1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. 23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>. 25 * LLNL-CODE-403049. 26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 27 * Copyright (c) 2023, 2024, Klara Inc. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa_impl.h> 32 #include <sys/vdev_disk.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/vdev_trim.h> 35 #include <sys/abd.h> 36 #include <sys/fs/zfs.h> 37 #include <sys/zio.h> 38 #include <linux/blkpg.h> 39 #include <linux/msdos_fs.h> 40 #include <linux/vfs_compat.h> 41 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER 42 #include <linux/blk-cgroup.h> 43 #endif 44 45 /* 46 * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying 47 * block_device. Since it carries the block_device inside, its convenient to 48 * just use the handle as a proxy. 49 * 50 * Linux 6.9.x uses a file for the same purpose. 51 * 52 * For pre-6.8, we just emulate this with a cast, since we don't need any of 53 * the other fields inside the handle. 54 */ 55 #if defined(HAVE_BDEV_OPEN_BY_PATH) 56 typedef struct bdev_handle zfs_bdev_handle_t; 57 #define BDH_BDEV(bdh) ((bdh)->bdev) 58 #define BDH_IS_ERR(bdh) (IS_ERR(bdh)) 59 #define BDH_PTR_ERR(bdh) (PTR_ERR(bdh)) 60 #define BDH_ERR_PTR(err) (ERR_PTR(err)) 61 #elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH) 62 typedef struct file zfs_bdev_handle_t; 63 #define BDH_BDEV(bdh) (file_bdev(bdh)) 64 #define BDH_IS_ERR(bdh) (IS_ERR(bdh)) 65 #define BDH_PTR_ERR(bdh) (PTR_ERR(bdh)) 66 #define BDH_ERR_PTR(err) (ERR_PTR(err)) 67 #else 68 typedef void zfs_bdev_handle_t; 69 #define BDH_BDEV(bdh) ((struct block_device *)bdh) 70 #define BDH_IS_ERR(bdh) (IS_ERR(BDH_BDEV(bdh))) 71 #define BDH_PTR_ERR(bdh) (PTR_ERR(BDH_BDEV(bdh))) 72 #define BDH_ERR_PTR(err) (ERR_PTR(err)) 73 #endif 74 75 typedef struct vdev_disk { 76 zfs_bdev_handle_t *vd_bdh; 77 krwlock_t vd_lock; 78 } vdev_disk_t; 79 80 /* 81 * Maximum number of segments to add to a bio (min 4). If this is higher than 82 * the maximum allowed by the device queue or the kernel itself, it will be 83 * clamped. Setting it to zero will cause the kernel's ideal size to be used. 84 */ 85 uint_t zfs_vdev_disk_max_segs = 0; 86 87 /* 88 * Unique identifier for the exclusive vdev holder. 89 */ 90 static void *zfs_vdev_holder = VDEV_HOLDER; 91 92 /* 93 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the 94 * device is missing. The missing path may be transient since the links 95 * can be briefly removed and recreated in response to udev events. 96 */ 97 static uint_t zfs_vdev_open_timeout_ms = 1000; 98 99 /* 100 * Size of the "reserved" partition, in blocks. 101 */ 102 #define EFI_MIN_RESV_SIZE (16 * 1024) 103 104 /* 105 * BIO request failfast mask. 106 */ 107 108 static unsigned int zfs_vdev_failfast_mask = 1; 109 110 /* 111 * Convert SPA mode flags into bdev open mode flags. 112 */ 113 #ifdef HAVE_BLK_MODE_T 114 typedef blk_mode_t vdev_bdev_mode_t; 115 #define VDEV_BDEV_MODE_READ BLK_OPEN_READ 116 #define VDEV_BDEV_MODE_WRITE BLK_OPEN_WRITE 117 #define VDEV_BDEV_MODE_EXCL BLK_OPEN_EXCL 118 #define VDEV_BDEV_MODE_MASK (BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL) 119 #else 120 typedef fmode_t vdev_bdev_mode_t; 121 #define VDEV_BDEV_MODE_READ FMODE_READ 122 #define VDEV_BDEV_MODE_WRITE FMODE_WRITE 123 #define VDEV_BDEV_MODE_EXCL FMODE_EXCL 124 #define VDEV_BDEV_MODE_MASK (FMODE_READ|FMODE_WRITE|FMODE_EXCL) 125 #endif 126 127 static vdev_bdev_mode_t 128 vdev_bdev_mode(spa_mode_t smode) 129 { 130 ASSERT3U(smode, !=, SPA_MODE_UNINIT); 131 ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE)); 132 133 vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL; 134 135 if (smode & SPA_MODE_READ) 136 bmode |= VDEV_BDEV_MODE_READ; 137 138 if (smode & SPA_MODE_WRITE) 139 bmode |= VDEV_BDEV_MODE_WRITE; 140 141 ASSERT(bmode & VDEV_BDEV_MODE_MASK); 142 ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK); 143 144 return (bmode); 145 } 146 147 /* 148 * Returns the usable capacity (in bytes) for the partition or disk. 149 */ 150 static uint64_t 151 bdev_capacity(struct block_device *bdev) 152 { 153 return (i_size_read(bdev->bd_inode)); 154 } 155 156 #if !defined(HAVE_BDEV_WHOLE) 157 static inline struct block_device * 158 bdev_whole(struct block_device *bdev) 159 { 160 return (bdev->bd_contains); 161 } 162 #endif 163 164 #if defined(HAVE_BDEVNAME) 165 #define vdev_bdevname(bdev, name) bdevname(bdev, name) 166 #else 167 static inline void 168 vdev_bdevname(struct block_device *bdev, char *name) 169 { 170 snprintf(name, BDEVNAME_SIZE, "%pg", bdev); 171 } 172 #endif 173 174 /* 175 * Returns the maximum expansion capacity of the block device (in bytes). 