1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. 23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>. 25 * LLNL-CODE-403049. 26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa_impl.h> 31 #include <sys/vdev_disk.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/vdev_trim.h> 34 #include <sys/abd.h> 35 #include <sys/fs/zfs.h> 36 #include <sys/zio.h> 37 #include <linux/blkpg.h> 38 #include <linux/msdos_fs.h> 39 #include <linux/vfs_compat.h> 40 41 typedef struct vdev_disk { 42 struct block_device *vd_bdev; 43 krwlock_t vd_lock; 44 } vdev_disk_t; 45 46 /* 47 * Unique identifier for the exclusive vdev holder. 48 */ 49 static void *zfs_vdev_holder = VDEV_HOLDER; 50 51 /* 52 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the 53 * device is missing. The missing path may be transient since the links 54 * can be briefly removed and recreated in response to udev events. 55 */ 56 static unsigned zfs_vdev_open_timeout_ms = 1000; 57 58 /* 59 * Size of the "reserved" partition, in blocks. 60 */ 61 #define EFI_MIN_RESV_SIZE (16 * 1024) 62 63 /* 64 * Virtual device vector for disks. 65 */ 66 typedef struct dio_request { 67 zio_t *dr_zio; /* Parent ZIO */ 68 atomic_t dr_ref; /* References */ 69 int dr_error; /* Bio error */ 70 int dr_bio_count; /* Count of bio's */ 71 struct bio *dr_bio[0]; /* Attached bio's */ 72 } dio_request_t; 73 74 static fmode_t 75 vdev_bdev_mode(spa_mode_t spa_mode) 76 { 77 fmode_t mode = 0; 78 79 if (spa_mode & SPA_MODE_READ) 80 mode |= FMODE_READ; 81 82 if (spa_mode & SPA_MODE_WRITE) 83 mode |= FMODE_WRITE; 84 85 return (mode); 86 } 87 88 /* 89 * Returns the usable capacity (in bytes) for the partition or disk. 90 */ 91 static uint64_t 92 bdev_capacity(struct block_device *bdev) 93 { 94 return (i_size_read(bdev->bd_inode)); 95 } 96 97 #if !defined(HAVE_BDEV_WHOLE) 98 static inline struct block_device * 99 bdev_whole(struct block_device *bdev) 100 { 101 return (bdev->bd_contains); 102 } 103 #endif 104 105 /* 106 * Returns the maximum expansion capacity of the block device (in bytes). 107 * 108 * It is possible to expand a vdev when it has been created as a wholedisk 109 * and the containing block device has increased in capacity. Or when the 110 * partition containing the pool has been manually increased in size. 111 * 112 * This function is only responsible for calculating the potential expansion 113 * size so it can be reported by 'zpool list'. The efi_use_whole_disk() is 114 * responsible for verifying the expected partition layout in the wholedisk 115 * case, and updating the partition table if appropriate. Once the partition 116 * size has been increased the additional capacity will be visible using 117 * bdev_capacity(). 118 * 119 * The returned maximum expansion capacity is always expected to be larger, or 120 * at the very least equal, to its usable capacity to prevent overestimating 121 * the pool expandsize. 122 */ 123 static uint64_t 124 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk) 125 { 126 uint64_t psize; 127 int64_t available; 128 129 if (wholedisk && bdev != bdev_whole(bdev)) { 130 /* 131 * When reporting maximum expansion capacity for a wholedisk 132 * deduct any capacity which is expected to be lost due to 133 * alignment restrictions. Over reporting this value isn't 134 * harmful and would only result in slightly less capacity 135 * than expected post expansion. 136 * The estimated available space may be slightly smaller than 137 * bdev_capacity() for devices where the number of sectors is 138 * not a multiple of the alignment size and the partition layout 139 * is keeping less than PARTITION_END_ALIGNMENT bytes after the 140 * "reserved" EFI partition: in such cases return the device 141 * usable capacity. 