xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 
41 typedef struct vdev_disk {
42 	struct block_device		*vd_bdev;
43 	krwlock_t			vd_lock;
44 } vdev_disk_t;
45 
46 /*
47  * Unique identifier for the exclusive vdev holder.
48  */
49 static void *zfs_vdev_holder = VDEV_HOLDER;
50 
51 /*
52  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
53  * device is missing. The missing path may be transient since the links
54  * can be briefly removed and recreated in response to udev events.
55  */
56 static unsigned zfs_vdev_open_timeout_ms = 1000;
57 
58 /*
59  * Size of the "reserved" partition, in blocks.
60  */
61 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
62 
63 /*
64  * Virtual device vector for disks.
65  */
66 typedef struct dio_request {
67 	zio_t			*dr_zio;	/* Parent ZIO */
68 	atomic_t		dr_ref;		/* References */
69 	int			dr_error;	/* Bio error */
70 	int			dr_bio_count;	/* Count of bio's */
71 	struct bio		*dr_bio[0];	/* Attached bio's */
72 } dio_request_t;
73 
74 static fmode_t
75 vdev_bdev_mode(spa_mode_t spa_mode)
76 {
77 	fmode_t mode = 0;
78 
79 	if (spa_mode & SPA_MODE_READ)
80 		mode |= FMODE_READ;
81 
82 	if (spa_mode & SPA_MODE_WRITE)
83 		mode |= FMODE_WRITE;
84 
85 	return (mode);
86 }
87 
88 /*
89  * Returns the usable capacity (in bytes) for the partition or disk.
90  */
91 static uint64_t
92 bdev_capacity(struct block_device *bdev)
93 {
94 	return (i_size_read(bdev->bd_inode));
95 }
96 
97 #if !defined(HAVE_BDEV_WHOLE)
98 static inline struct block_device *
99 bdev_whole(struct block_device *bdev)
100 {
101 	return (bdev->bd_contains);
102 }
103 #endif
104 
105 /*
106  * Returns the maximum expansion capacity of the block device (in bytes).
107  *
108  * It is possible to expand a vdev when it has been created as a wholedisk
109  * and the containing block device has increased in capacity.  Or when the
110  * partition containing the pool has been manually increased in size.
111  *
112  * This function is only responsible for calculating the potential expansion
113  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
114  * responsible for verifying the expected partition layout in the wholedisk
115  * case, and updating the partition table if appropriate.  Once the partition
116  * size has been increased the additional capacity will be visible using
117  * bdev_capacity().
118  *
119  * The returned maximum expansion capacity is always expected to be larger, or
120  * at the very least equal, to its usable capacity to prevent overestimating
121  * the pool expandsize.
122  */
123 static uint64_t
124 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
125 {
126 	uint64_t psize;
127 	int64_t available;
128 
129 	if (wholedisk && bdev != bdev_whole(bdev)) {
130 		/*
131 		 * When reporting maximum expansion capacity for a wholedisk
132 		 * deduct any capacity which is expected to be lost due to
133 		 * alignment restrictions.  Over reporting this value isn't
134 		 * harmful and would only result in slightly less capacity
135 		 * than expected post expansion.
136 		 * The estimated available space may be slightly smaller than
137 		 * bdev_capacity() for devices where the number of sectors is
138 		 * not a multiple of the alignment size and the partition layout
139 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
140 		 * "reserved" EFI partition: in such cases return the device
141 		 * usable capacity.
142 		 */
143 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
144 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
145 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
146 		psize = MAX(available, bdev_capacity(bdev));
147 	} else {
148 		psize = bdev_capacity(bdev);
149 	}
150 
151 	return (psize);
152 }
153 
154 static void
155 vdev_disk_error(zio_t *zio)
156 {
157 	/*
158 	 * This function can be called in interrupt context, for instance while
159 	 * handling IRQs coming from a misbehaving disk device; use printk()
160 	 * which is safe from any context.