176 * 177 * It is possible to expand a vdev when it has been created as a wholedisk 178 * and the containing block device has increased in capacity. Or when the 179 * partition containing the pool has been manually increased in size. 180 * 181 * This function is only responsible for calculating the potential expansion 182 * size so it can be reported by 'zpool list'. The efi_use_whole_disk() is 183 * responsible for verifying the expected partition layout in the wholedisk 184 * case, and updating the partition table if appropriate. Once the partition 185 * size has been increased the additional capacity will be visible using 186 * bdev_capacity(). 187 * 188 * The returned maximum expansion capacity is always expected to be larger, or 189 * at the very least equal, to its usable capacity to prevent overestimating 190 * the pool expandsize. 191 */ 192 static uint64_t 193 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk) 194 { 195 uint64_t psize; 196 int64_t available; 197 198 if (wholedisk && bdev != bdev_whole(bdev)) { 199 /* 200 * When reporting maximum expansion capacity for a wholedisk 201 * deduct any capacity which is expected to be lost due to 202 * alignment restrictions. Over reporting this value isn't 203 * harmful and would only result in slightly less capacity 204 * than expected post expansion. 205 * The estimated available space may be slightly smaller than 206 * bdev_capacity() for devices where the number of sectors is 207 * not a multiple of the alignment size and the partition layout 208 * is keeping less than PARTITION_END_ALIGNMENT bytes after the 209 * "reserved" EFI partition: in such cases return the device 210 * usable capacity. 211 */ 212 available = i_size_read(bdev_whole(bdev)->bd_inode) - 213 ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK + 214 PARTITION_END_ALIGNMENT) << SECTOR_BITS); 215 psize = MAX(available, bdev_capacity(bdev)); 216 } else { 217 psize = bdev_capacity(bdev); 218 } 219 220 return (psize); 221 } 222 223 static void 224 vdev_disk_error(zio_t *zio) 225 { 226 /* 227 * This function can be called in interrupt context, for instance while 228 * handling IRQs coming from a misbehaving disk device; use printk() 229 * which is safe from any context. 230 */ 231 printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d " 232 "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa), 233 zio->io_vd->vdev_path, zio->io_error, zio->io_type, 234 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size, 235 zio->io_flags); 236 } 237 238 static void 239 vdev_disk_kobj_evt_post(vdev_t *v) 240 { 241 vdev_disk_t *vd = v->vdev_tsd; 242 if (vd && vd->vd_bdh) { 243 spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh)); 244 } else { 245 vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n", 246 v->vdev_path); 247 } 248 } 249 250 static zfs_bdev_handle_t * 251 vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder) 252 { 253 vdev_bdev_mode_t bmode = vdev_bdev_mode(smode); 254 255 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH) 256 return (bdev_file_open_by_path(path, bmode, holder, NULL)); 257 #elif defined(HAVE_BDEV_OPEN_BY_PATH) 258 return (bdev_open_by_path(path, bmode, holder, NULL)); 259 #elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG) 260 return (blkdev_get_by_path(path, bmode, holder, NULL)); 261 #else 262 return (blkdev_get_by_path(path, bmode, holder)); 263 #endif 264 } 265 266 static void 267 vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder) 268 { 269 #if defined(HAVE_BDEV_RELEASE) 270 return (bdev_release(bdh)); 271 #elif defined(HAVE_BLKDEV_PUT_HOLDER) 272 return (blkdev_put(BDH_BDEV(bdh), holder)); 273 #elif defined(HAVE_BLKDEV_PUT) 274 return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode))); 275 #else 276 fput(bdh); 277 #endif 278 } 279 280 static int 281 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize, 