1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. 23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>. 25 * LLNL-CODE-403049. 26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa_impl.h> 31 #include <sys/vdev_disk.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/vdev_trim.h> 34 #include <sys/abd.h> 35 #include <sys/fs/zfs.h> 36 #include <sys/zio.h> 37 #include <linux/blkpg.h> 38 #include <linux/msdos_fs.h> 39 #include <linux/vfs_compat.h> 40 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER 41 #include <linux/blk-cgroup.h> 42 #endif 43 44 typedef struct vdev_disk { 45 struct block_device *vd_bdev; 46 krwlock_t vd_lock; 47 } vdev_disk_t; 48 49 /* 50 * Unique identifier for the exclusive vdev holder. 51 */ 52 static void *zfs_vdev_holder = VDEV_HOLDER; 53 54 /* 55 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the 56 * device is missing. The missing path may be transient since the links 57 * can be briefly removed and recreated in response to udev events. 58 */ 59 static unsigned zfs_vdev_open_timeout_ms = 1000; 60 61 /* 62 * Size of the "reserved" partition, in blocks. 63 */ 64 #define EFI_MIN_RESV_SIZE (16 * 1024) 65 66 /* 67 * Virtual device vector for disks. 68 */ 69 typedef struct dio_request { 70 zio_t *dr_zio; /* Parent ZIO */ 71 atomic_t dr_ref; /* References */ 72 int dr_error; /* Bio error */ 73 int dr_bio_count; /* Count of bio's */ 74 struct bio *dr_bio[0]; /* Attached bio's */ 75 } dio_request_t; 76 77 static fmode_t 78 vdev_bdev_mode(spa_mode_t spa_mode) 79 { 80 fmode_t mode = 0; 81 82 if (spa_mode & SPA_MODE_READ) 83 mode |= FMODE_READ; 84 85 if (spa_mode & SPA_MODE_WRITE) 86 mode |= FMODE_WRITE; 87 88 return (mode); 89 } 90 91 /* 92 * Returns the usable capacity (in bytes) for the partition or disk. 93 */ 94 static uint64_t 95 bdev_capacity(struct block_device *bdev) 96 { 97 return (i_size_read(bdev->bd_inode)); 98 } 99 100 #if !defined(HAVE_BDEV_WHOLE) 101 static inline struct block_device * 102 bdev_whole(struct block_device *bdev) 103 { 104 return (bdev->bd_contains); 105 } 106 #endif 107 108 /* 109 * Returns the maximum expansion capacity of the block device (in bytes). 110 * 111 * It is possible to expand a vdev when it has been created as a wholedisk 112 * and the containing block device has increased in capacity. Or when the 113 * partition containing the pool has been manually increased in size. 114 * 115 * This function is only responsible for calculating the potential expansion 116 * size so it can be reported by 'zpool list'. The efi_use_whole_disk() is 117 * responsible for verifying the expected partition layout in the wholedisk 118 * case, and updating the partition table if appropriate. Once the partition 119 * size has been increased the additional capacity will be visible using 120 * bdev_capacity(). 121 * 122 * The returned maximum expansion capacity is always expected to be larger, or 123 * at the very least equal, to its usable capacity to prevent overestimating 124 * the pool expandsize. 125 */ 126 static uint64_t 127 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk) 128 { 129 uint64_t psize; 130 int64_t available; 131 132 if (wholedisk && bdev != bdev_whole(bdev)) { 133 /* 134 * When reporting maximum expansion capacity for a wholedisk 135 * deduct any capacity which is expected to be lost due to 136 * alignment restrictions. Over reporting this value isn't 137 * harmful and would only result in slightly less capacity 138 * than expected post expansion. 139 * The estimated available space may be slightly smaller than 140 * bdev_capacity() for devices where the number of sectors is 141 * not a multiple of the alignment size and the partition layout 142 * is keeping less than PARTITION_END_ALIGNMENT bytes after the 143 * "reserved" EFI partition: in such cases return the device 144 * usable capacity. 