161 	 */
162 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
163 	    "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
164 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
165 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
166 	    zio->io_flags);
167 }
168 
169 static int
170 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
171     uint64_t *logical_ashift, uint64_t *physical_ashift)
172 {
173 	struct block_device *bdev;
174 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
175 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
176 	vdev_disk_t *vd;
177 
178 	/* Must have a pathname and it must be absolute. */
179 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
180 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
181 		vdev_dbgmsg(v, "invalid vdev_path");
182 		return (SET_ERROR(EINVAL));
183 	}
184 
185 	/*
186 	 * Reopen the device if it is currently open.  When expanding a
187 	 * partition force re-scanning the partition table if userland
188 	 * did not take care of this already. We need to do this while closed
189 	 * in order to get an accurate updated block device size.  Then
190 	 * since udev may need to recreate the device links increase the
191 	 * open retry timeout before reporting the device as unavailable.
192 	 */
193 	vd = v->vdev_tsd;
194 	if (vd) {
195 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
196 		boolean_t reread_part = B_FALSE;
197 
198 		rw_enter(&vd->vd_lock, RW_WRITER);
199 		bdev = vd->vd_bdev;
200 		vd->vd_bdev = NULL;
201 
202 		if (bdev) {
203 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
204 				bdevname(bdev_whole(bdev), disk_name + 5);
205 				/*
206 				 * If userland has BLKPG_RESIZE_PARTITION,
207 				 * then it should have updated the partition
208 				 * table already. We can detect this by
209 				 * comparing our current physical size
210 				 * with that of the device. If they are
211 				 * the same, then we must not have
212 				 * BLKPG_RESIZE_PARTITION or it failed to
213 				 * update the partition table online. We
214 				 * fallback to rescanning the partition
215 				 * table from the kernel below. However,
216 				 * if the capacity already reflects the
217 				 * updated partition, then we skip
218 				 * rescanning the partition table here.
219 				 */
220 				if (v->vdev_psize == bdev_capacity(bdev))
221 					reread_part = B_TRUE;
222 			}
223 
224 			blkdev_put(bdev, mode | FMODE_EXCL);
225 		}
226 
227 		if (reread_part) {
228 			bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
229 			    zfs_vdev_holder);
230 			if (!IS_ERR(bdev)) {
231 				int error = vdev_bdev_reread_part(bdev);
232 				blkdev_put(bdev, mode | FMODE_EXCL);
233 				if (error == 0) {
234 					timeout = MSEC2NSEC(
235 					    zfs_vdev_open_timeout_ms * 2);
236 				}
237 			}
238 		}
239 	} else {
240 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
241 
242 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
243 		rw_enter(&vd->vd_lock, RW_WRITER);
244 	}
245 
246 	/*
247 	 * Devices are always opened by the path provided at configuration
248 	 * time.  This means that if the provided path is a udev by-id path
249 	 * then drives may be re-cabled without an issue.  If the provided
250 	 * path is a udev by-path path, then the physical location information
251 	 * will be preserved.  This can be critical for more complicated
252 	 * configurations where drives are located in specific physical
253 	 * locations to maximize the systems tolerance to component failure.
254 	 *
255 	 * Alternatively, you can provide your own udev rule to flexibly map
256 	 * the drives as you see fit.  It is not advised that you use the
257 	 * /dev/[hd]d devices which may be reordered due to probing order.
258 	 * Devices in the wrong locations will be detected by the higher
259 	 * level vdev validation.
260 	 *
261 	 * The specified paths may be briefly removed and recreated in
262 	 * response to udev events.  This should be exceptionally unlikely
263 	 * because the zpool command makes every effort to verify these paths
264 	 * have already settled prior to reaching this point.  Therefore,
265 	 * a ENOENT failure at this point is highly likely to be transient
266 	 * and it is reasonable to sleep and retry before giving up.  In
267 	 * practice delays have been observed to be on the order of 100ms.
