xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c (revision d5b0e70f7e04d971691517ce1304d86a1e367e2e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
41 #include <linux/blk-cgroup.h>
42 #endif
43 
44 typedef struct vdev_disk {
45 	struct block_device		*vd_bdev;
46 	krwlock_t			vd_lock;
47 } vdev_disk_t;
48 
49 /*
50  * Unique identifier for the exclusive vdev holder.
51  */
52 static void *zfs_vdev_holder = VDEV_HOLDER;
53 
54 /*
55  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
56  * device is missing. The missing path may be transient since the links
57  * can be briefly removed and recreated in response to udev events.
58  */
59 static unsigned zfs_vdev_open_timeout_ms = 1000;
60 
61 /*
62  * Size of the "reserved" partition, in blocks.
63  */
64 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
65 
66 /*
67  * Virtual device vector for disks.
68  */
69 typedef struct dio_request {
70 	zio_t			*dr_zio;	/* Parent ZIO */
71 	atomic_t		dr_ref;		/* References */
72 	int			dr_error;	/* Bio error */
73 	int			dr_bio_count;	/* Count of bio's */
74 	struct bio		*dr_bio[0];	/* Attached bio's */
75 } dio_request_t;
76 
77 static fmode_t
78 vdev_bdev_mode(spa_mode_t spa_mode)
79 {
80 	fmode_t mode = 0;
81 
82 	if (spa_mode & SPA_MODE_READ)
83 		mode |= FMODE_READ;
84 
85 	if (spa_mode & SPA_MODE_WRITE)
86 		mode |= FMODE_WRITE;
87 
88 	return (mode);
89 }
90 
91 /*
92  * Returns the usable capacity (in bytes) for the partition or disk.
93  */
94 static uint64_t
95 bdev_capacity(struct block_device *bdev)
96 {
97 	return (i_size_read(bdev->bd_inode));
98 }
99 
100 #if !defined(HAVE_BDEV_WHOLE)
101 static inline struct block_device *
102 bdev_whole(struct block_device *bdev)
103 {
104 	return (bdev->bd_contains);
105 }
106 #endif
107 
108 #if defined(HAVE_BDEVNAME)
109 #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
110 #else
111 static inline void
112 vdev_bdevname(struct block_device *bdev, char *name)
113 {
114 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
115 }
116 #endif
117 
118 /*
119  * Returns the maximum expansion capacity of the block device (in bytes).
120  *
121  * It is possible to expand a vdev when it has been created as a wholedisk
122  * and the containing block device has increased in capacity.  Or when the
123  * partition containing the pool has been manually increased in size.
124  *
125  * This function is only responsible for calculating the potential expansion
126  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
127  * responsible for verifying the expected partition layout in the wholedisk
128  * case, and updating the partition table if appropriate.  Once the partition
129  * size has been increased the additional capacity will be visible using
130  * bdev_capacity().
131  *
132  * The returned maximum expansion capacity is always expected to be larger, or
133  * at the very least equal, to its usable capacity to prevent overestimating
134  * the pool expandsize.
135  */
136 static uint64_t
137 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
138 {
139 	uint64_t psize;
140 	int64_t available;
141 
142 	if (wholedisk && bdev != bdev_whole(bdev)) {
143 		/*
144 		 * When reporting maximum expansion capacity for a wholedisk
145 		 * deduct any capacity which is expected to be lost due to
146 		 * alignment restrictions.  Over reporting this value isn't
147 		 * harmful and would only result in slightly less capacity
148 		 * than expected post expansion.
149 		 * The estimated available space may be slightly smaller than
150 		 * bdev_capacity() for devices where the number of sectors is
151 		 * not a multiple of the alignment size and the partition layout
152 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
153 		 * "reserved" EFI partition: in such cases return the device
154 		 * usable capacity.