145 */ 146 available = i_size_read(bdev_whole(bdev)->bd_inode) - 147 ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK + 148 PARTITION_END_ALIGNMENT) << SECTOR_BITS); 149 psize = MAX(available, bdev_capacity(bdev)); 150 } else { 151 psize = bdev_capacity(bdev); 152 } 153 154 return (psize); 155 } 156 157 static void 158 vdev_disk_error(zio_t *zio) 159 { 160 /* 161 * This function can be called in interrupt context, for instance while 162 * handling IRQs coming from a misbehaving disk device; use printk() 163 * which is safe from any context. 164 */ 165 printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d " 166 "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa), 167 zio->io_vd->vdev_path, zio->io_error, zio->io_type, 168 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size, 169 zio->io_flags); 170 } 171 172 static int 173 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize, 174 uint64_t *logical_ashift, uint64_t *physical_ashift) 175 { 176 struct block_device *bdev; 177 fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa)); 178 hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms); 179 vdev_disk_t *vd; 180 181 /* Must have a pathname and it must be absolute. */ 182 if (v->vdev_path == NULL || v->vdev_path[0] != '/') { 183 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 184 vdev_dbgmsg(v, "invalid vdev_path"); 185 return (SET_ERROR(EINVAL)); 186 } 187 188 /* 189 * Reopen the device if it is currently open. When expanding a 190 * partition force re-scanning the partition table if userland 191 * did not take care of this already. We need to do this while closed 192 * in order to get an accurate updated block device size. Then 193 * since udev may need to recreate the device links increase the 194 * open retry timeout before reporting the device as unavailable. 195 */ 196 vd = v->vdev_tsd; 197 if (vd) { 198 char disk_name[BDEVNAME_SIZE + 6] = "/dev/"; 199 boolean_t reread_part = B_FALSE; 200 201 rw_enter(&vd->vd_lock, RW_WRITER); 202 bdev = vd->vd_bdev; 203 vd->vd_bdev = NULL; 204 205 if (bdev) { 206 if (v->vdev_expanding && bdev != bdev_whole(bdev)) { 207 bdevname(bdev_whole(bdev), disk_name + 5); 208 /* 209 * If userland has BLKPG_RESIZE_PARTITION, 210 * then it should have updated the partition 211 * table already. We can detect this by 212 * comparing our current physical size 213 * with that of the device. If they are 214 * the same, then we must not have 215 * BLKPG_RESIZE_PARTITION or it failed to 216 * update the partition table online. We 217 * fallback to rescanning the partition 218 * table from the kernel below. However, 219 * if the capacity already reflects the 220 * updated partition, then we skip 221 * rescanning the partition table here. 222 */ 223 if (v->vdev_psize == bdev_capacity(bdev)) 224 reread_part = B_TRUE; 225 } 226 227 blkdev_put(bdev, mode | FMODE_EXCL); 228 } 229 230 if (reread_part) { 231 bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL, 232 zfs_vdev_holder); 233 if (!IS_ERR(bdev)) { 234 int error = vdev_bdev_reread_part(bdev); 235 blkdev_put(bdev, mode | FMODE_EXCL); 236 if (error == 0) { 237 timeout = MSEC2NSEC( 238 zfs_vdev_open_timeout_ms * 2); 239 } 240 } 241 } 242 } else { 243 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 244 245 rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL); 246 rw_enter(&vd->vd_lock, RW_WRITER); 247 } 248 249 /* 250 * Devices are always opened by the path provided at configuration 251 * time. This means that if the provided path is a udev by-id path 252 * then drives may be re-cabled without an issue. If the provided 253 * path is a udev by-path path, then the physical location information 254 * will be preserved. This can be critical for more complicated 255 * configurations where drives are located in specific physical 256 * locations to maximize the systems tolerance to component failure. 