268 	 */
269 	hrtime_t start = gethrtime();
270 	bdev = ERR_PTR(-ENXIO);
271 	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
272 		bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
273 		    zfs_vdev_holder);
274 		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
275 			schedule_timeout(MSEC_TO_TICK(10));
276 		} else if (IS_ERR(bdev)) {
277 			break;
278 		}
279 	}
280 
281 	if (IS_ERR(bdev)) {
282 		int error = -PTR_ERR(bdev);
283 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
284 		    (u_longlong_t)(gethrtime() - start),
285 		    (u_longlong_t)timeout);
286 		vd->vd_bdev = NULL;
287 		v->vdev_tsd = vd;
288 		rw_exit(&vd->vd_lock);
289 		return (SET_ERROR(error));
290 	} else {
291 		vd->vd_bdev = bdev;
292 		v->vdev_tsd = vd;
293 		rw_exit(&vd->vd_lock);
294 	}
295 
296 	struct request_queue *q = bdev_get_queue(vd->vd_bdev);
297 
298 	/*  Determine the physical block size */
299 	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
300 
301 	/*  Determine the logical block size */
302 	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
303 
304 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
305 	v->vdev_nowritecache = B_FALSE;
306 
307 	/* Set when device reports it supports TRIM. */
308 	v->vdev_has_trim = !!blk_queue_discard(q);
309 
310 	/* Set when device reports it supports secure TRIM. */
311 	v->vdev_has_securetrim = !!blk_queue_discard_secure(q);
312 
313 	/* Inform the ZIO pipeline that we are non-rotational */
314 	v->vdev_nonrot = blk_queue_nonrot(q);
315 
316 	/* Physical volume size in bytes for the partition */
317 	*psize = bdev_capacity(vd->vd_bdev);
318 
319 	/* Physical volume size in bytes including possible expansion space */
320 	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
321 
322 	/* Based on the minimum sector size set the block size */
323 	*physical_ashift = highbit64(MAX(physical_block_size,
324 	    SPA_MINBLOCKSIZE)) - 1;
325 
326 	*logical_ashift = highbit64(MAX(logical_block_size,
327 	    SPA_MINBLOCKSIZE)) - 1;
328 
329 	return (0);
330 }
331 
332 static void
333 vdev_disk_close(vdev_t *v)
334 {
335 	vdev_disk_t *vd = v->vdev_tsd;
336 
337 	if (v->vdev_reopening || vd == NULL)
338 		return;
339 
340 	if (vd->vd_bdev != NULL) {
341 		blkdev_put(vd->vd_bdev,
342 		    vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
343 	}
344 
345 	rw_destroy(&vd->vd_lock);
346 	kmem_free(vd, sizeof (vdev_disk_t));
347 	v->vdev_tsd = NULL;
348 }
349 
350 static dio_request_t *
351 vdev_disk_dio_alloc(int bio_count)
352 {
353 	dio_request_t *dr;
354 	int i;
355 
356 	dr = kmem_zalloc(sizeof (dio_request_t) +
357 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
358 	if (dr) {
359 		atomic_set(&dr->dr_ref, 0);
360 		dr->dr_bio_count = bio_count;
361 		dr->dr_error = 0;
362 
363 		for (i = 0; i < dr->dr_bio_count; i++)
364 			dr->dr_bio[i] = NULL;
365 	}
366 
367 	return (dr);
368 }
369 
370 static void
371 vdev_disk_dio_free(dio_request_t *dr)
372 {
373 	int i;
374 
375 	for (i = 0; i < dr->dr_bio_count; i++)
376 		if (dr->dr_bio[i])
377 			bio_put(dr->dr_bio[i]);
378 
379 	kmem_free(dr, sizeof (dio_request_t) +
380 	    sizeof (struct bio *) * dr->dr_bio_count);
381 }
382 
383 static void
384 vdev_disk_dio_get(dio_request_t *dr)
385 {
386 	atomic_inc(&dr->dr_ref);
387 }
388 
389 static int
390 vdev_disk_dio_put(dio_request_t *dr)
391 {
392 	int rc = atomic_dec_return(&dr->dr_ref);
393 
394 	/*
395 	 * Free the dio_request when the last reference is dropped and
396 	 * ensure zio_interpret is called only once with the correct zio
397 	 */
398 	if (rc == 0) {
399 		zio_t *zio = dr->dr_zio;
400 		int error = dr->dr_error;
401 
402 		vdev_disk_dio_free(dr);
403 
404 		if (zio) {
405 			zio->io_error = error;
