the bio.
543  */
544 static inline void
vdev_bio_associate_blkg(struct bio * bio)545 vdev_bio_associate_blkg(struct bio *bio)
546 {
547 #if defined(HAVE_BIO_BDEV_DISK)
548 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
549 #else
550 	struct request_queue *q = bio->bi_disk->queue;
551 #endif
552 
553 	ASSERT3P(q, !=, NULL);
554 	ASSERT3P(bio->bi_blkg, ==, NULL);
555 
556 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
557 		bio->bi_blkg = q->root_blkg;
558 }
559 
560 #define	bio_associate_blkg vdev_bio_associate_blkg
561 #else
562 static inline void
vdev_bio_set_dev(struct bio * bio,struct block_device * bdev)563 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
564 {
565 #if defined(HAVE_BIO_BDEV_DISK)
566 	struct request_queue *q = bdev->bd_disk->queue;
567 #else
568 	struct request_queue *q = bio->bi_disk->queue;
569 #endif
570 	bio_clear_flag(bio, BIO_REMAPPED);
571 	if (bio->bi_bdev != bdev)
572 		bio_clear_flag(bio, BIO_THROTTLED);
573 	bio->bi_bdev = bdev;
574 
575 	ASSERT3P(q, !=, NULL);
576 	ASSERT3P(bio->bi_blkg, ==, NULL);
577 
578 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
579 		bio->bi_blkg = q->root_blkg;
580 }
581 #define	bio_set_dev		vdev_bio_set_dev
582 #endif
583 #endif
584 #endif /* !HAVE_BIO_ALLOC_4ARG */
585 
586 static inline void
vdev_submit_bio(struct bio * bio)587 vdev_submit_bio(struct bio *bio)
588 {
589 	struct bio_list *bio_list = current->bio_list;
590 	current->bio_list = NULL;
591 	(void) submit_bio(bio);
592 	current->bio_list = bio_list;
593 }
594 
595 static inline struct bio *
vdev_bio_alloc(struct block_device * bdev,gfp_t gfp_mask,unsigned short nr_vecs)596 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
597     unsigned short nr_vecs)
598 {
599 	struct bio *bio;
600 
601 #ifdef HAVE_BIO_ALLOC_4ARG
602 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
603 #else
604 	bio = bio_alloc(gfp_mask, nr_vecs);
605 	if (likely(bio != NULL))
606 		bio_set_dev(bio, bdev);
607 #endif
608 
609 	return (bio);
610 }
611 
612 static inline uint_t
vdev_bio_max_segs(struct block_device * bdev)613 vdev_bio_max_segs(struct block_device *bdev)
614 {
615 	/*
616 	 * Smallest of the device max segs and the tuneable max segs. Minimum
617 	 * 4, so there's room to finish split pages if they come up.
618 	 */
619 	const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
620 	const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
621 	    MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
622 	const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
623 
624 #ifdef HAVE_BIO_MAX_SEGS
625 	return (bio_max_segs(max_segs));
626 #else
627 	return (MIN(max_segs, BIO_MAX_PAGES));
628 #endif
629 }
630 
631 static inline uint_t
vdev_bio_max_bytes(struct block_device * bdev)632 vdev_bio_max_bytes(struct block_device *bdev)
633 {
634 	return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
635 }
636 
637 
638 /*
639  * Virtual block IO object (VBIO)
640  *
641  * Linux block IO (BIO) objects have a limit on how many data segments (pages)
642  * they can hold. Depending on how they're allocated and structured, a large
643  * ZIO can require more than one BIO to be submitted to the kernel, which then
644  * all have to complete before we can return the completed ZIO back to ZFS.
645  *
646  * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
647  * translate a ZIO down into the kernel block layer and back again.
648  *
649  * Note that these are only used for data ZIOs (read/write). Meta-operations
650  * (flush/trim) don't need multiple BIOs and so can just make the call
651  * directly.