257 * 258 * Alternatively, you can provide your own udev rule to flexibly map 259 * the drives as you see fit. It is not advised that you use the 260 * /dev/[hd]d devices which may be reordered due to probing order. 261 * Devices in the wrong locations will be detected by the higher 262 * level vdev validation. 263 * 264 * The specified paths may be briefly removed and recreated in 265 * response to udev events. This should be exceptionally unlikely 266 * because the zpool command makes every effort to verify these paths 267 * have already settled prior to reaching this point. Therefore, 268 * a ENOENT failure at this point is highly likely to be transient 269 * and it is reasonable to sleep and retry before giving up. In 270 * practice delays have been observed to be on the order of 100ms. 271 * 272 * When ERESTARTSYS is returned it indicates the block device is 273 * a zvol which could not be opened due to the deadlock detection 274 * logic in zvol_open(). Extend the timeout and retry the open 275 * subsequent attempts are expected to eventually succeed. 276 */ 277 hrtime_t start = gethrtime(); 278 bdev = ERR_PTR(-ENXIO); 279 while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) { 280 bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL, 281 zfs_vdev_holder); 282 if (unlikely(PTR_ERR(bdev) == -ENOENT)) { 283 schedule_timeout(MSEC_TO_TICK(10)); 284 } else if (unlikely(PTR_ERR(bdev) == -ERESTARTSYS)) { 285 timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10); 286 continue; 287 } else if (IS_ERR(bdev)) { 288 break; 289 } 290 } 291 292 if (IS_ERR(bdev)) { 293 int error = -PTR_ERR(bdev); 294 vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error, 295 (u_longlong_t)(gethrtime() - start), 296 (u_longlong_t)timeout); 297 vd->vd_bdev = NULL; 298 v->vdev_tsd = vd; 299 rw_exit(&vd->vd_lock); 300 return (SET_ERROR(error)); 301 } else { 302 vd->vd_bdev = bdev; 303 v->vdev_tsd = vd; 304 rw_exit(&vd->vd_lock); 305 } 306 307 struct request_queue *q = bdev_get_queue(vd->vd_bdev); 308 309 /* Determine the physical block size */ 310 int physical_block_size = bdev_physical_block_size(vd->vd_bdev); 311 312 /* Determine the logical block size */ 313 int logical_block_size = bdev_logical_block_size(vd->vd_bdev); 314 315 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */ 316 v->vdev_nowritecache = B_FALSE; 317 318 /* Set when device reports it supports TRIM. */ 319 v->vdev_has_trim = !!blk_queue_discard(q); 320 321 /* Set when device reports it supports secure TRIM. */ 322 v->vdev_has_securetrim = !!blk_queue_discard_secure(q); 323 324 /* Inform the ZIO pipeline that we are non-rotational */ 325 v->vdev_nonrot = blk_queue_nonrot(q); 326 327 /* Physical volume size in bytes for the partition */ 328 *psize = bdev_capacity(vd->vd_bdev); 329 330 /* Physical volume size in bytes including possible expansion space */ 331 *max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk); 332 333 /* Based on the minimum sector size set the block size */ 334 *physical_ashift = highbit64(MAX(physical_block_size, 335 SPA_MINBLOCKSIZE)) - 1; 336 337 *logical_ashift = highbit64(MAX(logical_block_size, 338 SPA_MINBLOCKSIZE)) - 1; 339 340 return (0); 341 } 342 343 static void 344 vdev_disk_close(vdev_t *v) 345 { 346 vdev_disk_t *vd = v->vdev_tsd; 347 348 if (v->vdev_reopening || vd == NULL) 349 return; 350 351 if (vd->vd_bdev != NULL) { 352 blkdev_put(vd->vd_bdev, 353 vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL); 354 } 355 356 rw_destroy(&vd->vd_lock); 357 kmem_free(vd, sizeof (vdev_disk_t)); 358 v->vdev_tsd = NULL; 359 } 360 361 static dio_request_t * 362 vdev_disk_dio_alloc(int bio_count) 363 { 364 dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) + 365 sizeof (struct bio *) * bio_count, KM_SLEEP); 366 atomic_set(&dr->dr_ref, 0); 367 dr->dr_bio_count = bio_count; 368 dr->dr_error = 0; 369 370 for (int i = 0; i < dr->dr_bio_count; i++) 371 