155 		 */
156 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
157 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
158 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
159 		psize = MAX(available, bdev_capacity(bdev));
160 	} else {
161 		psize = bdev_capacity(bdev);
162 	}
163 
164 	return (psize);
165 }
166 
167 static void
168 vdev_disk_error(zio_t *zio)
169 {
170 	/*
171 	 * This function can be called in interrupt context, for instance while
172 	 * handling IRQs coming from a misbehaving disk device; use printk()
173 	 * which is safe from any context.
174 	 */
175 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
176 	    "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
177 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
178 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
179 	    zio->io_flags);
180 }
181 
182 static void
183 vdev_disk_kobj_evt_post(vdev_t *v)
184 {
185 	vdev_disk_t *vd = v->vdev_tsd;
186 	if (vd && vd->vd_bdev) {
187 		spl_signal_kobj_evt(vd->vd_bdev);
188 	} else {
189 		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
190 		    v->vdev_path);
191 	}
192 }
193 
194 static int
195 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
196     uint64_t *logical_ashift, uint64_t *physical_ashift)
197 {
198 	struct block_device *bdev;
199 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
200 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
201 	vdev_disk_t *vd;
202 
203 	/* Must have a pathname and it must be absolute. */
204 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
205 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
206 		vdev_dbgmsg(v, "invalid vdev_path");
207 		return (SET_ERROR(EINVAL));
208 	}
209 
210 	/*
211 	 * Reopen the device if it is currently open.  When expanding a
212 	 * partition force re-scanning the partition table if userland
213 	 * did not take care of this already. We need to do this while closed
214 	 * in order to get an accurate updated block device size.  Then
215 	 * since udev may need to recreate the device links increase the
216 	 * open retry timeout before reporting the device as unavailable.
217 	 */
218 	vd = v->vdev_tsd;
219 	if (vd) {
220 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
221 		boolean_t reread_part = B_FALSE;
222 
223 		rw_enter(&vd->vd_lock, RW_WRITER);
224 		bdev = vd->vd_bdev;
225 		vd->vd_bdev = NULL;
226 
227 		if (bdev) {
228 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
229 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
230 				/*
231 				 * If userland has BLKPG_RESIZE_PARTITION,
232 				 * then it should have updated the partition
233 				 * table already. We can detect this by
234 				 * comparing our current physical size
235 				 * with that of the device. If they are
236 				 * the same, then we must not have
237 				 * BLKPG_RESIZE_PARTITION or it failed to
238 				 * update the partition table online. We
239 				 * fallback to rescanning the partition
240 				 * table from the kernel below. However,
241 				 * if the capacity already reflects the
242 				 * updated partition, then we skip
243 				 * rescanning the partition table here.
244 				 */
245 				if (v->vdev_psize == bdev_capacity(bdev))
246 					reread_part = B_TRUE;
247 			}
248 
249 			blkdev_put(bdev, mode | FMODE_EXCL);
250 		}
251 
252 		if (reread_part) {
253 			bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
254 			    zfs_vdev_holder);
255 			if (!IS_ERR(bdev)) {
256 				int error = vdev_bdev_reread_part(bdev);
257 				blkdev_put(bdev, mode | FMODE_EXCL);
258 				if (error == 0) {
259 					timeout = MSEC2NSEC(
260 					    zfs_vdev_open_timeout_ms * 2);
261 				}
262 			}
263 		}
264 	} else {
265 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
266 
267 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
268 		rw_enter(&vd->vd_lock, RW_WRITER);
269 	}
270 
271 	/*
272 	 * Devices are always opened by the path provided at configuration
273 	 * time.  This means that if the provided path is a udev by-id path
274 	 * then drives may be re-cabled without an issue.  If the provided
275 	 * path is a udev by-path path, then the physical location information
276 	 * will be preserved.  This can be critical for more complicated
277 	 * configurations where drives are located in specific physical
278 	 * locations to maximize the systems tolerance to component failure.
279 	 *
280 	 * Alternatively, you can provide your own udev rule to flexibly map
281 	 * the drives as you see fit.  It is not advised that you use the
282 	 * /dev/[hd]d devices which may be reordered due to probing order.