282 uint64_t *logical_ashift, uint64_t *physical_ashift) 283 { 284 zfs_bdev_handle_t *bdh; 285 spa_mode_t smode = spa_mode(v->vdev_spa); 286 hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms); 287 vdev_disk_t *vd; 288 289 /* Must have a pathname and it must be absolute. */ 290 if (v->vdev_path == NULL || v->vdev_path[0] != '/') { 291 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 292 vdev_dbgmsg(v, "invalid vdev_path"); 293 return (SET_ERROR(EINVAL)); 294 } 295 296 /* 297 * Reopen the device if it is currently open. When expanding a 298 * partition force re-scanning the partition table if userland 299 * did not take care of this already. We need to do this while closed 300 * in order to get an accurate updated block device size. Then 301 * since udev may need to recreate the device links increase the 302 * open retry timeout before reporting the device as unavailable. 303 */ 304 vd = v->vdev_tsd; 305 if (vd) { 306 char disk_name[BDEVNAME_SIZE + 6] = "/dev/"; 307 boolean_t reread_part = B_FALSE; 308 309 rw_enter(&vd->vd_lock, RW_WRITER); 310 bdh = vd->vd_bdh; 311 vd->vd_bdh = NULL; 312 313 if (bdh) { 314 struct block_device *bdev = BDH_BDEV(bdh); 315 if (v->vdev_expanding && bdev != bdev_whole(bdev)) { 316 vdev_bdevname(bdev_whole(bdev), disk_name + 5); 317 /* 318 * If userland has BLKPG_RESIZE_PARTITION, 319 * then it should have updated the partition 320 * table already. We can detect this by 321 * comparing our current physical size 322 * with that of the device. If they are 323 * the same, then we must not have 324 * BLKPG_RESIZE_PARTITION or it failed to 325 * update the partition table online. We 326 * fallback to rescanning the partition 327 * table from the kernel below. However, 328 * if the capacity already reflects the 329 * updated partition, then we skip 330 * rescanning the partition table here. 331 */ 332 if (v->vdev_psize == bdev_capacity(bdev)) 333 reread_part = B_TRUE; 334 } 335 336 vdev_blkdev_put(bdh, smode, zfs_vdev_holder); 337 } 338 339 if (reread_part) { 340 bdh = vdev_blkdev_get_by_path(disk_name, smode, 341 zfs_vdev_holder); 342 if (!BDH_IS_ERR(bdh)) { 343 int error = 344 vdev_bdev_reread_part(BDH_BDEV(bdh)); 345 vdev_blkdev_put(bdh, smode, zfs_vdev_holder); 346 if (error == 0) { 347 timeout = MSEC2NSEC( 348 zfs_vdev_open_timeout_ms * 2); 349 } 350 } 351 } 352 } else { 353 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 354 355 rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL); 356 rw_enter(&vd->vd_lock, RW_WRITER); 357 } 358 359 /* 360 * Devices are always opened by the path provided at configuration 361 * time. This means that if the provided path is a udev by-id path 362 * then drives may be re-cabled without an issue. If the provided 363 * path is a udev by-path path, then the physical location information 364 * will be preserved. This can be critical for more complicated 365 * configurations where drives are located in specific physical 366 * locations to maximize the systems tolerance to component failure. 367 * 368 * Alternatively, you can provide your own udev rule to flexibly map 369 * the drives as you see fit. It is not advised that you use the 370 * /dev/[hd]d devices which may be reordered due to probing order. 371 * Devices in the wrong locations will be detected by the higher 372 * level vdev validation. 373 * 374 * The specified paths may be briefly removed and recreated in 375 * response to udev events. This should be exceptionally unlikely 376 * because the zpool command makes every effort to verify these paths 377 * have already settled prior to reaching this point. Therefore, 378 * a ENOENT failure at this point is highly likely to be transient 379 * and it is reasonable to sleep and retry before giving up. In 380 * practice delays have been observed to be on the order of 100ms. 381 * 382 * When ERESTARTSYS is returned it indicates the block device is 383 * a zvol which could not be opened due to the deadlock detection 384 * logic in zvol_open(). Extend the timeout and retry the open 385 * subsequent attempts are expected to eventually succeed. 