dr->dr_bio[i] = NULL; 372 373 return (dr); 374 } 375 376 static void 377 vdev_disk_dio_free(dio_request_t *dr) 378 { 379 int i; 380 381 for (i = 0; i < dr->dr_bio_count; i++) 382 if (dr->dr_bio[i]) 383 bio_put(dr->dr_bio[i]); 384 385 kmem_free(dr, sizeof (dio_request_t) + 386 sizeof (struct bio *) * dr->dr_bio_count); 387 } 388 389 static void 390 vdev_disk_dio_get(dio_request_t *dr) 391 { 392 atomic_inc(&dr->dr_ref); 393 } 394 395 static int 396 vdev_disk_dio_put(dio_request_t *dr) 397 { 398 int rc = atomic_dec_return(&dr->dr_ref); 399 400 /* 401 * Free the dio_request when the last reference is dropped and 402 * ensure zio_interpret is called only once with the correct zio 403 */ 404 if (rc == 0) { 405 zio_t *zio = dr->dr_zio; 406 int error = dr->dr_error; 407 408 vdev_disk_dio_free(dr); 409 410 if (zio) { 411 zio->io_error = error; 412 ASSERT3S(zio->io_error, >=, 0); 413 if (zio->io_error) 414 vdev_disk_error(zio); 415 416 zio_delay_interrupt(zio); 417 } 418 } 419 420 return (rc); 421 } 422 423 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error) 424 { 425 dio_request_t *dr = bio->bi_private; 426 int rc; 427 428 if (dr->dr_error == 0) { 429 #ifdef HAVE_1ARG_BIO_END_IO_T 430 dr->dr_error = BIO_END_IO_ERROR(bio); 431 #else 432 if (error) 433 dr->dr_error = -(error); 434 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 435 dr->dr_error = EIO; 436 #endif 437 } 438 439 /* Drop reference acquired by __vdev_disk_physio */ 440 rc = vdev_disk_dio_put(dr); 441 } 442 443 static inline void 444 vdev_submit_bio_impl(struct bio *bio) 445 { 446 #ifdef HAVE_1ARG_SUBMIT_BIO 447 (void) submit_bio(bio); 448 #else 449 (void) submit_bio(bio_data_dir(bio), bio); 450 #endif 451 } 452 453 /* 454 * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so 455 * replace it with preempt_schedule under the following condition: 456 */ 457 #if defined(CONFIG_ARM64) && \ 458 defined(CONFIG_PREEMPTION) && \ 459 defined(CONFIG_BLK_CGROUP) 460 #define preempt_schedule_notrace(x) preempt_schedule(x) 461 #endif 462 463 #ifdef HAVE_BIO_SET_DEV 464 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY) 465 /* 466 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by 467 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched(). 468 * As a side effect the function was converted to GPL-only. Define our 469 * own version when needed which uses rcu_read_lock_sched(). 470 */ 471 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) 472 static inline bool 473 vdev_blkg_tryget(struct blkcg_gq *blkg) 474 { 475 struct percpu_ref *ref = &blkg->refcnt; 476 unsigned long __percpu *count; 477 bool rc; 478 479 rcu_read_lock_sched(); 480 481 if (__ref_is_percpu(ref, &count)) { 482 this_cpu_inc(*count); 483 rc = true; 484 } else { 485 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA 486 rc = atomic_long_inc_not_zero(&ref->data->count); 487 #else 488 rc = atomic_long_inc_not_zero(&ref->count); 489 #endif 490 } 491 492 rcu_read_unlock_sched(); 493 494 return (rc); 495 } 496 #elif defined(HAVE_BLKG_TRYGET) 497 #define vdev_blkg_tryget(bg) blkg_tryget(bg) 498 #endif 499 #ifdef HAVE_BIO_SET_DEV_MACRO 500 /* 501 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the 502 * GPL-only bio_associate_blkg() symbol thus inadvertently converting 503 * the entire macro. Provide a minimal version which always assigns the 504 * request queue's root_blkg to the bio. 505 */ 506 static inline void 507 vdev_bio_associate_blkg(struct bio *bio) 508 { 509 #if defined(HAVE_BIO_BDEV_DISK) 510 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 511 #else 512 struct request_queue *q = bio->bi_disk->queue; 513 #endif 514 515 ASSERT3P(q, !