283 	 * Devices in the wrong locations will be detected by the higher
284 	 * level vdev validation.
285 	 *
286 	 * The specified paths may be briefly removed and recreated in
287 	 * response to udev events.  This should be exceptionally unlikely
288 	 * because the zpool command makes every effort to verify these paths
289 	 * have already settled prior to reaching this point.  Therefore,
290 	 * a ENOENT failure at this point is highly likely to be transient
291 	 * and it is reasonable to sleep and retry before giving up.  In
292 	 * practice delays have been observed to be on the order of 100ms.
293 	 *
294 	 * When ERESTARTSYS is returned it indicates the block device is
295 	 * a zvol which could not be opened due to the deadlock detection
296 	 * logic in zvol_open().  Extend the timeout and retry the open
297 	 * subsequent attempts are expected to eventually succeed.
298 	 */
299 	hrtime_t start = gethrtime();
300 	bdev = ERR_PTR(-ENXIO);
301 	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
302 		bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
303 		    zfs_vdev_holder);
304 		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
305 			/*
306 			 * There is no point of waiting since device is removed
307 			 * explicitly
308 			 */
309 			if (v->vdev_removed)
310 				break;
311 
312 			schedule_timeout(MSEC_TO_TICK(10));
313 		} else if (unlikely(PTR_ERR(bdev) == -ERESTARTSYS)) {
314 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
315 			continue;
316 		} else if (IS_ERR(bdev)) {
317 			break;
318 		}
319 	}
320 
321 	if (IS_ERR(bdev)) {
322 		int error = -PTR_ERR(bdev);
323 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
324 		    (u_longlong_t)(gethrtime() - start),
325 		    (u_longlong_t)timeout);
326 		vd->vd_bdev = NULL;
327 		v->vdev_tsd = vd;
328 		rw_exit(&vd->vd_lock);
329 		return (SET_ERROR(error));
330 	} else {
331 		vd->vd_bdev = bdev;
332 		v->vdev_tsd = vd;
333 		rw_exit(&vd->vd_lock);
334 	}
335 
336 	/*  Determine the physical block size */
337 	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
338 
339 	/*  Determine the logical block size */
340 	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
341 
342 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
343 	v->vdev_nowritecache = B_FALSE;
344 
345 	/* Set when device reports it supports TRIM. */
346 	v->vdev_has_trim = bdev_discard_supported(vd->vd_bdev);
347 
348 	/* Set when device reports it supports secure TRIM. */
349 	v->vdev_has_securetrim = bdev_secure_discard_supported(vd->vd_bdev);
350 
351 	/* Inform the ZIO pipeline that we are non-rotational */
352 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
353 
354 	/* Physical volume size in bytes for the partition */
355 	*psize = bdev_capacity(vd->vd_bdev);
356 
357 	/* Physical volume size in bytes including possible expansion space */
358 	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
359 
360 	/* Based on the minimum sector size set the block size */
361 	*physical_ashift = highbit64(MAX(physical_block_size,
362 	    SPA_MINBLOCKSIZE)) - 1;
363 
364 	*logical_ashift = highbit64(MAX(logical_block_size,
365 	    SPA_MINBLOCKSIZE)) - 1;
366 
367 	return (0);
368 }
369 
370 static void
371 vdev_disk_close(vdev_t *v)
372 {
373 	vdev_disk_t *vd = v->vdev_tsd;
374 
375 	if (v->vdev_reopening || vd == NULL)
376 		return;
377 
378 	if (vd->vd_bdev != NULL) {
379 		blkdev_put(vd->vd_bdev,
380 		    vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
381 	}
382 
383 	rw_destroy(&vd->vd_lock);
384 	kmem_free(vd, sizeof (vdev_disk_t));
385 	v->vdev_tsd = NULL;
386 }
387 
388 static dio_request_t *
389 vdev_disk_dio_alloc(int bio_count)
390 {
391 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
392 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
393 	atomic_set(&dr->dr_ref, 0);
394 	dr->dr_bio_count = bio_count;
395 	dr->dr_error = 0;
396 