142 */ 143 available = i_size_read(bdev_whole(bdev)->bd_inode) - 144 ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK + 145 PARTITION_END_ALIGNMENT) << SECTOR_BITS); 146 psize = MAX(available, bdev_capacity(bdev)); 147 } else { 148 psize = bdev_capacity(bdev); 149 } 150 151 return (psize); 152 } 153 154 static void 155 vdev_disk_error(zio_t *zio) 156 { 157 /* 158 * This function can be called in interrupt context, for instance while 159 * handling IRQs coming from a misbehaving disk device; use printk() 160 * which is safe from any context. 161 */ 162 printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d " 163 "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa), 164 zio->io_vd->vdev_path, zio->io_error, zio->io_type, 165 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size, 166 zio->io_flags); 167 } 168 169 static int 170 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize, 171 uint64_t *logical_ashift, uint64_t *physical_ashift) 172 { 173 struct block_device *bdev; 174 fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa)); 175 hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms); 176 vdev_disk_t *vd; 177 178 /* Must have a pathname and it must be absolute. */ 179 if (v->vdev_path == NULL || v->vdev_path[0] != '/') { 180 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 181 vdev_dbgmsg(v, "invalid vdev_path"); 182 return (SET_ERROR(EINVAL)); 183 } 184 185 /* 186 * Reopen the device if it is currently open. When expanding a 187 * partition force re-scanning the partition table if userland 188 * did not take care of this already. We need to do this while closed 189 * in order to get an accurate updated block device size. Then 190 * since udev may need to recreate the device links increase the 191 * open retry timeout before reporting the device as unavailable. 192 */ 193 vd = v->vdev_tsd; 194 if (vd) { 195 char disk_name[BDEVNAME_SIZE + 6] = "/dev/"; 196 boolean_t reread_part = B_FALSE; 197 198 rw_enter(&vd->vd_lock, RW_WRITER); 199 bdev = vd->vd_bdev; 200 vd->vd_bdev = NULL; 201 202 if (bdev) { 203 if (v->vdev_expanding && bdev != bdev_whole(bdev)) { 204 bdevname(bdev_whole(bdev), disk_name + 5); 205 /* 206 * If userland has BLKPG_RESIZE_PARTITION, 207 * then it should have updated the partition 208 * table already. We can detect this by 209 * comparing our current physical size 210 * with that of the device. If they are 211 * the same, then we must not have 212 * BLKPG_RESIZE_PARTITION or it failed to 213 * update the partition table online. We 214 * fallback to rescanning the partition 215 * table from the kernel below. However, 216 * if the capacity already reflects the 217 * updated partition, then we skip 218 * rescanning the partition table here. 219 */ 220 if (v->vdev_psize == bdev_capacity(bdev)) 221 reread_part = B_TRUE; 222 } 223 224 blkdev_put(bdev, mode | FMODE_EXCL); 225 } 226 227 if (reread_part) { 228 bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL, 229 zfs_vdev_holder); 230 if (!IS_ERR(bdev)) { 231 int error = vdev_bdev_reread_part(bdev); 232 blkdev_put(bdev, mode | FMODE_EXCL); 233 if (error == 0) { 234 timeout = MSEC2NSEC( 235 zfs_vdev_open_timeout_ms * 2); 236 } 237 } 238 } 239 } else { 240 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 241 242 rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL); 243 rw_enter(&vd->vd_lock, RW_WRITER); 244 } 245 246 /* 247 * Devices are always opened by the path provided at configuration 248 * time. This means that if the provided path is a udev by-id path 249 * then drives may be re-cabled without an issue. If the provided 250 * path is a udev by-path path, then the physical location information 251 * will be preserved. This can be critical for more complicated 252 * configurations where drives are located in specific physical 253 * locations to maximize the systems tolerance to component failure. 