=, NULL); 516 ASSERT3P(bio->bi_blkg, ==, NULL); 517 518 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg)) 519 bio->bi_blkg = q->root_blkg; 520 } 521 522 #define bio_associate_blkg vdev_bio_associate_blkg 523 #else 524 static inline void 525 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev) 526 { 527 #if defined(HAVE_BIO_BDEV_DISK) 528 struct request_queue *q = bdev->bd_disk->queue; 529 #else 530 struct request_queue *q = bio->bi_disk->queue; 531 #endif 532 bio_clear_flag(bio, BIO_REMAPPED); 533 if (bio->bi_bdev != bdev) 534 bio_clear_flag(bio, BIO_THROTTLED); 535 bio->bi_bdev = bdev; 536 537 ASSERT3P(q, !=, NULL); 538 ASSERT3P(bio->bi_blkg, ==, NULL); 539 540 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg)) 541 bio->bi_blkg = q->root_blkg; 542 } 543 #define bio_set_dev vdev_bio_set_dev 544 #endif 545 #endif 546 #else 547 /* 548 * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels. 549 */ 550 static inline void 551 bio_set_dev(struct bio *bio, struct block_device *bdev) 552 { 553 bio->bi_bdev = bdev; 554 } 555 #endif /* HAVE_BIO_SET_DEV */ 556 557 static inline void 558 vdev_submit_bio(struct bio *bio) 559 { 560 struct bio_list *bio_list = current->bio_list; 561 current->bio_list = NULL; 562 vdev_submit_bio_impl(bio); 563 current->bio_list = bio_list; 564 } 565 566 #ifdef HAVE_BIO_ALLOC_4ARG 567 #define bio_alloc(gfp_mask, nr_iovecs) bio_alloc(NULL, nr_iovecs, 0, gfp_mask) 568 #endif 569 570 static int 571 __vdev_disk_physio(struct block_device *bdev, zio_t *zio, 572 size_t io_size, uint64_t io_offset, int rw, int flags) 573 { 574 dio_request_t *dr; 575 uint64_t abd_offset; 576 uint64_t bio_offset; 577 int bio_size; 578 int bio_count = 16; 579 int error = 0; 580 struct blk_plug plug; 581 582 /* 583 * Accessing outside the block device is never allowed. 584 */ 585 if (io_offset + io_size > bdev->bd_inode->i_size) { 586 vdev_dbgmsg(zio->io_vd, 587 "Illegal access %llu size %llu, device size %llu", 588 (u_longlong_t)io_offset, 589 (u_longlong_t)io_size, 590 (u_longlong_t)i_size_read(bdev->bd_inode)); 591 return (SET_ERROR(EIO)); 592 } 593 594 retry: 595 dr = vdev_disk_dio_alloc(bio_count); 596 597 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))) 598 bio_set_flags_failfast(bdev, &flags); 599 600 dr->dr_zio = zio; 601 602 /* 603 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which 604 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio 605 * can cover at least 128KB and at most 1MB. When the required number 606 * of iovec's exceeds this, we are forced to break the IO in multiple 607 * bio's and wait for them all to complete. This is likely if the 608 * recordsize property is increased beyond 1MB. The default 609 * bio_count=16 should typically accommodate the maximum-size zio of 610 * 16MB. 611 */ 612 613 abd_offset = 0; 614 bio_offset = io_offset; 615 bio_size = io_size; 616 for (int i = 0; i <= dr->dr_bio_count; i++) { 617 618 /* Finished constructing bio's for given buffer */ 619 if (bio_size <= 0) 620 break; 621 622 /* 623 * If additional bio's are required, we have to retry, but 624 * this should be rare - see the comment above. 625 */ 626 if (dr->dr_bio_count == i) { 627 vdev_disk_dio_free(dr); 628 bio_count *= 2; 629 goto retry; 630 } 631 632 /* bio_alloc() with __GFP_WAIT never returns NULL */ 633 #ifdef HAVE_BIO_MAX_SEGS 634 dr->dr_bio[i] = bio_alloc(GFP_NOIO, bio_max_segs( 635 abd_nr_pages_off(zio->io_abd, bio_size, abd_offset))); 636 #else 637 dr->dr_bio[i] = bio_alloc(GFP_NOIO, 638 MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset), 639 BIO_MAX_PAGES)); 640 #endif 641 if (unlikely(dr->dr_bio[i] == NULL)) { 642 vdev_disk_dio_free(dr); 643 return (SET_ERROR(ENOMEM)); 644 } 645 646 /* Matching put called by vdev_disk_physio_completion */ 647 vdev_disk_dio_get(dr); 648 649 bio_set_dev(dr->dr_bio[i], bdev); 650 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9; 651 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion; 652 dr->dr_bio[i]->bi_private = dr; 653 bio_set_op_attrs(dr->dr_bio[i], rw, flags); 654 655 /* Remaining size is returned to become the new size */ 656 bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd, 657 bio_size, abd_offset); 658 659 /* Advance in buffer and construct another bio if needed */ 660 abd_offset += BIO_BI_SIZE(dr->dr_bio[i]); 661 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]); 662 } 663 664 /* Extra reference to protect dio_request during vdev_submit_bio */ 665 vdev_disk_dio_get(dr); 666 667 if (dr->dr_bio_count > 1) 668 blk_start_plug(&plug); 669 670 /* Submit all bio's associated with this dio */ 671 for (int i = 0; i < dr->dr_bio_count; i++) { 672 if (dr->dr_bio[i]) 673 vdev_submit_bio(dr->dr_bio[i]); 674 } 675 676 if (dr->dr_bio_count > 1) 677 blk_finish_plug(&plug); 678 679 (void) vdev_disk_dio_put(dr); 680 681 return (error); 682 } 683 684 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error) 685 { 686 zio_t *zio = bio->bi_private; 687 #ifdef HAVE_1ARG_BIO_END_IO_T 688 zio->io_error = BIO_END_IO_ERROR(bio); 689 #else 690 zio->io_error = -error; 691 #endif 692 693 if (zio->io_error && (zio->io_error == EOPNOTSUPP)) 694 zio->io_vd->vdev_nowritecache = B_TRUE; 695 696 bio_put(bio); 697 ASSERT3S(zio->io_error, >=, 0); 698 if (zio->io_error) 699 vdev_disk_error(zio); 700 zio_interrupt(zio); 701 } 702 703 static int 704 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio) 705 { 706 struct request_queue *q; 707 struct bio *bio; 708 709 q = bdev_get_queue(bdev); 710 if (!q) 711 return (SET_ERROR(ENXIO)); 712 713 bio = bio_alloc(GFP_NOIO, 0); 714 /* bio_alloc() with __GFP_WAIT never returns NULL */ 715 if (unlikely(bio == NULL)) 716 return (SET_ERROR(ENOMEM)); 717 718 bio->bi_end_io = vdev_disk_io_flush_completion; 719 bio->bi_private = zio; 720 bio_set_dev(bio, bdev); 721 bio_set_flush(bio); 722 vdev_submit_bio(bio); 723 invalidate_bdev(bdev); 724 725 return (0); 726 } 727 728 static void 729 vdev_disk_io_start(zio_t *zio) 730 { 731 vdev_t *v = zio->io_vd; 732 vdev_disk_t *vd = v->vdev_tsd; 733 unsigned long trim_flags = 0; 734 int rw, error; 735 736 /* 737 * If the vdev is closed, it's likely in the REMOVED or FAULTED state. 738 * Nothing to be done here but return failure. 739 */ 740 if (vd == NULL) { 741 zio->io_error = ENXIO; 742 zio_interrupt(zio); 743 return; 744 } 745 746 rw_enter(&vd->vd_lock, RW_READER); 747 748 /* 749 * If the vdev is closed, it's likely due to a failed reopen and is 750 * in the UNAVAIL state. Nothing to be done here but return failure. 751 */ 752 if (vd->vd_bdev == NULL) { 753 rw_exit(&vd->vd_lock); 754 zio->io_error = ENXIO; 755 zio_interrupt(zio); 756 return; 757 } 758 759 switch (zio->io_type) { 760 case ZIO_TYPE_IOCTL: 761 762 if (!vdev_readable(v)) { 763 rw_exit(&vd->vd_lock); 764 zio->io_error = SET_ERROR(ENXIO); 765 zio_interrupt(zio); 766 return; 767 } 768 769 switch (zio->io_cmd) { 770 case DKIOCFLUSHWRITECACHE: 771 772 if (zfs_nocacheflush) 773 break; 774 775 if (v->vdev_nowritecache) { 776 zio->io_error = SET_ERROR(ENOTSUP); 777 break; 778 } 779 780 error = vdev_disk_io_flush(vd->vd_bdev, zio); 781 if (error == 0) { 782 rw_exit(&vd->vd_lock); 783 return; 784 } 785 786 zio->io_error = error; 787 788 break; 789 790 default: 791 zio->io_error = SET_ERROR(ENOTSUP); 792 } 793 794 rw_exit(&vd->vd_lock); 795 zio_execute(zio); 796 return; 797 case ZIO_TYPE_WRITE: 798 rw = WRITE; 799 break; 800 801 case ZIO_TYPE_READ: 802 rw = READ; 803 break; 804 805 case ZIO_TYPE_TRIM: 806 #if defined(BLKDEV_DISCARD_SECURE) 807 if (zio->io_trim_flags & ZIO_TRIM_SECURE) 808 trim_flags |= BLKDEV_DISCARD_SECURE; 809 #endif 810 zio->io_error = -blkdev_issue_discard(vd->vd_bdev, 811 zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, 812 trim_flags); 813 814 rw_exit(&vd->vd_lock); 815 zio_interrupt(zio); 816 return; 817 818 default: 819 rw_exit(&vd->vd_lock); 820 zio->io_error = SET_ERROR(ENOTSUP); 821 zio_interrupt(zio); 822 return; 823 } 824 825 zio->io_target_timestamp = zio_handle_io_delay(zio); 826 error = __vdev_disk_physio(vd->vd_bdev, zio, 827 zio->io_size, zio->io_offset, rw, 0); 828 rw_exit(&vd->vd_lock); 829 830 if (error) { 831 zio->io_error = error; 832 zio_interrupt(zio); 833 return; 834 } 835 } 836 837 static void 838 vdev_disk_io_done(zio_t *zio) 839 { 840 /* 841 * If the device returned EIO, we revalidate the media. If it is 842 * determined the media has changed this triggers the asynchronous 843 * removal of the device from the configuration. 