652  */
653 typedef struct {
654 	zio_t		*vbio_zio;	/* parent zio */
655 
656 	struct block_device *vbio_bdev;	/* blockdev to submit bios to */
657 
658 	abd_t		*vbio_abd;	/* abd carrying borrowed linear buf */
659 
660 	uint_t		vbio_max_segs;	/* max segs per bio */
661 
662 	uint_t		vbio_max_bytes;	/* max bytes per bio */
663 	uint_t		vbio_lbs_mask;	/* logical block size mask */
664 
665 	uint64_t	vbio_offset;	/* start offset of next bio */
666 
667 	struct bio	*vbio_bio;	/* pointer to the current bio */
668 	int		vbio_flags;	/* bio flags */
669 } vbio_t;
670 
671 static vbio_t *
vbio_alloc(zio_t * zio,struct block_device * bdev,int flags)672 vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
673 {
674 	vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
675 
676 	vbio->vbio_zio = zio;
677 	vbio->vbio_bdev = bdev;
678 	vbio->vbio_abd = NULL;
679 	vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
680 	vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
681 	vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
682 	vbio->vbio_offset = zio->io_offset;
683 	vbio->vbio_bio = NULL;
684 	vbio->vbio_flags = flags;
685 
686 	return (vbio);
687 }
688 
689 static void vbio_completion(struct bio *bio);
690 
691 static int
vbio_add_page(vbio_t * vbio,struct page * page,uint_t size,uint_t offset)692 vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
693 {
694 	struct bio *bio = vbio->vbio_bio;
695 	uint_t ssize;
696 
697 	while (size > 0) {
698 		if (bio == NULL) {
699 			/* New BIO, allocate and set up */
700 			bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
701 			    vbio->vbio_max_segs);
702 			VERIFY(bio);
703 
704 			BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
705 			bio_set_op_attrs(bio,
706 			    vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
707 			    WRITE : READ, vbio->vbio_flags);
708 
709 			if (vbio->vbio_bio) {
710 				bio_chain(vbio->vbio_bio, bio);
711 				vdev_submit_bio(vbio->vbio_bio);
712 			}
713 			vbio->vbio_bio = bio;
714 		}
715 
716 		/*
717 		 * Only load as much of the current page data as will fit in
718 		 * the space left in the BIO, respecting lbs alignment. Older
719 		 * kernels will error if we try to overfill the BIO, while
720 		 * newer ones will accept it and split the BIO. This ensures
721 		 * everything works on older kernels, and avoids an additional
722 		 * overhead on the new.
723 		 */
724 		ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
725 		    vbio->vbio_lbs_mask);
726 		if (ssize > 0 &&
727 		    bio_add_page(bio, page, ssize, offset) == ssize) {
728 			/* Accepted, adjust and load any remaining. */
729 			size -= ssize;
730 			offset += ssize;
731 			continue;
732 		}
733 
734 		/* No room, set up for a new BIO and loop */
735 		vbio->vbio_offset += BIO_BI_SIZE(bio);
736 
737 		/* Signal new BIO allocation wanted */
738 		bio = NULL;
739 	}
740 
741 	return (0);
742 }
743 
744 /* Iterator callback to submit ABD pages to the vbio. */
745 static int
vbio_fill_cb(struct page * page,size_t off,size_t len,void * priv)746 vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
747 {
748 	vbio_t *vbio = priv;
749 	return (vbio_add_page(vbio, page, len, off));
750 }
751 
752 /* Create some BIOs, fill them with data and submit them */
753 static void
vbio_submit(vbio_t * vbio,abd_t * abd,uint64_t size)754 vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
755 {
756 	/*
757 	 * We plug so we can submit the BIOs as we go and only unplug them when
758 	 * they are fully created and submitted. This is important; if we don't
759 	 * plug, then the kernel may start executing earlier BIOs while we're
760 	 * still creating and executing later ones, and if the device goes
761 	 * away while that's happening, older kernels can get confused and
762 	 * trample memory.
763 	 */
764 	struct blk_plug plug;
765 	blk_start_plug(&plug);
766 
767 	(void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
768 	ASSERT(vbio->vbio_bio);
769 
770 	vbio->vbio_bio->bi_end_io = vbio_completion;
771 	vbio->vbio_bio->bi_private = vbio;
772 
773 	/*
774 	 * Once submitted, vbio_bio now owns vbio (through bi_private) and we
775 	 * can't touch it again. The bio may complete and vbio_completion() be
776 	 * called and free the vbio before this task is run again, so we must
777 	 * consider it invalid from this point.
778 	 */
779 	vdev_submit_bio(vbio->vbio_bio);
780 
781 	blk_finish_plug(&plug);
782 }
783 
784 /* IO completion callback */
785 static void
vbio_completion(struct bio * bio)786 vbio_completion(struct bio *bio)
787 {
788 	vbio_t *vbio = bio->bi_private;
789 	zio_t *zio = vbio->vbio_zio;
790 
791 	ASSERT(zio);
792 
793 	/* Capture and log any errors */
794 	zio->io_error = bi_status_to_errno(bio->bi_status);
795 	ASSERT3U(zio->io_error, >=, 0);
796 
797 	if (zio->io_error)
798 		vdev_disk_error(zio);
799 
800 	/* Return the BIO to the kernel */
801 	bio_put(bio);
802 
803 	/*
804 	 * We're likely in an interrupt context so we can't do ABD/memory work
805 	 * here; instead we stash vbio on the zio and take care of it in the
806 	 * done callback.
807 	 */
808 	ASSERT3P(zio->io_bio, ==, NULL);
809 	zio->io_bio = vbio;
810 
811 	zio_delay_interrupt(zio);
812 }
813 
814 /*
815  * Iterator callback to count ABD pages and check their size & alignment.
816  *
817  * On Linux, each BIO segment can take a page pointer, and an offset+length of
818  * the data within that page. A page can be arbitrarily large ("compound"
819  * pages) but we still have to ensure the data portion is correctly sized and
820  * aligned to the logical block size, to ensure that if the kernel wants to
821  * split the BIO, the two halves will still be properly aligned.
822  *
823  * NOTE: if you change this function, change the copy in
824  * tests/zfs-tests/tests/functional/vdev_disk/page_alignment.c, and add test
825  * data there to validate the change you're making.