386 */ 387 hrtime_t start = gethrtime(); 388 bdh = BDH_ERR_PTR(-ENXIO); 389 while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) { 390 bdh = vdev_blkdev_get_by_path(v->vdev_path, smode, 391 zfs_vdev_holder); 392 if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) { 393 /* 394 * There is no point of waiting since device is removed 395 * explicitly 396 */ 397 if (v->vdev_removed) 398 break; 399 400 schedule_timeout(MSEC_TO_TICK(10)); 401 } else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) { 402 timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10); 403 continue; 404 } else if (BDH_IS_ERR(bdh)) { 405 break; 406 } 407 } 408 409 if (BDH_IS_ERR(bdh)) { 410 int error = -BDH_PTR_ERR(bdh); 411 vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error, 412 (u_longlong_t)(gethrtime() - start), 413 (u_longlong_t)timeout); 414 vd->vd_bdh = NULL; 415 v->vdev_tsd = vd; 416 rw_exit(&vd->vd_lock); 417 return (SET_ERROR(error)); 418 } else { 419 vd->vd_bdh = bdh; 420 v->vdev_tsd = vd; 421 rw_exit(&vd->vd_lock); 422 } 423 424 struct block_device *bdev = BDH_BDEV(vd->vd_bdh); 425 426 /* Determine the physical block size */ 427 int physical_block_size = bdev_physical_block_size(bdev); 428 429 /* Determine the logical block size */ 430 int logical_block_size = bdev_logical_block_size(bdev); 431 432 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */ 433 v->vdev_nowritecache = B_FALSE; 434 435 /* Set when device reports it supports TRIM. */ 436 v->vdev_has_trim = bdev_discard_supported(bdev); 437 438 /* Set when device reports it supports secure TRIM. */ 439 v->vdev_has_securetrim = bdev_secure_discard_supported(bdev); 440 441 /* Inform the ZIO pipeline that we are non-rotational */ 442 v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev)); 443 444 /* Physical volume size in bytes for the partition */ 445 *psize = bdev_capacity(bdev); 446 447 /* Physical volume size in bytes including possible expansion space */ 448 *max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk); 449 450 /* Based on the minimum sector size set the block size */ 451 *physical_ashift = highbit64(MAX(physical_block_size, 452 SPA_MINBLOCKSIZE)) - 1; 453 454 *logical_ashift = highbit64(MAX(logical_block_size, 455 SPA_MINBLOCKSIZE)) - 1; 456 457 return (0); 458 } 459 460 static void 461 vdev_disk_close(vdev_t *v) 462 { 463 vdev_disk_t *vd = v->vdev_tsd; 464 465 if (v->vdev_reopening || vd == NULL) 466 return; 467 468 if (vd->vd_bdh != NULL) 469 vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa), 470 zfs_vdev_holder); 471 472 rw_destroy(&vd->vd_lock); 473 kmem_free(vd, sizeof (vdev_disk_t)); 474 v->vdev_tsd = NULL; 475 } 476 477 static inline void 478 vdev_submit_bio_impl(struct bio *bio) 479 { 480 #ifdef HAVE_1ARG_SUBMIT_BIO 481 (void) submit_bio(bio); 482 #else 483 (void) submit_bio(bio_data_dir(bio), bio); 484 #endif 485 } 486 487 /* 488 * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so 489 * replace it with preempt_schedule under the following condition: 490 */ 491 #if defined(CONFIG_ARM64) && \ 492 defined(CONFIG_PREEMPTION) && \ 493 defined(CONFIG_BLK_CGROUP) 494 #define preempt_schedule_notrace(x) preempt_schedule(x) 495 #endif 496 497 /* 498 * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct 499 * as an argument removing the need to set it with bio_set_dev(). This 500 * removes the need for all of the following compatibility code. 501 */ 502 #if !defined(HAVE_BIO_ALLOC_4ARG) 503 504 #ifdef HAVE_BIO_SET_DEV 505 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY) 506 /* 507 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by 508 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched(). 509 * As a side effect the function was converted to GPL-only. Define our 510 * own version when needed which uses rcu_read_lock_sched(). 511 * 512 * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public 513 * part, moving blkg_tryget into the private one. Define our own version. 