844 */ 845 if (zio->io_error == EIO) { 846 vdev_t *v = zio->io_vd; 847 vdev_disk_t *vd = v->vdev_tsd; 848 849 if (zfs_check_media_change(vd->vd_bdev)) { 850 invalidate_bdev(vd->vd_bdev); 851 v->vdev_remove_wanted = B_TRUE; 852 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 853 } 854 } 855 } 856 857 static void 858 vdev_disk_hold(vdev_t *vd) 859 { 860 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 861 862 /* We must have a pathname, and it must be absolute. */ 863 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') 864 return; 865 866 /* 867 * Only prefetch path and devid info if the device has 868 * never been opened. 869 */ 870 if (vd->vdev_tsd != NULL) 871 return; 872 873 } 874 875 static void 876 vdev_disk_rele(vdev_t *vd) 877 { 878 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 879 880 /* XXX: Implement me as a vnode rele for the device */ 881 } 882 883 vdev_ops_t vdev_disk_ops = { 884 .vdev_op_init = NULL, 885 .vdev_op_fini = NULL, 886 .vdev_op_open = vdev_disk_open, 887 .vdev_op_close = vdev_disk_close, 888 .vdev_op_asize = vdev_default_asize, 889 .vdev_op_min_asize = vdev_default_min_asize, 890 .vdev_op_min_alloc = NULL, 891 .vdev_op_io_start = vdev_disk_io_start, 892 .vdev_op_io_done = vdev_disk_io_done, 893 .vdev_op_state_change = NULL, 894 .vdev_op_need_resilver = NULL, 895 .vdev_op_hold = vdev_disk_hold, 896 .vdev_op_rele = vdev_disk_rele, 897 .vdev_op_remap = NULL, 898 .vdev_op_xlate = vdev_default_xlate, 899 .vdev_op_rebuild_asize = NULL, 900 .vdev_op_metaslab_init = NULL, 901 .vdev_op_config_generate = NULL, 902 .vdev_op_nparity = NULL, 903 .vdev_op_ndisks = NULL, 904 .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */ 905 .vdev_op_leaf = B_TRUE /* leaf vdev */ 906 }; 907 908 /* 909 * The zfs_vdev_scheduler module option has been deprecated. Setting this 910 * value no longer has any effect. It has not yet been entirely removed 911 * to allow the module to be loaded if this option is specified in the 912 * /etc/modprobe.d/zfs.conf file. The following warning will be logged. 913 */ 914 static int 915 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp) 916 { 917 int error = param_set_charp(val, kp); 918 if (error == 0) { 919 printk(KERN_INFO "The 'zfs_vdev_scheduler' module option " 920 "is not supported.\n"); 921 } 922 923 return (error); 924 } 925 926 static const char *zfs_vdev_scheduler = "unused"; 927 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler, 928 param_get_charp, &zfs_vdev_scheduler, 0644); 929 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler"); 930 931 int 932 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp) 933 { 934 uint64_t val; 935 int error; 936 937 error = kstrtoull(buf, 0, &val); 938 if (error < 0) 939 return (SET_ERROR(error)); 940 941 if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift) 942 return (SET_ERROR(-EINVAL)); 943 944 error = param_set_ulong(buf, kp); 945 if (error < 0) 946 return (SET_ERROR(error)); 947 948 return (0); 949 } 950 951 int 952 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp) 953 { 954 uint64_t val; 955 int error; 956 957 error = kstrtoull(buf, 0, &val); 958 if (error < 0) 959 return (SET_ERROR(error)); 960 961 if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift) 962 return (SET_ERROR(-EINVAL)); 963 964 error = param_set_ulong(buf, kp); 965 if (error < 0) 966 return (SET_ERROR(error)); 967 968 return (0); 969 } 970