254 * 255 * Alternatively, you can provide your own udev rule to flexibly map 256 * the drives as you see fit. It is not advised that you use the 257 * /dev/[hd]d devices which may be reordered due to probing order. 258 * Devices in the wrong locations will be detected by the higher 259 * level vdev validation. 260 * 261 * The specified paths may be briefly removed and recreated in 262 * response to udev events. This should be exceptionally unlikely 263 * because the zpool command makes every effort to verify these paths 264 * have already settled prior to reaching this point. Therefore, 265 * a ENOENT failure at this point is highly likely to be transient 266 * and it is reasonable to sleep and retry before giving up. In 267 * practice delays have been observed to be on the order of 100ms. 268 */ 269 hrtime_t start = gethrtime(); 270 bdev = ERR_PTR(-ENXIO); 271 while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) { 272 bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL, 273 zfs_vdev_holder); 274 if (unlikely(PTR_ERR(bdev) == -ENOENT)) { 275 schedule_timeout(MSEC_TO_TICK(10)); 276 } else if (IS_ERR(bdev)) { 277 break; 278 } 279 } 280 281 if (IS_ERR(bdev)) { 282 int error = -PTR_ERR(bdev); 283 vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error, 284 (u_longlong_t)(gethrtime() - start), 285 (u_longlong_t)timeout); 286 vd->vd_bdev = NULL; 287 v->vdev_tsd = vd; 288 rw_exit(&vd->vd_lock); 289 return (SET_ERROR(error)); 290 } else { 291 vd->vd_bdev = bdev; 292 v->vdev_tsd = vd; 293 rw_exit(&vd->vd_lock); 294 } 295 296 struct request_queue *q = bdev_get_queue(vd->vd_bdev); 297 298 /* Determine the physical block size */ 299 int physical_block_size = bdev_physical_block_size(vd->vd_bdev); 300 301 /* Determine the logical block size */ 302 int logical_block_size = bdev_logical_block_size(vd->vd_bdev); 303 304 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */ 305 v->vdev_nowritecache = B_FALSE; 306 307 /* Set when device reports it supports TRIM. */ 308 v->vdev_has_trim = !!blk_queue_discard(q); 309 310 /* Set when device reports it supports secure TRIM. */ 311 v->vdev_has_securetrim = !!blk_queue_discard_secure(q); 312 313 /* Inform the ZIO pipeline that we are non-rotational */ 314 v->vdev_nonrot = blk_queue_nonrot(q); 315 316 /* Physical volume size in bytes for the partition */ 317 *psize = bdev_capacity(vd->vd_bdev); 318 319 /* Physical volume size in bytes including possible expansion space */ 320 *max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk); 321 322 /* Based on the minimum sector size set the block size */ 323 *physical_ashift = highbit64(MAX(physical_block_size, 324 SPA_MINBLOCKSIZE)) - 1; 325 326 *logical_ashift = highbit64(MAX(logical_block_size, 327 SPA_MINBLOCKSIZE)) - 1; 328 329 return (0); 330 } 331 332 static void 333 vdev_disk_close(vdev_t *v) 334 { 335 vdev_disk_t *vd = v->vdev_tsd; 336 337 if (v->vdev_reopening || vd == NULL) 338 return; 339 340 if (vd->vd_bdev != NULL) { 341 blkdev_put(vd->vd_bdev, 342 vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL); 343 } 344 345 rw_destroy(&vd->vd_lock); 346 kmem_free(vd, sizeof (vdev_disk_t)); 347 v->vdev_tsd = NULL; 348 } 349 350 static dio_request_t * 351 vdev_disk_dio_alloc(int bio_count) 352 { 353 dio_request_t *dr; 354 int i; 355 356 dr = kmem_zalloc(sizeof (dio_request_t) + 357 sizeof (struct bio *) * bio_count, KM_SLEEP); 358 if (dr) { 359 atomic_set(&dr->dr_ref, 0); 360 dr->dr_bio_count = bio_count; 361 dr->dr_error = 0; 362 363 for (i = 0; i < dr->dr_bio_count; i++) 364 dr->dr_bio[i] = NULL; 365 } 366 367 return (dr); 368 } 369 370 static void 371 vdev_disk_dio_free(dio_request_t *dr) 372 { 373 int i; 374 375 for (i = 0; i < dr->dr_bio_count; i++) 376 if (dr->dr_bio[i]) 377 bio_put(dr->dr_bio[i]); 378 379 kmem_free(dr, sizeof (dio_request_t) + 380 sizeof (struct bio *) * dr->dr_bio_count); 381 } 382 383 static void 384 vdev_disk_dio_get(dio_request_t *dr) 385 { 386 atomic_inc(&dr->dr_ref); 387 } 388 389 static int 390 vdev_disk_dio_put(dio_request_t *dr) 391 { 392 int rc = atomic_dec_return(&dr->dr_ref); 393 394 /* 395 * Free the dio_request when the last reference is dropped and 396 * ensure zio_interpret is called only once with the correct zio 397 */ 398 if (rc == 0) { 399 zio_t *zio = dr->dr_zio; 400 int error = dr->dr_error; 401 402 vdev_disk_dio_free(dr); 403 404 if (zio) { 405 zio->io_error = error; 406 ASSERT3S(zio->io_error, >=, 0); 407 if (zio->io_error) 408 vdev_disk_error(zio); 409 410 zio_delay_interrupt(zio); 411 } 412 } 413 414 return (rc); 415 } 416 417 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error) 418 { 419 dio_request_t *dr = bio->bi_private; 420 int rc; 421 422 if (dr->dr_error == 0) { 423 #ifdef HAVE_1ARG_BIO_END_IO_T 424 dr->dr_error = BIO_END_IO_ERROR(bio); 425 #else 426 if (error) 427 dr->dr_error = -(error); 428 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 429 dr->dr_error = EIO; 430 #endif 431 } 432 433 /* Drop reference acquired by __vdev_disk_physio */ 434 rc = vdev_disk_dio_put(dr); 435 } 436 437 static inline void 438 vdev_submit_bio_impl(struct bio *bio) 439 { 440 #ifdef HAVE_1ARG_SUBMIT_BIO 441 submit_bio(bio); 442 #else 443 submit_bio(0, bio); 444 #endif 445 } 446 447 /* 448 * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so 449 * replace it with preempt_schedule under the following condition: 450 */ 451 #if defined(CONFIG_ARM64) && \ 452 defined(CONFIG_PREEMPTION) && \ 453 defined(CONFIG_BLK_CGROUP) 454 #define preempt_schedule_notrace(x) preempt_schedule(x) 455 #endif 456 457 #ifdef HAVE_BIO_SET_DEV 458 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY) 459 /* 460 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by 461 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched(). 462 * As a side effect the function was converted to GPL-only. Define our 463 * own version when needed which uses rcu_read_lock_sched(). 464 */ 465 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) 466 static inline bool 467 vdev_blkg_tryget(struct blkcg_gq *blkg) 468 { 469 struct percpu_ref *ref = &blkg->refcnt; 470 unsigned long __percpu *count; 471 bool rc; 472 473 rcu_read_lock_sched(); 474 475 if (__ref_is_percpu(ref, &count)) { 476 this_cpu_inc(*count); 477 rc = true; 478 } else { 479 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA 480 rc = atomic_long_inc_not_zero(&ref->data->count); 481 #else 482 rc = atomic_long_inc_not_zero(&ref->count); 483 #endif 484 } 485 486 rcu_read_unlock_sched(); 487 488 return (rc); 489 } 490 #elif defined(HAVE_BLKG_TRYGET) 491 #define vdev_blkg_tryget(bg) blkg_tryget(bg) 492 #endif 493 /* 494 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the 495 * GPL-only bio_associate_blkg() symbol thus inadvertently converting 496 * the entire macro. Provide a minimal version which always assigns the 497 * request queue's root_blkg to the bio. 498 */ 499 static inline void 500 vdev_bio_associate_blkg(struct bio *bio) 501 { 502 struct request_queue *q = bio->bi_disk->queue; 503 504 ASSERT3P(q, !