826  */
827 typedef struct {
828 	size_t	blocksize;
829 	int	seen_first;
830 	int	seen_last;
831 } vdev_disk_check_alignment_t;
832 
833 static int
vdev_disk_check_alignment_cb(struct page * page,size_t off,size_t len,void * priv)834 vdev_disk_check_alignment_cb(struct page *page, size_t off, size_t len,
835     void *priv)
836 {
837 	(void) page;
838 	vdev_disk_check_alignment_t *s = priv;
839 
840 	/*
841 	 * The cardinal rule: a single on-disk block must never cross an
842 	 * physical (order-0) page boundary, as the kernel expects to be able
843 	 * to split at both LBS and page boundaries.
844 	 *
845 	 * This implies various alignment rules for the blocks in this
846 	 * (possibly compound) page, which we can check for.
847 	 */
848 
849 	/*
850 	 * If the previous page did not end on a page boundary, then we
851 	 * can't proceed without creating a hole.
852 	 */
853 	if (s->seen_last)
854 		return (1);
855 
856 	/* This page must contain only whole LBS-sized blocks. */
857 	if (!IS_P2ALIGNED(len, s->blocksize))
858 		return (1);
859 
860 	/*
861 	 * If this is not the first page in the ABD, then the data must start
862 	 * on a page-aligned boundary (so the kernel can split on page
863 	 * boundaries without having to deal with a hole). If it is, then
864 	 * it can start on LBS-alignment.
865 	 */
866 	if (s->seen_first) {
867 		if (!IS_P2ALIGNED(off, PAGESIZE))
868 			return (1);
869 	} else {
870 		if (!IS_P2ALIGNED(off, s->blocksize))
871 			return (1);
872 		s->seen_first = 1;
873 	}
874 
875 	/*
876 	 * If this data does not end on a page-aligned boundary, then this
877 	 * must be the last page in the ABD, for the same reason.
878 	 */
879 	s->seen_last = !IS_P2ALIGNED(off+len, PAGESIZE);
880 
881 	return (0);
882 }
883 
884 /*
885  * Check if we can submit the pages in this ABD to the kernel as-is. Returns
886  * the number of pages, or 0 if it can't be submitted like this.
887  */
888 static boolean_t
vdev_disk_check_alignment(abd_t * abd,uint64_t size,struct block_device * bdev)889 vdev_disk_check_alignment(abd_t *abd, uint64_t size, struct block_device *bdev)
890 {
891 	vdev_disk_check_alignment_t s = {
892 	    .blocksize = bdev_logical_block_size(bdev),
893 	};
894 
895 	if (abd_iterate_page_func(abd, 0, size,
896 	    vdev_disk_check_alignment_cb, &s))
897 		return (B_FALSE);
898 
899 	return (B_TRUE);
900 }
901 
902 static int
vdev_disk_io_rw(zio_t * zio)903 vdev_disk_io_rw(zio_t *zio)
904 {
905 	vdev_t *v = zio->io_vd;
906 	vdev_disk_t *vd = v->vdev_tsd;
907 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
908 	int flags = 0;
909 
910 	/*
911 	 * Accessing outside the block device is never allowed.
912 	 */
913 	if (zio->io_offset + zio->io_size > bdev_capacity(bdev)) {
914 		vdev_dbgmsg(zio->io_vd,
915 		    "Illegal access %llu size %llu, device size %llu",
916 		    (u_longlong_t)zio->io_offset,
917 		    (u_longlong_t)zio->io_size,
918 		    (u_longlong_t)bdev_capacity(bdev));
919 		return (SET_ERROR(EIO));
920 	}
921 
922 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
923 	    v->vdev_failfast == B_TRUE) {
924 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
925 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
926 	}
927 
928 	/*
929 	 * Check alignment of the incoming ABD. If any part of it would require
930 	 * submitting a page that is not aligned to both the logical block size
931 	 * and the page size, then we take a copy into a new memory region with
932 	 * correct alignment.  This should be impossible on a 512b LBS. On
933 	 * larger blocks, this can happen at least when a small number of
934 	 * blocks (usually 1) are allocated from a shared slab, or when
935 	 * abnormally-small data regions (eg gang headers) are mixed into the
936 	 * same ABD as larger allocations (eg aggregations).
937 	 */
938 	abd_t *abd = zio->io_abd;
939 	if (!vdev_disk_check_alignment(abd, zio->io_size, bdev)) {
940 		/* Allocate a new memory region with guaranteed alignment */
941 		abd = abd_alloc_for_io(zio->io_size,
942 		    zio->io_abd->abd_flags & ABD_FLAG_META);
943 
944 		/* If we're writing copy our data into it */
945 		if (zio->io_type == ZIO_TYPE_WRITE)
946 			abd_copy(abd, zio->io_abd, zio->io_size);
947 
948 		/*
949 		 * False here would mean the new allocation has an invalid
950 		 * alignment too, which would mean that abd_alloc() is not
951 		 * guaranteeing this, or our logic in
952 		 * vdev_disk_check_alignment() is wrong. In either case,
953 		 * something in seriously wrong and its not safe to continue.