397 	for (int i = 0; i < dr->dr_bio_count; i++)
398 		dr->dr_bio[i] = NULL;
399 
400 	return (dr);
401 }
402 
403 static void
404 vdev_disk_dio_free(dio_request_t *dr)
405 {
406 	int i;
407 
408 	for (i = 0; i < dr->dr_bio_count; i++)
409 		if (dr->dr_bio[i])
410 			bio_put(dr->dr_bio[i]);
411 
412 	kmem_free(dr, sizeof (dio_request_t) +
413 	    sizeof (struct bio *) * dr->dr_bio_count);
414 }
415 
416 static void
417 vdev_disk_dio_get(dio_request_t *dr)
418 {
419 	atomic_inc(&dr->dr_ref);
420 }
421 
422 static int
423 vdev_disk_dio_put(dio_request_t *dr)
424 {
425 	int rc = atomic_dec_return(&dr->dr_ref);
426 
427 	/*
428 	 * Free the dio_request when the last reference is dropped and
429 	 * ensure zio_interpret is called only once with the correct zio
430 	 */
431 	if (rc == 0) {
432 		zio_t *zio = dr->dr_zio;
433 		int error = dr->dr_error;
434 
435 		vdev_disk_dio_free(dr);
436 
437 		if (zio) {
438 			zio->io_error = error;
439 			ASSERT3S(zio->io_error, >=, 0);
440 			if (zio->io_error)
441 				vdev_disk_error(zio);
442 
443 			zio_delay_interrupt(zio);
444 		}
445 	}
446 
447 	return (rc);
448 }
449 
450 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
451 {
452 	dio_request_t *dr = bio->bi_private;
453 	int rc;
454 
455 	if (dr->dr_error == 0) {
456 #ifdef HAVE_1ARG_BIO_END_IO_T
457 		dr->dr_error = BIO_END_IO_ERROR(bio);
458 #else
459 		if (error)
460 			dr->dr_error = -(error);
461 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
462 			dr->dr_error = EIO;
463 #endif
464 	}
465 
466 	/* Drop reference acquired by __vdev_disk_physio */
467 	rc = vdev_disk_dio_put(dr);
468 }
469 
470 static inline void
471 vdev_submit_bio_impl(struct bio *bio)
472 {
473 #ifdef HAVE_1ARG_SUBMIT_BIO
474 	(void) submit_bio(bio);
475 #else
476 	(void) submit_bio(bio_data_dir(bio), bio);
477 #endif
478 }
479 
480 /*
481  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
482  * replace it with preempt_schedule under the following condition:
483  */
484 #if defined(CONFIG_ARM64) && \
485     defined(CONFIG_PREEMPTION) && \
486     defined(CONFIG_BLK_CGROUP)
487 #define	preempt_schedule_notrace(x) preempt_schedule(x)
488 #endif
489 
490 /*
491  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
492  * as an argument removing the need to set it with bio_set_dev().  This
493  * removes the need for all of the following compatibility code.
494  */
495 #if !defined(HAVE_BIO_ALLOC_4ARG)
496 
497 #ifdef HAVE_BIO_SET_DEV
498 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
499 /*
500  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
501  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
502  * As a side effect the function was converted to GPL-only.  Define our
503  * own version when needed which uses rcu_read_lock_sched().
504  *
505  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
506  * part, moving blkg_tryget into the private one. Define our own version.
507  */
508 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
509 static inline bool
510 vdev_blkg_tryget(struct blkcg_gq *blkg)
511 {
512 	struct percpu_ref *ref = &blkg->refcnt;
513 	unsigned long __percpu *count;
514 	bool rc;
515 
516 	rcu_read_lock_sched();
517 
518 	if (__ref_is_percpu(ref, &count)) {
519 		this_cpu_inc(*count);
520 		rc = true;
521 	} else {
522 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
523 		rc = atomic_long_inc_not_zero(&ref->data->count);
524 #else
525 		rc = atomic_long_inc_not_zero(&ref->count);
526 #endif
527 	}
528 
529 	rcu_read_unlock_sched();
530 
531 	return (rc);
532 }
533 #else
534 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
535 #endif
536 #ifdef HAVE_BIO_SET_DEV_MACRO
537 /*
538  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
539  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
540  * the entire macro.  Provide a minimal version which always assigns the
541  * request queue's root_blkg to the bio.