406 			ASSERT3S(zio->io_error, >=, 0);
407 			if (zio->io_error)
408 				vdev_disk_error(zio);
409 
410 			zio_delay_interrupt(zio);
411 		}
412 	}
413 
414 	return (rc);
415 }
416 
417 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
418 {
419 	dio_request_t *dr = bio->bi_private;
420 	int rc;
421 
422 	if (dr->dr_error == 0) {
423 #ifdef HAVE_1ARG_BIO_END_IO_T
424 		dr->dr_error = BIO_END_IO_ERROR(bio);
425 #else
426 		if (error)
427 			dr->dr_error = -(error);
428 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
429 			dr->dr_error = EIO;
430 #endif
431 	}
432 
433 	/* Drop reference acquired by __vdev_disk_physio */
434 	rc = vdev_disk_dio_put(dr);
435 }
436 
437 static inline void
438 vdev_submit_bio_impl(struct bio *bio)
439 {
440 #ifdef HAVE_1ARG_SUBMIT_BIO
441 	submit_bio(bio);
442 #else
443 	submit_bio(0, bio);
444 #endif
445 }
446 
447 /*
448  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
449  * replace it with preempt_schedule under the following condition:
450  */
451 #if defined(CONFIG_ARM64) && \
452     defined(CONFIG_PREEMPTION) && \
453     defined(CONFIG_BLK_CGROUP)
454 #define	preempt_schedule_notrace(x) preempt_schedule(x)
455 #endif
456 
457 #ifdef HAVE_BIO_SET_DEV
458 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
459 /*
460  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
461  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
462  * As a side effect the function was converted to GPL-only.  Define our
463  * own version when needed which uses rcu_read_lock_sched().
464  */
465 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY)
466 static inline bool
467 vdev_blkg_tryget(struct blkcg_gq *blkg)
468 {
469 	struct percpu_ref *ref = &blkg->refcnt;
470 	unsigned long __percpu *count;
471 	bool rc;
472 
473 	rcu_read_lock_sched();
474 
475 	if (__ref_is_percpu(ref, &count)) {
476 		this_cpu_inc(*count);
477 		rc = true;
478 	} else {
479 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
480 		rc = atomic_long_inc_not_zero(&ref->data->count);
481 #else
482 		rc = atomic_long_inc_not_zero(&ref->count);
483 #endif
484 	}
485 
486 	rcu_read_unlock_sched();
487 
488 	return (rc);
489 }
490 #elif defined(HAVE_BLKG_TRYGET)
491 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
492 #endif
493 /*
494  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
495  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
496  * the entire macro.  Provide a minimal version which always assigns the
497  * request queue's root_blkg to the bio.
498  */
499 static inline void
500 vdev_bio_associate_blkg(struct bio *bio)
501 {
502 	struct request_queue *q = bio->bi_disk->queue;
503 
504 	ASSERT3P(q, !=, NULL);
505 	ASSERT3P(bio->bi_blkg, ==, NULL);
506 
507 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
508 		bio->bi_blkg = q->root_blkg;
509 }
510 #define	bio_associate_blkg vdev_bio_associate_blkg
511 #endif
512 #else
513 /*
514  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
515  */
516 static inline void
517 bio_set_dev(struct bio *bio, struct block_device *bdev)
518 {
519 	bio->bi_bdev = bdev;
520 }
521 #endif /* HAVE_BIO_SET_DEV */
522 
523 static inline void
524 vdev_submit_bio(struct bio *bio)
525 {
526 	struct bio_list *bio_list = current->bio_list;
527 	current->bio_list = NULL;
528 	vdev_submit_bio_impl(bio);
529 	current->bio_list = bio_list;
530 }
531 
532 static int
533 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
534     size_t io_size, uint64_t io_offset, int rw, int flags)
535 {
536 	dio_request_t *dr;
537 	uint64_t abd_offset;
538 	uint64_t bio_offset;
539 	int bio_size, bio_count = 16;
540 	int i = 0, error = 0;
541 	struct blk_plug plug;
542 
543 	/*
544 	 * Accessing outside the block device is never allowed.