954 		 */
955 		VERIFY(vdev_disk_check_alignment(abd, zio->io_size, bdev));
956 	}
957 
958 	/* Allocate vbio, with a pointer to the borrowed ABD if necessary */
959 	vbio_t *vbio = vbio_alloc(zio, bdev, flags);
960 	if (abd != zio->io_abd)
961 		vbio->vbio_abd = abd;
962 
963 	/* Fill it with data pages and submit it to the kernel */
964 	vbio_submit(vbio, abd, zio->io_size);
965 	return (0);
966 }
967 
968 /* ========== */
969 
970 /*
971  * This is the classic, battle-tested BIO submission code. Until we're totally
972  * sure that the new code is safe and correct in all cases, this will remain
973  * available and can be enabled by setting zfs_vdev_disk_classic=1 at module
974  * load time.
975  *
976  * These functions have been renamed to vdev_classic_* to make it clear what
977  * they belong to, but their implementations are unchanged.
978  */
979 
980 /*
981  * Virtual device vector for disks.
982  */
983 typedef struct dio_request {
984 	zio_t			*dr_zio;	/* Parent ZIO */
985 	atomic_t		dr_ref;		/* References */
986 	int			dr_error;	/* Bio error */
987 	int			dr_bio_count;	/* Count of bio's */
988 	struct bio		*dr_bio[];	/* Attached bio's */
989 } dio_request_t;
990 
991 static dio_request_t *
vdev_classic_dio_alloc(int bio_count)992 vdev_classic_dio_alloc(int bio_count)
993 {
994 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
995 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
996 	atomic_set(&dr->dr_ref, 0);
997 	dr->dr_bio_count = bio_count;
998 	dr->dr_error = 0;
999 
1000 	for (int i = 0; i < dr->dr_bio_count; i++)
1001 		dr->dr_bio[i] = NULL;
1002 
1003 	return (dr);
1004 }
1005 
1006 static void
vdev_classic_dio_free(dio_request_t * dr)1007 vdev_classic_dio_free(dio_request_t *dr)
1008 {
1009 	int i;
1010 
1011 	for (i = 0; i < dr->dr_bio_count; i++)
1012 		if (dr->dr_bio[i])
1013 			bio_put(dr->dr_bio[i]);
1014 
1015 	kmem_free(dr, sizeof (dio_request_t) +
1016 	    sizeof (struct bio *) * dr->dr_bio_count);
1017 }
1018 
1019 static void
vdev_classic_dio_get(dio_request_t * dr)1020 vdev_classic_dio_get(dio_request_t *dr)
1021 {
1022 	atomic_inc(&dr->dr_ref);
1023 }
1024 
1025 static void
vdev_classic_dio_put(dio_request_t * dr)1026 vdev_classic_dio_put(dio_request_t *dr)
1027 {
1028 	int rc = atomic_dec_return(&dr->dr_ref);
1029 
1030 	/*
1031 	 * Free the dio_request when the last reference is dropped and
1032 	 * ensure zio_interpret is called only once with the correct zio
1033 	 */
1034 	if (rc == 0) {
1035 		zio_t *zio = dr->dr_zio;
1036 		int error = dr->dr_error;
1037 
1038 		vdev_classic_dio_free(dr);
1039 
1040 		if (zio) {
1041 			zio->io_error = error;
1042 			ASSERT3S(zio->io_error, >=, 0);
1043 			if (zio->io_error)
1044 				vdev_disk_error(zio);
1045 
1046 			zio_delay_interrupt(zio);
1047 		}
1048 	}
1049 }
1050 
1051 static void
vdev_classic_physio_completion(struct bio * bio)1052 vdev_classic_physio_completion(struct bio *bio)
1053 {
1054 	dio_request_t *dr = bio->bi_private;
1055 
1056 	if (dr->dr_error == 0) {
1057 		dr->dr_error = bi_status_to_errno(bio->bi_status);
1058 	}
1059 
1060 	/* Drop reference acquired by vdev_classic_physio */
1061 	vdev_classic_dio_put(dr);
1062 }
1063 
1064 static inline unsigned int
vdev_classic_bio_max_segs(zio_t * zio,int bio_size,uint64_t abd_offset)1065 vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
1066 {
1067 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
1068 	    bio_size, abd_offset);
1069 
1070 #ifdef HAVE_BIO_MAX_SEGS
1071 	return (bio_max_segs(nr_segs));
1072 #else
1073 	return (MIN(nr_segs, BIO_MAX_PAGES));
1074 #endif
1075 }
1076 
1077 static int
vdev_classic_physio(zio_t * zio)1078 vdev_classic_physio(zio_t *zio)
1079 {
1080 	vdev_t *v = zio->io_vd;
1081 	vdev_disk_t *vd = v->vdev_tsd;
1082 	struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
1083 	size_t io_size = zio->io_size;
1084 	uint64_t io_offset = zio->io_offset;
1085 	int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE;
1086 	int flags = 0;
1087 
1088 	dio_request_t *dr;
1089 	uint64_t abd_offset;
1090 	uint64_t bio_offset;
1091 	int bio_size;
1092 	int bio_count = 16;
1093 	int error = 0;
1094 	struct blk_plug plug;
1095 	unsigned short nr_vecs;
1096 
1097 	/*
1098 	 * Accessing outside the block device is never allowed.