542  */
543 static inline void
544 vdev_bio_associate_blkg(struct bio *bio)
545 {
546 #if defined(HAVE_BIO_BDEV_DISK)
547 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
548 #else
549 	struct request_queue *q = bio->bi_disk->queue;
550 #endif
551 
552 	ASSERT3P(q, !=, NULL);
553 	ASSERT3P(bio->bi_blkg, ==, NULL);
554 
555 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
556 		bio->bi_blkg = q->root_blkg;
557 }
558 
559 #define	bio_associate_blkg vdev_bio_associate_blkg
560 #else
561 static inline void
562 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
563 {
564 #if defined(HAVE_BIO_BDEV_DISK)
565 	struct request_queue *q = bdev->bd_disk->queue;
566 #else
567 	struct request_queue *q = bio->bi_disk->queue;
568 #endif
569 	bio_clear_flag(bio, BIO_REMAPPED);
570 	if (bio->bi_bdev != bdev)
571 		bio_clear_flag(bio, BIO_THROTTLED);
572 	bio->bi_bdev = bdev;
573 
574 	ASSERT3P(q, !=, NULL);
575 	ASSERT3P(bio->bi_blkg, ==, NULL);
576 
577 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
578 		bio->bi_blkg = q->root_blkg;
579 }
580 #define	bio_set_dev		vdev_bio_set_dev
581 #endif
582 #endif
583 #else
584 /*
585  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
586  */
587 static inline void
588 bio_set_dev(struct bio *bio, struct block_device *bdev)
589 {
590 	bio->bi_bdev = bdev;
591 }
592 #endif /* HAVE_BIO_SET_DEV */
593 #endif /* !HAVE_BIO_ALLOC_4ARG */
594 
595 static inline void
596 vdev_submit_bio(struct bio *bio)
597 {
598 	struct bio_list *bio_list = current->bio_list;
599 	current->bio_list = NULL;
600 	vdev_submit_bio_impl(bio);
601 	current->bio_list = bio_list;
602 }
603 
604 static inline struct bio *
605 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
606     unsigned short nr_vecs)
607 {
608 	struct bio *bio;
609 
610 #ifdef HAVE_BIO_ALLOC_4ARG
611 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
612 #else
613 	bio = bio_alloc(gfp_mask, nr_vecs);
614 	if (likely(bio != NULL))
615 		bio_set_dev(bio, bdev);
616 #endif
617 
618 	return (bio);
619 }
620 
621 static inline unsigned int
622 vdev_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
623 {
624 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
625 	    bio_size, abd_offset);
626 
627 #ifdef HAVE_BIO_MAX_SEGS
628 	return (bio_max_segs(nr_segs));
629 #else
630 	return (MIN(nr_segs, BIO_MAX_PAGES));
631 #endif
632 }
633 
634 static int
635 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
636     size_t io_size, uint64_t io_offset, int rw, int flags)
637 {
638 	dio_request_t *dr;
639 	uint64_t abd_offset;
640 	uint64_t bio_offset;
641 	int bio_size;
642 	int bio_count = 16;
643 	int error = 0;
644 	struct blk_plug plug;
645 	unsigned short nr_vecs;
646 
647 	/*
648 	 * Accessing outside the block device is never allowed.