545 	 */
546 	if (io_offset + io_size > bdev->bd_inode->i_size) {
547 		vdev_dbgmsg(zio->io_vd,
548 		    "Illegal access %llu size %llu, device size %llu",
549 		    io_offset, io_size, i_size_read(bdev->bd_inode));
550 		return (SET_ERROR(EIO));
551 	}
552 
553 retry:
554 	dr = vdev_disk_dio_alloc(bio_count);
555 	if (dr == NULL)
556 		return (SET_ERROR(ENOMEM));
557 
558 	if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
559 		bio_set_flags_failfast(bdev, &flags);
560 
561 	dr->dr_zio = zio;
562 
563 	/*
564 	 * When the IO size exceeds the maximum bio size for the request
565 	 * queue we are forced to break the IO in multiple bio's and wait
566 	 * for them all to complete.  Ideally, all pool users will set
567 	 * their volume block size to match the maximum request size and
568 	 * the common case will be one bio per vdev IO request.
569 	 */
570 
571 	abd_offset = 0;
572 	bio_offset = io_offset;
573 	bio_size   = io_size;
574 	for (i = 0; i <= dr->dr_bio_count; i++) {
575 
576 		/* Finished constructing bio's for given buffer */
577 		if (bio_size <= 0)
578 			break;
579 
580 		/*
581 		 * By default only 'bio_count' bio's per dio are allowed.
582 		 * However, if we find ourselves in a situation where more
583 		 * are needed we allocate a larger dio and warn the user.
584 		 */
585 		if (dr->dr_bio_count == i) {
586 			vdev_disk_dio_free(dr);
587 			bio_count *= 2;
588 			goto retry;
589 		}
590 
591 		/* bio_alloc() with __GFP_WAIT never returns NULL */
592 		dr->dr_bio[i] = bio_alloc(GFP_NOIO,
593 		    MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset),
594 		    BIO_MAX_PAGES));
595 		if (unlikely(dr->dr_bio[i] == NULL)) {
596 			vdev_disk_dio_free(dr);
597 			return (SET_ERROR(ENOMEM));
598 		}
599 
600 		/* Matching put called by vdev_disk_physio_completion */
601 		vdev_disk_dio_get(dr);
602 
603 		bio_set_dev(dr->dr_bio[i], bdev);
604 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
605 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
606 		dr->dr_bio[i]->bi_private = dr;
607 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
608 
609 		/* Remaining size is returned to become the new size */
610 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
611 		    bio_size, abd_offset);
612 
613 		/* Advance in buffer and construct another bio if needed */
614 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
615 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
616 	}
617 
618 	/* Extra reference to protect dio_request during vdev_submit_bio */
619 	vdev_disk_dio_get(dr);
620 
621 	if (dr->dr_bio_count > 1)
622 		blk_start_plug(&plug);
623 
624 	/* Submit all bio's associated with this dio */
625 	for (i = 0; i < dr->dr_bio_count; i++)
626 		if (dr->dr_bio[i])
627 			vdev_submit_bio(dr->dr_bio[i]);
628 
629 	if (dr->dr_bio_count > 1)
630 		blk_finish_plug(&plug);
631 
632 	(void) vdev_disk_dio_put(dr);
633 
634 	return (error);
635 }
636 
637 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
638 {
639 	zio_t *zio = bio->bi_private;
640 #ifdef HAVE_1ARG_BIO_END_IO_T
641 	zio->io_error = BIO_END_IO_ERROR(bio);
642 #else
643 	zio->io_error = -error;
644 #endif
645 
646 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
647 		zio->io_vd->vdev_nowritecache = B_TRUE;
648 
649 	bio_put(bio);
650 	ASSERT3S(zio->io_error, >=, 0);
651 	if (zio->io_error)
652 		vdev_disk_error(zio);
653 	zio_interrupt(zio);
654 }
655 
656 static int
657 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
658 {
659 	struct request_queue *q;
660 	struct bio *bio;
661 
662 	q = bdev_get_queue(bdev);
663 	if (!q)
664 		return (SET_ERROR(ENXIO));
665 
666 	bio = bio_alloc(GFP_NOIO, 0);
667 	/* bio_alloc() with __GFP_WAIT never returns NULL */
668 	if (unlikely(bio == NULL))
669 		return (SET_ERROR(ENOMEM));
670 
671 	bio->bi_end_io = vdev_disk_io_flush_completion;
672 	bio->bi_private = zio;
673 	bio_set_dev(bio, bdev);
674 	bio_set_flush(bio);
675 	vdev_submit_bio(bio);
676 	invalidate_bdev(bdev);
677 
678 	return (0);
679 }
680 
681 static void
682 vdev_disk_io_start(zio_t *zio)
683 {
684 	vdev_t *v = zio->io_vd;
685 	vdev_disk_t *vd = v->vdev_tsd;
686 	unsigned long trim_flags = 0;
687 	int rw, error;
688 
689 	/*
690 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
691 	 * Nothing to be done here but return failure.