1099 	 */
1100 	if (io_offset + io_size > bdev_capacity(bdev)) {
1101 		vdev_dbgmsg(zio->io_vd,
1102 		    "Illegal access %llu size %llu, device size %llu",
1103 		    (u_longlong_t)io_offset,
1104 		    (u_longlong_t)io_size,
1105 		    (u_longlong_t)bdev_capacity(bdev));
1106 		return (SET_ERROR(EIO));
1107 	}
1108 
1109 retry:
1110 	dr = vdev_classic_dio_alloc(bio_count);
1111 
1112 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
1113 	    zio->io_vd->vdev_failfast == B_TRUE) {
1114 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
1115 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
1116 	}
1117 
1118 	dr->dr_zio = zio;
1119 
1120 	/*
1121 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
1122 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
1123 	 * can cover at least 128KB and at most 1MB.  When the required number
1124 	 * of iovec's exceeds this, we are forced to break the IO in multiple
1125 	 * bio's and wait for them all to complete.  This is likely if the
1126 	 * recordsize property is increased beyond 1MB.  The default
1127 	 * bio_count=16 should typically accommodate the maximum-size zio of
1128 	 * 16MB.
1129 	 */
1130 
1131 	abd_offset = 0;
1132 	bio_offset = io_offset;
1133 	bio_size = io_size;
1134 	for (int i = 0; i <= dr->dr_bio_count; i++) {
1135 
1136 		/* Finished constructing bio's for given buffer */
1137 		if (bio_size <= 0)
1138 			break;
1139 
1140 		/*
1141 		 * If additional bio's are required, we have to retry, but
1142 		 * this should be rare - see the comment above.
1143 		 */
1144 		if (dr->dr_bio_count == i) {
1145 			vdev_classic_dio_free(dr);
1146 			bio_count *= 2;
1147 			goto retry;
1148 		}
1149 
1150 		nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset);
1151 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
1152 		if (unlikely(dr->dr_bio[i] == NULL)) {
1153 			vdev_classic_dio_free(dr);
1154 			return (SET_ERROR(ENOMEM));
1155 		}
1156 
1157 		/* Matching put called by vdev_classic_physio_completion */
1158 		vdev_classic_dio_get(dr);
1159 
1160 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
1161 		dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion;
1162 		dr->dr_bio[i]->bi_private = dr;
1163 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
1164 
1165 		/* Remaining size is returned to become the new size */
1166 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
1167 		    bio_size, abd_offset);
1168 
1169 		/* Advance in buffer and construct another bio if needed */
1170 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1171 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
1172 	}
1173 
1174 	/* Extra reference to protect dio_request during vdev_submit_bio */
1175 	vdev_classic_dio_get(dr);
1176 
1177 	if (dr->dr_bio_count > 1)
1178 		blk_start_plug(&plug);
1179 
1180 	/* Submit all bio's associated with this dio */
1181 	for (int i = 0; i < dr->dr_bio_count; i++) {
1182 		if (dr->dr_bio[i])
1183 			vdev_submit_bio(dr->dr_bio[i]);
1184 	}
1185 
1186 	if (dr->dr_bio_count > 1)
1187 		blk_finish_plug(&plug);
1188 
1189 	vdev_classic_dio_put(dr);
1190 
1191 	return (error);
1192 }
1193 
1194 /* ========== */
1195 
1196 static void
vdev_disk_io_flush_completion(struct bio * bio)1197 vdev_disk_io_flush_completion(struct bio *bio)
1198 {
1199 	zio_t *zio = bio->bi_private;
1200 	zio->io_error = bi_status_to_errno(bio->bi_status);
1201 	if (zio->io_error == EOPNOTSUPP || zio->io_error == ENOTTY)
1202 		zio->io_error = SET_ERROR(ENOTSUP);
1203 
1204 	bio_put(bio);
1205 	ASSERT3S(zio->io_error, >=, 0);
1206 	if (zio->io_error)
1207 		vdev_disk_error(zio);
1208 	zio_interrupt(zio);
1209 }
1210 
1211 static int
vdev_disk_io_flush(struct block_device * bdev,zio_t * zio)1212 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
1213 {
1214 	struct request_queue *q;
1215 	struct bio *bio;
1216 
1217 	q = bdev_get_queue(bdev);
1218 	if (!q)
1219 		return (SET_ERROR(ENXIO));
1220 
1221 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
1222 	if (unlikely(bio == NULL))
1223 		return (SET_ERROR(ENOMEM));
1224 
1225 	bio->bi_end_io = vdev_disk_io_flush_completion;
1226 	bio->bi_private = zio;
1227 	bio_set_flush(bio);
1228 	vdev_submit_bio(bio);
1229 	invalidate_bdev(bdev);
1230 
1231 	return (0);
1232 }
1233 
1234 static void
vdev_disk_discard_end_io(struct bio * bio)1235 vdev_disk_discard_end_io(struct bio *bio)
1236 {
1237 	zio_t *zio = bio->bi_private;
1238 	zio->io_error = bi_status_to_errno(bio->bi_status);
1239 
1240 	bio_put(bio);
1241 	if (zio->io_error)
1242 		vdev_disk_error(zio);
1243 	zio_interrupt(zio);
1244 }
1245 
1246 /*
1247  * Wrappers for the different secure erase and discard APIs. We use async
1248  * when available; in this case, *biop is set to the last bio in the chain.