649 	 */
650 	if (io_offset + io_size > bdev->bd_inode->i_size) {
651 		vdev_dbgmsg(zio->io_vd,
652 		    "Illegal access %llu size %llu, device size %llu",
653 		    (u_longlong_t)io_offset,
654 		    (u_longlong_t)io_size,
655 		    (u_longlong_t)i_size_read(bdev->bd_inode));
656 		return (SET_ERROR(EIO));
657 	}
658 
659 retry:
660 	dr = vdev_disk_dio_alloc(bio_count);
661 
662 	if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
663 		bio_set_flags_failfast(bdev, &flags);
664 
665 	dr->dr_zio = zio;
666 
667 	/*
668 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
669 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
670 	 * can cover at least 128KB and at most 1MB.  When the required number
671 	 * of iovec's exceeds this, we are forced to break the IO in multiple
672 	 * bio's and wait for them all to complete.  This is likely if the
673 	 * recordsize property is increased beyond 1MB.  The default
674 	 * bio_count=16 should typically accommodate the maximum-size zio of
675 	 * 16MB.
676 	 */
677 
678 	abd_offset = 0;
679 	bio_offset = io_offset;
680 	bio_size = io_size;
681 	for (int i = 0; i <= dr->dr_bio_count; i++) {
682 
683 		/* Finished constructing bio's for given buffer */
684 		if (bio_size <= 0)
685 			break;
686 
687 		/*
688 		 * If additional bio's are required, we have to retry, but
689 		 * this should be rare - see the comment above.
690 		 */
691 		if (dr->dr_bio_count == i) {
692 			vdev_disk_dio_free(dr);
693 			bio_count *= 2;
694 			goto retry;
695 		}
696 
697 		nr_vecs = vdev_bio_max_segs(zio, bio_size, abd_offset);
698 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
699 		if (unlikely(dr->dr_bio[i] == NULL)) {
700 			vdev_disk_dio_free(dr);
701 			return (SET_ERROR(ENOMEM));
702 		}
703 
704 		/* Matching put called by vdev_disk_physio_completion */
705 		vdev_disk_dio_get(dr);
706 
707 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
708 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
709 		dr->dr_bio[i]->bi_private = dr;
710 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
711 
712 		/* Remaining size is returned to become the new size */
713 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
714 		    bio_size, abd_offset);
715 
716 		/* Advance in buffer and construct another bio if needed */
717 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
718 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
719 	}
720 
721 	/* Extra reference to protect dio_request during vdev_submit_bio */
722 	vdev_disk_dio_get(dr);
723 
724 	if (dr->dr_bio_count > 1)
725 		blk_start_plug(&plug);
726 
727 	/* Submit all bio's associated with this dio */
728 	for (int i = 0; i < dr->dr_bio_count; i++) {
729 		if (dr->dr_bio[i])
730 			vdev_submit_bio(dr->dr_bio[i]);
731 	}
732 
733 	if (dr->dr_bio_count > 1)
734 		blk_finish_plug(&plug);
735 
736 	(void) vdev_disk_dio_put(dr);
737 
738 	return (error);
739 }
740 
741 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
742 {
743 	zio_t *zio = bio->bi_private;
744 #ifdef HAVE_1ARG_BIO_END_IO_T
745 	zio->io_error = BIO_END_IO_ERROR(bio);
746 #else
747 	zio->io_error = -error;
748 #endif
749 
750 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
751 		zio->io_vd->vdev_nowritecache = B_TRUE;
752 
753 	bio_put(bio);
754 	ASSERT3S(zio->io_error, >=, 0);
755 	if (zio->io_error)
756 		vdev_disk_error(zio);
757 	zio_interrupt(zio);
758 }
759 
760 static int
761 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
762 {
763 	struct request_queue *q;
764 	struct bio *bio;
765 
766 	q = bdev_get_queue(bdev);
767 	if (!q)
768 		return (SET_ERROR(ENXIO));
769 
770 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
771 	if (unlikely(bio == NULL))
772 		return (SET_ERROR(ENOMEM));
773 
774 	bio->bi_end_io = vdev_disk_io_flush_completion;
775 	bio->bi_private = zio;
776 	bio_set_flush(bio);
777 	vdev_submit_bio(bio);
778 	invalidate_bdev(bdev);
779 
780 	return (0);
781 }
782 
783 static int
784 vdev_disk_io_trim(zio_t *zio)
785 {
786 	vdev_t *v = zio->io_vd;
787 	vdev_disk_t *vd = v->vdev_tsd;
788 
789 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
790 	if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
791 		return (-blkdev_issue_secure_erase(vd->vd_bdev,
792 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
793 	} else {
794 		return (-blkdev_issue_discard(vd->vd_bdev,
795 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
796 	}
797 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
798 	unsigned long trim_flags = 0;
799 #if defined(BLKDEV_DISCARD_SECURE)
800 	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
801 		trim_flags |= BLKDEV_DISCARD_SECURE;
802 #endif
803 	return (-blkdev_issue_discard(vd->vd_bdev,
804 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
805 #else
806 #error "Unsupported kernel"
807 #endif
808 }
809 
810 static void
811 vdev_disk_io_start(zio_t *zio)
812 {
813 	vdev_t *v = zio->io_vd;
814 	vdev_disk_t *vd = v->vdev_tsd;
815 	int rw, error;
816 
817 	/*
818 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
819 	 * Nothing to be done here but return failure.