692 	 */
693 	if (vd == NULL) {
694 		zio->io_error = ENXIO;
695 		zio_interrupt(zio);
696 		return;
697 	}
698 
699 	rw_enter(&vd->vd_lock, RW_READER);
700 
701 	/*
702 	 * If the vdev is closed, it's likely due to a failed reopen and is
703 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
704 	 */
705 	if (vd->vd_bdev == NULL) {
706 		rw_exit(&vd->vd_lock);
707 		zio->io_error = ENXIO;
708 		zio_interrupt(zio);
709 		return;
710 	}
711 
712 	switch (zio->io_type) {
713 	case ZIO_TYPE_IOCTL:
714 
715 		if (!vdev_readable(v)) {
716 			rw_exit(&vd->vd_lock);
717 			zio->io_error = SET_ERROR(ENXIO);
718 			zio_interrupt(zio);
719 			return;
720 		}
721 
722 		switch (zio->io_cmd) {
723 		case DKIOCFLUSHWRITECACHE:
724 
725 			if (zfs_nocacheflush)
726 				break;
727 
728 			if (v->vdev_nowritecache) {
729 				zio->io_error = SET_ERROR(ENOTSUP);
730 				break;
731 			}
732 
733 			error = vdev_disk_io_flush(vd->vd_bdev, zio);
734 			if (error == 0) {
735 				rw_exit(&vd->vd_lock);
736 				return;
737 			}
738 
739 			zio->io_error = error;
740 
741 			break;
742 
743 		default:
744 			zio->io_error = SET_ERROR(ENOTSUP);
745 		}
746 
747 		rw_exit(&vd->vd_lock);
748 		zio_execute(zio);
749 		return;
750 	case ZIO_TYPE_WRITE:
751 		rw = WRITE;
752 		break;
753 
754 	case ZIO_TYPE_READ:
755 		rw = READ;
756 		break;
757 
758 	case ZIO_TYPE_TRIM:
759 #if defined(BLKDEV_DISCARD_SECURE)
760 		if (zio->io_trim_flags & ZIO_TRIM_SECURE)
761 			trim_flags |= BLKDEV_DISCARD_SECURE;
762 #endif
763 		zio->io_error = -blkdev_issue_discard(vd->vd_bdev,
764 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS,
765 		    trim_flags);
766 
767 		rw_exit(&vd->vd_lock);
768 		zio_interrupt(zio);
769 		return;
770 
771 	default:
772 		rw_exit(&vd->vd_lock);
773 		zio->io_error = SET_ERROR(ENOTSUP);
774 		zio_interrupt(zio);
775 		return;
776 	}
777 
778 	zio->io_target_timestamp = zio_handle_io_delay(zio);
779 	error = __vdev_disk_physio(vd->vd_bdev, zio,
780 	    zio->io_size, zio->io_offset, rw, 0);
781 	rw_exit(&vd->vd_lock);
782 
783 	if (error) {
784 		zio->io_error = error;
785 		zio_interrupt(zio);
786 		return;
787 	}
788 }
789 
790 static void
791 vdev_disk_io_done(zio_t *zio)
792 {
793 	/*
794 	 * If the device returned EIO, we revalidate the media.  If it is
795 	 * determined the media has changed this triggers the asynchronous
796 	 * removal of the device from the configuration.