1249  */
1250 static int
vdev_bdev_issue_secure_erase(zfs_bdev_handle_t * bdh,sector_t sector,sector_t nsect,struct bio ** biop)1251 vdev_bdev_issue_secure_erase(zfs_bdev_handle_t *bdh, sector_t sector,
1252     sector_t nsect, struct bio **biop)
1253 {
1254 	*biop = NULL;
1255 	int error;
1256 
1257 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1258 	error = blkdev_issue_secure_erase(BDH_BDEV(bdh),
1259 	    sector, nsect, GFP_NOFS);
1260 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1261 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1262 	    sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE, biop);
1263 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1264 	error = blkdev_issue_discard(BDH_BDEV(bdh),
1265 	    sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE);
1266 #else
1267 #error "unsupported kernel"
1268 #endif
1269 
1270 	return (error);
1271 }
1272 
1273 static int
vdev_bdev_issue_discard(zfs_bdev_handle_t * bdh,sector_t sector,sector_t nsect,struct bio ** biop)1274 vdev_bdev_issue_discard(zfs_bdev_handle_t *bdh, sector_t sector,
1275     sector_t nsect, struct bio **biop)
1276 {
1277 	*biop = NULL;
1278 	int error;
1279 
1280 #if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1281 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1282 	    sector, nsect, GFP_NOFS, 0, biop);
1283 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS)
1284 	error = __blkdev_issue_discard(BDH_BDEV(bdh),
1285 	    sector, nsect, GFP_NOFS, biop);
1286 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1287 	error = blkdev_issue_discard(BDH_BDEV(bdh),
1288 	    sector, nsect, GFP_NOFS, 0);
1289 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS)
1290 	error = blkdev_issue_discard(BDH_BDEV(bdh),
1291 	    sector, nsect, GFP_NOFS);
1292 #else
1293 #error "unsupported kernel"
1294 #endif
1295 
1296 	return (error);
1297 }
1298 
1299 /*
1300  * Entry point for TRIM ops. This calls the right wrapper for secure erase or
1301  * discard, and then does the appropriate finishing work for error vs success
1302  * and async vs sync.
1303  */
1304 static int
vdev_disk_io_trim(zio_t * zio)1305 vdev_disk_io_trim(zio_t *zio)
1306 {
1307 	int error;
1308 	struct bio *bio;
1309 
1310 	zfs_bdev_handle_t *bdh = ((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh;
1311 	sector_t sector = zio->io_offset >> 9;
1312 	sector_t nsects = zio->io_size >> 9;
1313 
1314 	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
1315 		error = vdev_bdev_issue_secure_erase(bdh, sector, nsects, &bio);
1316 	else
1317 		error = vdev_bdev_issue_discard(bdh, sector, nsects, &bio);
1318 
1319 	if (error != 0)
1320 		return (SET_ERROR(-error));
1321 
1322 	if (bio == NULL) {
1323 		/*
1324 		 * This was a synchronous op that completed successfully, so
1325 		 * return it to ZFS immediately.
1326 		 */
1327 		zio_interrupt(zio);
1328 	} else {
1329 		/*
1330 		 * This was an asynchronous op; set up completion callback and
1331 		 * issue it.
1332 		 */
1333 		bio->bi_private = zio;
1334 		bio->bi_end_io = vdev_disk_discard_end_io;
1335 		vdev_submit_bio(bio);
1336 	}
1337 
1338 	return (0);
1339 }
1340 
1341 int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL;
1342 
1343 static void
vdev_disk_io_start(zio_t * zio)1344 vdev_disk_io_start(zio_t *zio)
1345 {
1346 	vdev_t *v = zio->io_vd;
1347 	vdev_disk_t *vd = v->vdev_tsd;
1348 	int error;
1349 
1350 	/*
1351 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
1352 	 * Nothing to be done here but return failure.