820 	 */
821 	if (vd == NULL) {
822 		zio->io_error = ENXIO;
823 		zio_interrupt(zio);
824 		return;
825 	}
826 
827 	rw_enter(&vd->vd_lock, RW_READER);
828 
829 	/*
830 	 * If the vdev is closed, it's likely due to a failed reopen and is
831 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
832 	 */
833 	if (vd->vd_bdev == NULL) {
834 		rw_exit(&vd->vd_lock);
835 		zio->io_error = ENXIO;
836 		zio_interrupt(zio);
837 		return;
838 	}
839 
840 	switch (zio->io_type) {
841 	case ZIO_TYPE_IOCTL:
842 
843 		if (!vdev_readable(v)) {
844 			rw_exit(&vd->vd_lock);
845 			zio->io_error = SET_ERROR(ENXIO);
846 			zio_interrupt(zio);
847 			return;
848 		}
849 
850 		switch (zio->io_cmd) {
851 		case DKIOCFLUSHWRITECACHE:
852 
853 			if (zfs_nocacheflush)
854 				break;
855 
856 			if (v->vdev_nowritecache) {
857 				zio->io_error = SET_ERROR(ENOTSUP);
858 				break;
859 			}
860 
861 			error = vdev_disk_io_flush(vd->vd_bdev, zio);
862 			if (error == 0) {
863 				rw_exit(&vd->vd_lock);
864 				return;
865 			}
866 
867 			zio->io_error = error;
868 
869 			break;
870 
871 		default:
872 			zio->io_error = SET_ERROR(ENOTSUP);
873 		}
874 
875 		rw_exit(&vd->vd_lock);
876 		zio_execute(zio);
877 		return;
878 	case ZIO_TYPE_WRITE:
879 		rw = WRITE;
880 		break;
881 
882 	case ZIO_TYPE_READ:
883 		rw = READ;
884 		break;
885 
886 	case ZIO_TYPE_TRIM:
887 		zio->io_error = vdev_disk_io_trim(zio);
888 		rw_exit(&vd->vd_lock);
889 		zio_interrupt(zio);
890 		return;
891 
892 	default:
893 		rw_exit(&vd->vd_lock);
894 		zio->io_error = SET_ERROR(ENOTSUP);
895 		zio_interrupt(zio);
896 		return;
897 	}
898 
899 	zio->io_target_timestamp = zio_handle_io_delay(zio);
900 	error = __vdev_disk_physio(vd->vd_bdev, zio,
901 	    zio->io_size, zio->io_offset, rw, 0);
902 	rw_exit(&vd->vd_lock);
903 
904 	if (error) {
905 		zio->io_error = error;
906 		zio_interrupt(zio);
907 		return;
908 	}
909 }
910 
911 static void
912 vdev_disk_io_done(zio_t *zio)
913 {
914 	/*
915 	 * If the device returned EIO, we revalidate the media.  If it is
916 	 * determined the media has changed this triggers the asynchronous
917 	 * removal of the device from the configuration.