797 	 */
798 	if (zio->io_error == EIO) {
799 		vdev_t *v = zio->io_vd;
800 		vdev_disk_t *vd = v->vdev_tsd;
801 
802 		if (zfs_check_media_change(vd->vd_bdev)) {
803 			invalidate_bdev(vd->vd_bdev);
804 			v->vdev_remove_wanted = B_TRUE;
805 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
806 		}
807 	}
808 }
809 
810 static void
811 vdev_disk_hold(vdev_t *vd)
812 {
813 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
814 
815 	/* We must have a pathname, and it must be absolute. */
816 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
817 		return;
818 
819 	/*
820 	 * Only prefetch path and devid info if the device has
821 	 * never been opened.
822 	 */
823 	if (vd->vdev_tsd != NULL)
824 		return;
825 
826 }
827 
828 static void
829 vdev_disk_rele(vdev_t *vd)
830 {
831 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
832 
833 	/* XXX: Implement me as a vnode rele for the device */
834 }
835 
836 vdev_ops_t vdev_disk_ops = {
837 	.vdev_op_init = NULL,
838 	.vdev_op_fini = NULL,
839 	.vdev_op_open = vdev_disk_open,
840 	.vdev_op_close = vdev_disk_close,
841 	.vdev_op_asize = vdev_default_asize,
842 	.vdev_op_min_asize = vdev_default_min_asize,
843 	.vdev_op_min_alloc = NULL,
844 	.vdev_op_io_start = vdev_disk_io_start,
845 	.vdev_op_io_done = vdev_disk_io_done,
846 	.vdev_op_state_change = NULL,
847 	.vdev_op_need_resilver = NULL,
848 	.vdev_op_hold = vdev_disk_hold,
849 	.vdev_op_rele = vdev_disk_rele,
850 	.vdev_op_remap = NULL,
851 	.vdev_op_xlate = vdev_default_xlate,
852 	.vdev_op_rebuild_asize = NULL,
853 	.vdev_op_metaslab_init = NULL,
854 	.vdev_op_config_generate = NULL,
855 	.vdev_op_nparity = NULL,
856 	.vdev_op_ndisks = NULL,
857 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
858 	.vdev_op_leaf = B_TRUE			/* leaf vdev */
859 };
860 
861 /*
862  * The zfs_vdev_scheduler module option has been deprecated. Setting this
863  * value no longer has any effect.  It has not yet been entirely removed
864  * to allow the module to be loaded if this option is specified in the
865  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
866  */
867 static int
868 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
869 {
870 	int error = param_set_charp(val, kp);
871 	if (error == 0) {
872 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
873 		    "is not supported.\n");
874 	}
875 
876 	return (error);
877 }
878 
879 char *zfs_vdev_scheduler = "unused";
880 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
881     param_get_charp, &zfs_vdev_scheduler, 0644);
882 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
883 
884 int
885 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
886 {
887 	uint64_t val;
888 	int error;
889 
890 	error = kstrtoull(buf, 0, &val);
891 	if (error < 0)
892 		return (SET_ERROR(error));
893 
894 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
895 		return (SET_ERROR(-EINVAL));
896 
897 	error = param_set_ulong(buf, kp);
898 	if (error < 0)
899 		return (SET_ERROR(error));
900 
901 	return (0);
902 }
903 
904 int
905 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
906 {
907 	uint64_t val;
908 	int error;
909 
910 	error = kstrtoull(buf, 0, &val);
911 	if (error < 0)
912 		return (SET_ERROR(error));
913 
914 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
915 		return (SET_ERROR(-EINVAL));
916 
917 	error = param_set_ulong(buf, kp);
918 	if (error < 0)
919 		return (SET_ERROR(error));
920 
921 	return (0);
922 }
923