1353 	 */
1354 	if (vd == NULL) {
1355 		zio->io_error = ENXIO;
1356 		zio_interrupt(zio);
1357 		return;
1358 	}
1359 
1360 	rw_enter(&vd->vd_lock, RW_READER);
1361 
1362 	/*
1363 	 * If the vdev is closed, it's likely due to a failed reopen and is
1364 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
1365 	 */
1366 	if (vd->vd_bdh == NULL) {
1367 		rw_exit(&vd->vd_lock);
1368 		zio->io_error = ENXIO;
1369 		zio_interrupt(zio);
1370 		return;
1371 	}
1372 
1373 	switch (zio->io_type) {
1374 	case ZIO_TYPE_FLUSH:
1375 
1376 		if (!vdev_readable(v)) {
1377 			/* Drive not there, can't flush */
1378 			error = SET_ERROR(ENXIO);
1379 		} else if (zfs_nocacheflush) {
1380 			/* Flushing disabled by operator, declare success */
1381 			error = 0;
1382 		} else if (v->vdev_nowritecache) {
1383 			/* This vdev not capable of flushing */
1384 			error = SET_ERROR(ENOTSUP);
1385 		} else {
1386 			/*
1387 			 * Issue the flush. If successful, the response will
1388 			 * be handled in the completion callback, so we're done.
1389 			 */
1390 			error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
1391 			if (error == 0) {
1392 				rw_exit(&vd->vd_lock);
1393 				return;
1394 			}
1395 		}
1396 
1397 		/* Couldn't issue the flush, so set the error and return it */
1398 		rw_exit(&vd->vd_lock);
1399 		zio->io_error = error;
1400 		zio_execute(zio);
1401 		return;
1402 
1403 	case ZIO_TYPE_TRIM:
1404 		error = vdev_disk_io_trim(zio);
1405 		rw_exit(&vd->vd_lock);
1406 		if (error) {
1407 			zio->io_error = error;
1408 			zio_execute(zio);
1409 		}
1410 		return;
1411 
1412 	case ZIO_TYPE_READ:
1413 	case ZIO_TYPE_WRITE:
1414 		zio->io_target_timestamp = zio_handle_io_delay(zio);
1415 		error = vdev_disk_io_rw_fn(zio);
1416 		rw_exit(&vd->vd_lock);
1417 		if (error) {
1418 			zio->io_error = error;
1419 			zio_interrupt(zio);
1420 		}
1421 		return;
1422 
1423 	default:
1424 		/*
1425 		 * Getting here means our parent vdev has made a very strange
1426 		 * request of us, and shouldn't happen. Assert here to force a
1427 		 * crash in dev builds, but in production return the IO
1428 		 * unhandled. The pool will likely suspend anyway but that's
1429 		 * nicer than crashing the kernel.
1430 		 */
1431 		ASSERT3S(zio->io_type, ==, -1);
1432 
1433 		rw_exit(&vd->vd_lock);
1434 		zio->io_error = SET_ERROR(ENOTSUP);
1435 		zio_interrupt(zio);
1436 		return;
1437 	}
1438 
1439 	__builtin_unreachable();
1440 }
1441 
1442 static void
vdev_disk_io_done(zio_t * zio)1443 vdev_disk_io_done(zio_t *zio)
1444 {
1445 	/* If this was a read or write, we need to clean up the vbio */
1446 	if (zio->io_bio != NULL) {
1447 		vbio_t *vbio = zio->io_bio;
1448 		zio->io_bio = NULL;
1449 
1450 		/*
1451 		 * If we copied the ABD before issuing it, clean up and return
1452 		 * the copy to the ADB, with changes if appropriate.
1453 		 */
1454 		if (vbio->vbio_abd != NULL) {
1455 			if (zio->io_type == ZIO_TYPE_READ)
1456 				abd_copy(zio->io_abd, vbio->vbio_abd,
1457 				    zio->io_size);
1458 
1459 			abd_free(vbio->vbio_abd);
1460 			vbio->vbio_abd = NULL;
1461 		}
1462 
1463 		/* Final cleanup */
1464 		kmem_free(vbio, sizeof (vbio_t));
1465 	}
1466 
1467 	/*
1468 	 * If the device returned EIO, we revalidate the media.  If it is
1469 	 * determined the media has changed this triggers the asynchronous
1470 	 * removal of the device from the configuration.
1471 	 */
1472 	if (zio->io_error == EIO) {
1473 		vdev_t *v = zio->io_vd;
1474 		vdev_disk_t *vd = v->vdev_tsd;
1475 
1476 		if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
1477 			invalidate_bdev(BDH_BDEV(vd->vd_bdh));
1478 			v->vdev_remove_wanted = B_TRUE;
1479 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
1480 		}
1481 	}
1482 }
1483 
1484 static void
vdev_disk_hold(vdev_t * vd)1485 vdev_disk_hold(vdev_t *vd)
1486 {
1487 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1488 
1489 	/* We must have a pathname, and it must be absolute. */
1490 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
1491 		return;
1492 
1493 	/*
1494 	 * Only prefetch path and devid info if the device has
1495 	 * never been opened.
1496 	 */
1497 	if (vd->vdev_tsd != NULL)
1498 		return;
1499 
1500 }
1501 
1502 static void
vdev_disk_rele(vdev_t * vd)1503 vdev_disk_rele(vdev_t *vd)
1504 {
1505 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1506 
1507 	/* XXX: Implement me as a vnode rele for the device */
1508 }
1509 
1510 /*
1511  * BIO submission method. See comment above about vdev_classic.