=, NULL); 505 ASSERT3P(bio->bi_blkg, ==, NULL); 506 507 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg)) 508 bio->bi_blkg = q->root_blkg; 509 } 510 #define bio_associate_blkg vdev_bio_associate_blkg 511 #endif 512 #else 513 /* 514 * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels. 515 */ 516 static inline void 517 bio_set_dev(struct bio *bio, struct block_device *bdev) 518 { 519 bio->bi_bdev = bdev; 520 } 521 #endif /* HAVE_BIO_SET_DEV */ 522 523 static inline void 524 vdev_submit_bio(struct bio *bio) 525 { 526 struct bio_list *bio_list = current->bio_list; 527 current->bio_list = NULL; 528 vdev_submit_bio_impl(bio); 529 current->bio_list = bio_list; 530 } 531 532 static int 533 __vdev_disk_physio(struct block_device *bdev, zio_t *zio, 534 size_t io_size, uint64_t io_offset, int rw, int flags) 535 { 536 dio_request_t *dr; 537 uint64_t abd_offset; 538 uint64_t bio_offset; 539 int bio_size, bio_count = 16; 540 int i = 0, error = 0; 541 struct blk_plug plug; 542 543 /* 544 * Accessing outside the block device is never allowed. 545 */ 546 if (io_offset + io_size > bdev->bd_inode->i_size) { 547 vdev_dbgmsg(zio->io_vd, 548 "Illegal access %llu size %llu, device size %llu", 549 io_offset, io_size, i_size_read(bdev->bd_inode)); 550 return (SET_ERROR(EIO)); 551 } 552 553 retry: 554 dr = vdev_disk_dio_alloc(bio_count); 555 if (dr == NULL) 556 return (SET_ERROR(ENOMEM)); 557 558 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))) 559 bio_set_flags_failfast(bdev, &flags); 560 561 dr->dr_zio = zio; 562 563 /* 564 * When the IO size exceeds the maximum bio size for the request 565 * queue we are forced to break the IO in multiple bio's and wait 566 * for them all to complete. Ideally, all pool users will set 567 * their volume block size to match the maximum request size and 568 * the common case will be one bio per vdev IO request. 569 */ 570 571 abd_offset = 0; 572 bio_offset = io_offset; 573 bio_size = io_size; 574 for (i = 0; i <= dr->dr_bio_count; i++) { 575 576 /* Finished constructing bio's for given buffer */ 577 if (bio_size <= 0) 578 break; 579 580 /* 581 * By default only 'bio_count' bio's per dio are allowed. 582 * However, if we find ourselves in a situation where more 583 * are needed we allocate a larger dio and warn the user. 584 */ 585 if (dr->dr_bio_count == i) { 586 vdev_disk_dio_free(dr); 587 bio_count *= 2; 588 goto retry; 589 } 590 591 /* bio_alloc() with __GFP_WAIT never returns NULL */ 592 dr->dr_bio[i] = bio_alloc(GFP_NOIO, 593 MIN(abd_nr_pages_off(zio->io_abd, bio_size, abd_offset), 594 BIO_MAX_PAGES)); 595 if (unlikely(dr->dr_bio[i] == NULL)) { 596 vdev_disk_dio_free(dr); 597 return (SET_ERROR(ENOMEM)); 598 } 599 600 /* Matching put called by vdev_disk_physio_completion */ 601 vdev_disk_dio_get(dr); 602 603 bio_set_dev(dr->dr_bio[i], bdev); 604 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9; 605 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion; 606 dr->dr_bio[i]->bi_private = dr; 607 bio_set_op_attrs(dr->dr_bio[i], rw, flags); 608 609 /* Remaining size is returned to become the new size */ 610 bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd, 611 bio_size, abd_offset); 612 613 /* Advance in buffer and construct another bio if needed */ 614 abd_offset += BIO_BI_SIZE(dr->dr_bio[i]); 615 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]); 616 } 617 618 /* Extra reference to protect dio_request during vdev_submit_bio */ 619 vdev_disk_dio_get(dr); 620 621 if (dr->dr_bio_count > 1) 622 blk_start_plug(&plug); 623 624 /* Submit all bio's