514 */ 515 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET) 516 static inline bool 517 vdev_blkg_tryget(struct blkcg_gq *blkg) 518 { 519 struct percpu_ref *ref = &blkg->refcnt; 520 unsigned long __percpu *count; 521 bool rc; 522 523 rcu_read_lock_sched(); 524 525 if (__ref_is_percpu(ref, &count)) { 526 this_cpu_inc(*count); 527 rc = true; 528 } else { 529 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA 530 rc = atomic_long_inc_not_zero(&ref->data->count); 531 #else 532 rc = atomic_long_inc_not_zero(&ref->count); 533 #endif 534 } 535 536 rcu_read_unlock_sched(); 537 538 return (rc); 539 } 540 #else 541 #define vdev_blkg_tryget(bg) blkg_tryget(bg) 542 #endif 543 #ifdef HAVE_BIO_SET_DEV_MACRO 544 /* 545 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the 546 * GPL-only bio_associate_blkg() symbol thus inadvertently converting 547 * the entire macro. Provide a minimal version which always assigns the 548 * request queue's root_blkg to the bio. 549 */ 550 static inline void 551 vdev_bio_associate_blkg(struct bio *bio) 552 { 553 #if defined(HAVE_BIO_BDEV_DISK) 554 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 555 #else 556 struct request_queue *q = bio->bi_disk->queue; 557 #endif 558 559 ASSERT3P(q, !=, NULL); 560 ASSERT3P(bio->bi_blkg, ==, NULL); 561 562 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg)) 563 bio->bi_blkg = q->root_blkg; 564 } 565 566 #define bio_associate_blkg vdev_bio_associate_blkg 567 #else 568 static inline void 569 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev) 570 { 571 #if defined(HAVE_BIO_BDEV_DISK) 572 struct request_queue *q = bdev->bd_disk->queue; 573 #else 574 struct request_queue *q = bio->bi_disk->queue; 575 #endif 576 bio_clear_flag(bio, BIO_REMAPPED); 577 if (bio->bi_bdev != bdev) 578 bio_clear_flag(bio, BIO_THROTTLED); 579 bio->bi_bdev = bdev; 580 581 ASSERT3P(q, !=, NULL); 582 ASSERT3P(bio->bi_blkg, ==, NULL); 583 584 if (q->root_blkg && vdev_blkg_tryget(q->root_blkg)) 585 bio->bi_blkg = q->root_blkg; 586 } 587 #define bio_set_dev vdev_bio_set_dev 588 #endif 589 #endif 590 #else 591 /* 592 * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels. 593 */ 594 static inline void 595 bio_set_dev(struct bio *bio, struct block_device *bdev) 596 { 597 bio->bi_bdev = bdev; 598 } 599 #endif /* HAVE_BIO_SET_DEV */ 600 #endif /* !HAVE_BIO_ALLOC_4ARG */ 601 602 static inline void 603 vdev_submit_bio(struct bio *bio) 604 { 605 struct bio_list *bio_list = current->bio_list; 606 current->bio_list = NULL; 607 vdev_submit_bio_impl(bio); 608 current->bio_list = bio_list; 609 } 610 611 static inline struct bio * 612 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask, 613 unsigned short nr_vecs) 614 { 615 struct bio *bio; 616 617 #ifdef HAVE_BIO_ALLOC_4ARG 618 bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask); 619 #else 620 bio = bio_alloc(gfp_mask, nr_vecs); 621 if (likely(bio != NULL)) 622 bio_set_dev(bio, bdev); 623 #endif 624 625 return (bio); 626 } 627 628 static inline uint_t 629 vdev_bio_max_segs(struct block_device *bdev) 630 { 631 /* 632 * Smallest of the device max segs and the tuneable max segs. Minimum 633 * 4, so there's room to finish split pages if they come up. 634 */ 635 const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev)); 636 const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ? 637 MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs; 638 const uint_t max_segs = MIN(tune_max_segs, dev_max_segs); 639 640 #ifdef HAVE_BIO_MAX_SEGS 641 return (bio_max_segs(max_segs)); 642 #else 643 return (MIN(max_segs, BIO_MAX_PAGES)); 644 #endif 645 } 646 647 static inline uint_t 648 vdev_bio_max_bytes(struct block_device *bdev) 649 { 650 return (queue_max_sectors(bdev_get_queue(bdev)) << 9); 651 } 652 653 654 /* 655 * Virtual block IO object (VBIO) 656 * 657 * Linux block IO (BIO) objects have a limit on how many data segments (pages) 658 * they can hold. Depending on how they're allocated and structured, a large 659 * ZIO can require more than one BIO to be submitted to the kernel, which then 660 * all have to complete before we can return the completed ZIO back to ZFS. 661 * 662 * A VBIO is a wrapper around multiple BIOs, carrying everything needed to 663 * translate a ZIO down into the kernel block layer and back again. 664 * 665 * Note that these are only used for data ZIOs (read/write). Meta-operations 666 * (flush/trim) don't need multiple BIOs and so can just make the call 667 * directly. 