918 	 */
919 	if (zio->io_error == EIO) {
920 		vdev_t *v = zio->io_vd;
921 		vdev_disk_t *vd = v->vdev_tsd;
922 
923 		if (!zfs_check_disk_status(vd->vd_bdev)) {
924 			invalidate_bdev(vd->vd_bdev);
925 			v->vdev_remove_wanted = B_TRUE;
926 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
927 		}
928 	}
929 }
930 
931 static void
932 vdev_disk_hold(vdev_t *vd)
933 {
934 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
935 
936 	/* We must have a pathname, and it must be absolute. */
937 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
938 		return;
939 
940 	/*
941 	 * Only prefetch path and devid info if the device has
942 	 * never been opened.
943 	 */
944 	if (vd->vdev_tsd != NULL)
945 		return;
946 
947 }
948 
949 static void
950 vdev_disk_rele(vdev_t *vd)
951 {
952 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
953 
954 	/* XXX: Implement me as a vnode rele for the device */
955 }
956 
957 vdev_ops_t vdev_disk_ops = {
958 	.vdev_op_init = NULL,
959 	.vdev_op_fini = NULL,
960 	.vdev_op_open = vdev_disk_open,
961 	.vdev_op_close = vdev_disk_close,
962 	.vdev_op_asize = vdev_default_asize,
963 	.vdev_op_min_asize = vdev_default_min_asize,
964 	.vdev_op_min_alloc = NULL,
965 	.vdev_op_io_start = vdev_disk_io_start,
966 	.vdev_op_io_done = vdev_disk_io_done,
967 	.vdev_op_state_change = NULL,
968 	.vdev_op_need_resilver = NULL,
969 	.vdev_op_hold = vdev_disk_hold,
970 	.vdev_op_rele = vdev_disk_rele,
971 	.vdev_op_remap = NULL,
972 	.vdev_op_xlate = vdev_default_xlate,
973 	.vdev_op_rebuild_asize = NULL,
974 	.vdev_op_metaslab_init = NULL,
975 	.vdev_op_config_generate = NULL,
976 	.vdev_op_nparity = NULL,
977 	.vdev_op_ndisks = NULL,
978 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
979 	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
980 	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
981 };
982 
983 /*
984  * The zfs_vdev_scheduler module option has been deprecated. Setting this
985  * value no longer has any effect.  It has not yet been entirely removed
986  * to allow the module to be loaded if this option is specified in the
987  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
988  */
989 static int
990 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
991 {
992 	int error = param_set_charp(val, kp);
993 	if (error == 0) {
994 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
995 		    "is not supported.\n");
996 	}
997 
998 	return (error);
999 }
1000 
1001 static const char *zfs_vdev_scheduler = "unused";
1002 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1003     param_get_charp, &zfs_vdev_scheduler, 0644);
1004 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1005 
1006 int
1007 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1008 {
1009 	uint64_t val;
1010 	int error;
1011 
1012 	error = kstrtoull(buf, 0, &val);
1013 	if (error < 0)
1014 		return (SET_ERROR(error));
1015 
1016 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1017 		return (SET_ERROR(-EINVAL));
1018 
1019 	error = param_set_ulong(buf, kp);
1020 	if (error < 0)
1021 		return (SET_ERROR(error));
1022 
1023 	return (0);
1024 }
1025 
1026 int
1027 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1028 {
1029 	uint64_t val;
1030 	int error;
1031 
1032 	error = kstrtoull(buf, 0, &val);
1033 	if (error < 0)
1034 		return (SET_ERROR(error));
1035 
1036 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1037 		return (SET_ERROR(-EINVAL));
1038 
1039 	error = param_set_ulong(buf, kp);
1040 	if (error < 0)
1041 		return (SET_ERROR(error));
1042 
1043 	return (0);
1044 }
1045