associated with this dio */ 625 for (i = 0; i < dr->dr_bio_count; i++) 626 if (dr->dr_bio[i]) 627 vdev_submit_bio(dr->dr_bio[i]); 628 629 if (dr->dr_bio_count > 1) 630 blk_finish_plug(&plug); 631 632 (void) vdev_disk_dio_put(dr); 633 634 return (error); 635 } 636 637 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error) 638 { 639 zio_t *zio = bio->bi_private; 640 #ifdef HAVE_1ARG_BIO_END_IO_T 641 zio->io_error = BIO_END_IO_ERROR(bio); 642 #else 643 zio->io_error = -error; 644 #endif 645 646 if (zio->io_error && (zio->io_error == EOPNOTSUPP)) 647 zio->io_vd->vdev_nowritecache = B_TRUE; 648 649 bio_put(bio); 650 ASSERT3S(zio->io_error, >=, 0); 651 if (zio->io_error) 652 vdev_disk_error(zio); 653 zio_interrupt(zio); 654 } 655 656 static int 657 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio) 658 { 659 struct request_queue *q; 660 struct bio *bio; 661 662 q = bdev_get_queue(bdev); 663 if (!q) 664 return (SET_ERROR(ENXIO)); 665 666 bio = bio_alloc(GFP_NOIO, 0); 667 /* bio_alloc() with __GFP_WAIT never returns NULL */ 668 if (unlikely(bio == NULL)) 669 return (SET_ERROR(ENOMEM)); 670 671 bio->bi_end_io = vdev_disk_io_flush_completion; 672 bio->bi_private = zio; 673 bio_set_dev(bio, bdev); 674 bio_set_flush(bio); 675 vdev_submit_bio(bio); 676 invalidate_bdev(bdev); 677 678 return (0); 679 } 680 681 static void 682 vdev_disk_io_start(zio_t *zio) 683 { 684 vdev_t *v = zio->io_vd; 685 vdev_disk_t *vd = v->vdev_tsd; 686 unsigned long trim_flags = 0; 687 int rw, error; 688 689 /* 690 * If the vdev is closed, it's likely in the REMOVED or FAULTED state. 691 * Nothing to be done here but return failure. 692 */ 693 if (vd == NULL) { 694 zio->io_error = ENXIO; 695 zio_interrupt(zio); 696 return; 697 } 698 699 rw_enter(&vd->vd_lock, RW_READER); 700 701 /* 702 * If the vdev is closed, it's likely due to a failed reopen and is 703 * in the UNAVAIL state. Nothing to be done here but return failure. 704 */ 705 if (vd->vd_bdev == NULL) { 706 rw_exit(&vd->vd_lock); 707 zio->io_error = ENXIO; 708 zio_interrupt(zio); 709 return; 710 } 711 712 switch (zio->io_type) { 713 case ZIO_TYPE_IOCTL: 714 715 if (!vdev_readable(v)) { 716 rw_exit(&vd->vd_lock); 717 zio->io_error = SET_ERROR(ENXIO); 718 zio_interrupt(zio); 719 return; 720 } 721 722 switch (zio->io_cmd) { 723 case DKIOCFLUSHWRITECACHE: 724 725 if (zfs_nocacheflush) 726 break; 727 728 if (v->vdev_nowritecache) { 729 zio->io_error = SET_ERROR(ENOTSUP); 730 break; 731 } 732 733 error = vdev_disk_io_flush(vd->vd_bdev, zio); 734 if (error == 0) { 735 rw_exit(&vd->vd_lock); 736 return; 737 } 738 739 zio->io_error = error; 740 741 break; 742 743 default: 744 zio->io_error = SET_ERROR(ENOTSUP); 745 } 746 747 rw_exit(&vd->vd_lock); 748 zio_execute(zio); 749 return; 750 case ZIO_TYPE_WRITE: 751 rw = WRITE; 752 break; 753 754 case ZIO_TYPE_READ: 755 rw = READ; 756 break; 757 758 case ZIO_TYPE_TRIM: 759 #if defined(BLKDEV_DISCARD_SECURE) 760 if (zio->io_trim_flags & ZIO_TRIM_SECURE) 761 trim_flags |= BLKDEV_DISCARD_SECURE; 762 #endif 763 zio->io_error = -blkdev_issue_discard(vd->vd_bdev, 764 zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, 765 trim_flags); 766 767 rw_exit(&vd->vd_lock); 768 zio_interrupt(zio); 769 return; 770 771 default: 772 rw_exit(&vd->vd_lock); 773 zio->io_error = SET_ERROR(ENOTSUP); 774 zio_interrupt(zio); 775 return; 776 } 777 778 zio->io_target_timestamp = zio_handle_io_delay(zio); 779 error = __vdev_disk_physio(vd->vd_bdev, zio, 780 zio->io_size, zio->io_offset, rw, 0); 781 rw_exit(&vd->vd_lock); 782 783 if (error) { 784 zio->io_error = error; 785 zio_interrupt(zio); 786 return; 787 } 788 } 789 790 static void 791 vdev_disk_io_done(zio_t *zio) 792 { 793 /* 794 * If the device returned EIO, we revalidate the media. If it is 795 * determined the media has changed this triggers the asynchronous 796 * removal of the device from the configuration. 