668 */ 669 typedef struct { 670 zio_t *vbio_zio; /* parent zio */ 671 672 struct block_device *vbio_bdev; /* blockdev to submit bios to */ 673 674 abd_t *vbio_abd; /* abd carrying borrowed linear buf */ 675 676 uint_t vbio_max_segs; /* max segs per bio */ 677 678 uint_t vbio_max_bytes; /* max bytes per bio */ 679 uint_t vbio_lbs_mask; /* logical block size mask */ 680 681 uint64_t vbio_offset; /* start offset of next bio */ 682 683 struct bio *vbio_bio; /* pointer to the current bio */ 684 int vbio_flags; /* bio flags */ 685 } vbio_t; 686 687 static vbio_t * 688 vbio_alloc(zio_t *zio, struct block_device *bdev, int flags) 689 { 690 vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP); 691 692 vbio->vbio_zio = zio; 693 vbio->vbio_bdev = bdev; 694 vbio->vbio_abd = NULL; 695 vbio->vbio_max_segs = vdev_bio_max_segs(bdev); 696 vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev); 697 vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1); 698 vbio->vbio_offset = zio->io_offset; 699 vbio->vbio_bio = NULL; 700 vbio->vbio_flags = flags; 701 702 return (vbio); 703 } 704 705 BIO_END_IO_PROTO(vbio_completion, bio, error); 706 707 static int 708 vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset) 709 { 710 struct bio *bio = vbio->vbio_bio; 711 uint_t ssize; 712 713 while (size > 0) { 714 if (bio == NULL) { 715 /* New BIO, allocate and set up */ 716 bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO, 717 vbio->vbio_max_segs); 718 VERIFY(bio); 719 720 BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9; 721 bio_set_op_attrs(bio, 722 vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ? 723 WRITE : READ, vbio->vbio_flags); 724 725 if (vbio->vbio_bio) { 726 bio_chain(vbio->vbio_bio, bio); 727 vdev_submit_bio(vbio->vbio_bio); 728 } 729 vbio->vbio_bio = bio; 730 } 731 732 /* 733 * Only load as much of the current page data as will fit in 734 * the space left in the BIO, respecting lbs alignment. Older 735 * kernels will error if we try to overfill the BIO, while 736 * newer ones will accept it and split the BIO. This ensures 737 * everything works on older kernels, and avoids an additional 738 * overhead on the new. 739 */ 740 ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) & 741 vbio->vbio_lbs_mask); 742 if (ssize > 0 && 743 bio_add_page(bio, page, ssize, offset) == ssize) { 744 /* Accepted, adjust and load any remaining. */ 745 size -= ssize; 746 offset += ssize; 747 continue; 748 } 749 750 /* No room, set up for a new BIO and loop */ 751 vbio->vbio_offset += BIO_BI_SIZE(bio); 752 753 /* Signal new BIO allocation wanted */ 754 bio = NULL; 755 } 756 757 return (0); 758 } 759 760 /* Iterator callback to submit ABD pages to the vbio. */ 761 static int 762 vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv) 763 { 764 vbio_t *vbio = priv; 765 return (vbio_add_page(vbio, page, len, off)); 766 } 767 768 /* Create some BIOs, fill them with data and submit them */ 769 static void 770 vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size) 771 { 772 /* 773 * We plug so we can submit the BIOs as we go and only unplug them when 774 * they are fully created and submitted. This is important; if we don't 775 * plug, then the kernel may start executing earlier BIOs while we're 776 * still creating and executing later ones, and if the device goes 777 * away while that's happening, older kernels can get confused and 778 * trample memory. 779 */ 780 struct blk_plug plug; 781 blk_start_plug(&plug); 782 783 (void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio); 784 ASSERT(vbio->vbio_bio); 785 786 vbio->vbio_bio->bi_end_io = vbio_completion; 787 vbio->vbio_bio->bi_private = vbio; 788 789 /* 790 * Once submitted, vbio_bio now owns vbio (through bi_private) and we 791 * can't touch it again. The bio may complete and vbio_completion() be 792 * called and free the vbio before this task is run again, so we must 793 * consider it invalid from this point. 794 */ 795 vdev_submit_bio(vbio->vbio_bio); 796 797 blk_finish_plug(&plug); 798 } 799 800 /* IO completion callback */ 801 BIO_END_IO_PROTO(vbio_completion, bio, error) 802 { 803 vbio_t *vbio = bio->bi_private; 804 zio_t *zio = vbio->vbio_zio; 805 806 ASSERT(zio); 807 808 /* Capture and log any errors */ 809 #ifdef HAVE_1ARG_BIO_END_IO_T 810 zio->io_error = BIO_END_IO_ERROR(bio); 811 #else 812 zio->io_error = 0; 813 if (error) 814 zio->io_error = -(error); 815 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 816 zio->io_error = EIO; 817 #endif 818 ASSERT3U(zio->io_error, >=, 0); 819 820 if (zio->io_error) 821 vdev_disk_error(zio); 822 823 /* Return the BIO to the kernel */ 824 bio_put(bio); 825 826 /* 827 * If we copied the ABD before issuing it, clean up and return the copy 828 * to the ADB, with changes if appropriate. 