1512  * Set zfs_vdev_disk_classic=0 for new, =1 for classic
1513  */
1514 static uint_t zfs_vdev_disk_classic = 0;	/* default new */
1515 
1516 /* Set submission function from module parameter */
1517 static int
vdev_disk_param_set_classic(const char * buf,zfs_kernel_param_t * kp)1518 vdev_disk_param_set_classic(const char *buf, zfs_kernel_param_t *kp)
1519 {
1520 	int err = param_set_uint(buf, kp);
1521 	if (err < 0)
1522 		return (SET_ERROR(err));
1523 
1524 	vdev_disk_io_rw_fn =
1525 	    zfs_vdev_disk_classic ? vdev_classic_physio : vdev_disk_io_rw;
1526 
1527 	printk(KERN_INFO "ZFS: forcing %s BIO submission\n",
1528 	    zfs_vdev_disk_classic ? "classic" : "new");
1529 
1530 	return (0);
1531 }
1532 
1533 /*
1534  * At first use vdev use, set the submission function from the default value if
1535  * it hasn't been set already.
1536  */
1537 static int
vdev_disk_init(spa_t * spa,nvlist_t * nv,void ** tsd)1538 vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
1539 {
1540 	(void) spa;
1541 	(void) nv;
1542 	(void) tsd;
1543 
1544 	if (vdev_disk_io_rw_fn == NULL)
1545 		vdev_disk_io_rw_fn = zfs_vdev_disk_classic ?
1546 		    vdev_classic_physio : vdev_disk_io_rw;
1547 
1548 	return (0);
1549 }
1550 
1551 vdev_ops_t vdev_disk_ops = {
1552 	.vdev_op_init = vdev_disk_init,
1553 	.vdev_op_fini = NULL,
1554 	.vdev_op_open = vdev_disk_open,
1555 	.vdev_op_close = vdev_disk_close,
1556 	.vdev_op_asize = vdev_default_asize,
1557 	.vdev_op_min_asize = vdev_default_min_asize,
1558 	.vdev_op_min_alloc = NULL,
1559 	.vdev_op_io_start = vdev_disk_io_start,
1560 	.vdev_op_io_done = vdev_disk_io_done,
1561 	.vdev_op_state_change = NULL,
1562 	.vdev_op_need_resilver = NULL,
1563 	.vdev_op_hold = vdev_disk_hold,
1564 	.vdev_op_rele = vdev_disk_rele,
1565 	.vdev_op_remap = NULL,
1566 	.vdev_op_xlate = vdev_default_xlate,
1567 	.vdev_op_rebuild_asize = NULL,
1568 	.vdev_op_metaslab_init = NULL,
1569 	.vdev_op_config_generate = NULL,
1570 	.vdev_op_nparity = NULL,
1571 	.vdev_op_ndisks = NULL,
1572 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
1573 	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
1574 	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1575 };
1576 
1577 /*
1578  * The zfs_vdev_scheduler module option has been deprecated. Setting this
1579  * value no longer has any effect.  It has not yet been entirely removed
1580  * to allow the module to be loaded if this option is specified in the
1581  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
1582  */
1583 static int
param_set_vdev_scheduler(const char * val,zfs_kernel_param_t * kp)1584 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1585 {
1586 	int error = param_set_charp(val, kp);
1587 	if (error == 0) {
1588 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1589 		    "is not supported.\n");
1590 	}
1591 
1592 	return (error);
1593 }
1594 
1595 static const char *zfs_vdev_scheduler = "unused";
1596 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1597     param_get_charp, &zfs_vdev_scheduler, 0644);
1598 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1599 
1600 int
param_set_min_auto_ashift(const char * buf,zfs_kernel_param_t * kp)1601 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1602 {
1603 	uint_t val;
1604 	int error;
1605 
1606 	error = kstrtouint(buf, 0, &val);
1607 	if (error < 0)
1608 		return (SET_ERROR(error));
1609 
1610 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1611 		return (SET_ERROR(-EINVAL));
1612 
1613 	error = param_set_uint(buf, kp);
1614 	if (error < 0)
1615 		return (SET_ERROR(error));
1616 
1617 	return (0);
1618 }
1619 
1620 int
param_set_max_auto_ashift(const char * buf,zfs_kernel_param_t * kp)1621 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1622 {
1623 	uint_t val;
1624 	int error;
1625 
1626 	error = kstrtouint(buf, 0, &val);
1627 	if (error < 0)
1628 		return (SET_ERROR(error));
1629 
1630 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1631 		return (SET_ERROR(-EINVAL));
1632 
1633 	error = param_set_uint(buf, kp);
1634 	if (error < 0)
1635 		return (SET_ERROR(error));
1636 
1637 	return (0);
1638 }
1639 
1640 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1641 	"Timeout before determining that a device is missing");
1642 
1643 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1644 	"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1645 
1646 ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
1647 	"Maximum number of data segments to add to an IO request (min 4)");
1648 
1649 ZFS_MODULE_PARAM_CALL(zfs_vdev_disk, zfs_vdev_disk_, classic,
1650     vdev_disk_param_set_classic, param_get_uint, ZMOD_RD,
1651 	"Use classic BIO submission method");
1652