797 */ 798 if (zio->io_error == EIO) { 799 vdev_t *v = zio->io_vd; 800 vdev_disk_t *vd = v->vdev_tsd; 801 802 if (zfs_check_media_change(vd->vd_bdev)) { 803 invalidate_bdev(vd->vd_bdev); 804 v->vdev_remove_wanted = B_TRUE; 805 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 806 } 807 } 808 } 809 810 static void 811 vdev_disk_hold(vdev_t *vd) 812 { 813 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 814 815 /* We must have a pathname, and it must be absolute. */ 816 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') 817 return; 818 819 /* 820 * Only prefetch path and devid info if the device has 821 * never been opened. 822 */ 823 if (vd->vdev_tsd != NULL) 824 return; 825 826 } 827 828 static void 829 vdev_disk_rele(vdev_t *vd) 830 { 831 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 832 833 /* XXX: Implement me as a vnode rele for the device */ 834 } 835 836 vdev_ops_t vdev_disk_ops = { 837 .vdev_op_init = NULL, 838 .vdev_op_fini = NULL, 839 .vdev_op_open = vdev_disk_open, 840 .vdev_op_close = vdev_disk_close, 841 .vdev_op_asize = vdev_default_asize, 842 .vdev_op_min_asize = vdev_default_min_asize, 843 .vdev_op_min_alloc = NULL, 844 .vdev_op_io_start = vdev_disk_io_start, 845 .vdev_op_io_done = vdev_disk_io_done, 846 .vdev_op_state_change = NULL, 847 .vdev_op_need_resilver = NULL, 848 .vdev_op_hold = vdev_disk_hold, 849 .vdev_op_rele = vdev_disk_rele, 850 .vdev_op_remap = NULL, 851 .vdev_op_xlate = vdev_default_xlate, 852 .vdev_op_rebuild_asize = NULL, 853 .vdev_op_metaslab_init = NULL, 854 .vdev_op_config_generate = NULL, 855 .vdev_op_nparity = NULL, 856 .vdev_op_ndisks = NULL, 857 .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */ 858 .vdev_op_leaf = B_TRUE /* leaf vdev */ 859 }; 860 861 /* 862 * The zfs_vdev_scheduler module option has been deprecated. Setting this 863 * value no longer has any effect. It has not yet been entirely removed 864 * to allow the module to be loaded if this option is specified in the 865 * /etc/modprobe.d/zfs.conf file. The following warning will be logged. 866 */ 867 static int 868 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp) 869 { 870 int error = param_set_charp(val, kp); 871 if (error == 0) { 872 printk(KERN_INFO "The 'zfs_vdev_scheduler' module option " 873 "is not supported.\n"); 874 } 875 876 return (error); 877 } 878 879 char *zfs_vdev_scheduler = "unused"; 880 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler, 881 param_get_charp, &zfs_vdev_scheduler, 0644); 882 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler"); 883 884 int 885 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp) 886 { 887 uint64_t val; 888 int error; 889 890 error = kstrtoull(buf, 0, &val); 891 if (error < 0) 892 return (SET_ERROR(error)); 893 894 if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift) 895 return (SET_ERROR(-EINVAL)); 896 897 error = param_set_ulong(buf, kp); 898 if (error < 0) 899 return (SET_ERROR(error)); 900 901 return (0); 902 } 903 904 int 905 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp) 906 { 907 uint64_t val; 908 int error; 909 910 error = kstrtoull(buf, 0, &val); 911 if (error < 0) 912 return (SET_ERROR(error)); 913 914 if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift) 915 return (SET_ERROR(-EINVAL)); 916 917 error = param_set_ulong(buf, kp); 918 if (error < 0) 919 return (SET_ERROR(error)); 920 921 return (0); 922 } 923