829 */ 830 if (vbio->vbio_abd != NULL) { 831 void *buf = abd_to_buf(vbio->vbio_abd); 832 abd_free(vbio->vbio_abd); 833 vbio->vbio_abd = NULL; 834 835 if (zio->io_type == ZIO_TYPE_READ) 836 abd_return_buf_copy(zio->io_abd, buf, zio->io_size); 837 else 838 abd_return_buf(zio->io_abd, buf, zio->io_size); 839 } 840 841 /* Final cleanup */ 842 kmem_free(vbio, sizeof (vbio_t)); 843 844 /* All done, submit for processing */ 845 zio_delay_interrupt(zio); 846 } 847 848 /* 849 * Iterator callback to count ABD pages and check their size & alignment. 850 * 851 * On Linux, each BIO segment can take a page pointer, and an offset+length of 852 * the data within that page. A page can be arbitrarily large ("compound" 853 * pages) but we still have to ensure the data portion is correctly sized and 854 * aligned to the logical block size, to ensure that if the kernel wants to 855 * split the BIO, the two halves will still be properly aligned. 856 * 857 * NOTE: if you change this function, change the copy in 858 * tests/zfs-tests/tests/functional/vdev_disk/page_alignment.c, and add test 859 * data there to validate the change you're making. 860 * 861 */ 862 typedef struct { 863 uint_t bmask; 864 uint_t npages; 865 uint_t end; 866 } vdev_disk_check_pages_t; 867 868 static int 869 vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv) 870 { 871 (void) page; 872 vdev_disk_check_pages_t *s = priv; 873 874 /* 875 * If we didn't finish on a block size boundary last time, then there 876 * would be a gap if we tried to use this ABD as-is, so abort. 877 */ 878 if (s->end != 0) 879 return (1); 880 881 /* 882 * Note if we're taking less than a full block, so we can check it 883 * above on the next call. 884 */ 885 s->end = (off+len) & s->bmask; 886 887 /* All blocks after the first must start on a block size boundary. */ 888 if (s->npages != 0 && (off & s->bmask) != 0) 889 return (1); 890 891 s->npages++; 892 return (0); 893 } 894 895 /* 896 * Check if we can submit the pages in this ABD to the kernel as-is. Returns 897 * the number of pages, or 0 if it can't be submitted like this. 898 */ 899 static boolean_t 900 vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev) 901 { 902 vdev_disk_check_pages_t s = { 903 .bmask = bdev_logical_block_size(bdev)-1, 904 .npages = 0, 905 .end = 0, 906 }; 907 908 if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s)) 909 return (B_FALSE); 910 911 return (B_TRUE); 912 } 913 914 static int 915 vdev_disk_io_rw(zio_t *zio) 916 { 917 vdev_t *v = zio->io_vd; 918 vdev_disk_t *vd = v->vdev_tsd; 919 struct block_device *bdev = BDH_BDEV(vd->vd_bdh); 920 int flags = 0; 921 922 /* 923 * Accessing outside the block device is never allowed. 924 */ 925 if (zio->io_offset + zio->io_size > bdev->bd_inode->i_size) { 926 vdev_dbgmsg(zio->io_vd, 927 "Illegal access %llu size %llu, device size %llu", 928 (u_longlong_t)zio->io_offset, 929 (u_longlong_t)zio->io_size, 930 (u_longlong_t)i_size_read(bdev->bd_inode)); 931 return (SET_ERROR(EIO)); 932 } 933 934 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) && 935 v->vdev_failfast == B_TRUE) { 936 bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1, 937 zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4); 938 } 939 940 /* 941 * Check alignment of the incoming ABD. If any part of it would require 942 * submitting a page that is not aligned to the logical block size, 943 * then we take a copy into a linear buffer and submit that instead. 944 * This should be impossible on a 512b LBS, and fairly rare on 4K, 945 * usually requiring abnormally-small data blocks (eg gang blocks) 946 * mixed into the same ABD as larger ones (eg aggregated). 947 */ 948 abd_t *abd = zio->io_abd; 949 if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) { 950 void *buf; 951 if (zio->io_type == ZIO_TYPE_READ) 952 buf = abd_borrow_buf(zio->io_abd, zio->io_size); 953 else 954 buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size); 955 956 /* 957 * Wrap the copy in an abd_t, so we can use the same iterators 958 * to count and fill the vbio later. 959 */ 960 abd = abd_get_from_buf(buf, zio->io_size); 961 962 /* 963 * False here would mean the borrowed copy has an invalid 964 * alignment too, which would mean we've somehow been passed a 965 * linear ABD with an interior page that has a non-zero offset 966 * or a size not a multiple of PAGE_SIZE. This is not possible. 967 * It would mean either zio_buf_alloc() or its underlying 968 * allocators have done something extremely strange, or our 969 * math in vdev_disk_check_pages() is wrong. In either case, 970 * something in seriously wrong and its not safe to continue. 971 */ 972 VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev)); 973 } 974 975 /* Allocate vbio, with a pointer to the borrowed ABD if necessary */ 976 vbio_t *vbio = vbio_alloc(zio, bdev, flags); 977 if (abd != zio->io_abd) 978 vbio->vbio_abd = abd; 979 980 /* Fill it with data pages and submit it to the kernel */ 981 vbio_submit(vbio, abd, zio->io_size); 982 return (0); 983 } 984 985 /* ========== */ 986 987 /* 988 * This is the classic, battle-tested BIO submission code. Until we're totally 989 * sure that the new code is safe and correct in all cases, this will remain 990 * available and can be enabled by setting zfs_vdev_disk_classic=1 at module 991 * load time. 992 * 993 * These functions have been renamed to vdev_classic_* to make it clear what 994 * they belong to, but their implementations are unchanged. 995 */ 996 997 /* 998 * Virtual device vector for disks. 999 */ 1000 typedef struct dio_request { 1001 zio_t *dr_zio; /* Parent ZIO */ 1002 atomic_t dr_ref; /* References */ 1003 int dr_error; /* Bio error */ 1004 int dr_bio_count; /* Count of bio's */ 1005 struct bio *dr_bio[]; /* Attached bio's */ 1006 } dio_request_t; 1007 1008 static dio_request_t * 1009 vdev_classic_dio_alloc(int bio_count) 1010 { 1011 dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) + 1012 sizeof (struct bio *) * bio_count, KM_SLEEP); 1013 atomic_set(&dr->dr_ref, 0); 1014 dr->dr_bio_count = bio_count; 1015 dr->dr_error = 0; 1016 1017 for (int i = 0; i < dr->dr_bio_count; i++) 1018 dr->dr_bio[i] = NULL; 1019 1020 return (dr); 1021 } 1022 1023 static void 1024 vdev_classic_dio_free(dio_request_t *dr) 1025 { 1026 int i; 1027 1028 for (i = 0; i < dr->dr_bio_count; i++) 1029 if (dr->dr_bio[i]) 1030 bio_put(dr->dr_bio[i]); 1031 1032 kmem_free(dr, sizeof (dio_request_t) + 1033 sizeof (struct bio *) * dr->dr_bio_count); 1034 } 1035 1036 static void 1037 vdev_classic_dio_get(dio_request_t *dr) 1038 { 1039 atomic_inc(&dr->dr_ref); 1040 } 1041 1042 static void 1043 vdev_classic_dio_put(dio_request_t *dr) 1044 { 1045 int rc = atomic_dec_return(&dr->dr_ref); 1046 1047 /* 1048 * Free the dio_request when the last reference is dropped and 1049 * ensure zio_interpret is called only once with the correct zio 1050 */ 1051 if (rc == 0) { 1052 zio_t *zio = dr->dr_zio; 1053 int error = dr->dr_error; 1054 1055 vdev_classic_dio_free(dr); 1056 1057 if (zio) { 1058 zio->io_error = error; 1059 ASSERT3S(zio->io_error, >=, 0); 1060 if (zio->io_error) 1061 vdev_disk_error(zio); 1062 1063 zio_delay_interrupt(zio); 1064 } 1065 } 1066 } 1067 1068 BIO_END_IO_PROTO(vdev_classic_physio_completion, bio, error) 1069 { 1070 dio_request_t *dr = bio->bi_private; 1071 1072 if (dr->dr_error == 0) { 1073 #ifdef HAVE_1ARG_BIO_END_IO_T 1074 dr->dr_error = BIO_END_IO_ERROR(bio); 1075 #else 1076 if (error) 1077 dr->dr_error = -(error); 1078 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 1079 dr->dr_error = EIO; 1080 #endif 1081 } 1082 1083 /* Drop reference acquired by vdev_classic_physio */ 1084 vdev_classic_dio_put(dr); 1085 } 1086 1087 static inline unsigned int 1088 vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset) 1089 { 1090 unsigned long nr_segs = abd_nr_pages_off(zio->io_abd, 1091 bio_size, abd_offset); 1092 1093 #ifdef HAVE_BIO_MAX_SEGS 1094 return (bio_max_segs(nr_segs)); 1095 #else 1096 return (MIN(nr_segs, BIO_MAX_PAGES)); 1097 #endif 1098 } 1099 1100 static int 1101 vdev_classic_physio(zio_t *zio) 1102 { 1103 vdev_t *v = zio->io_vd; 1104 vdev_disk_t *vd = v->vdev_tsd; 1105 struct block_device *bdev = BDH_BDEV(vd->vd_bdh); 1106 size_t io_size = zio->io_size; 1107 uint64_t io_offset = zio->io_offset; 1108 int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE; 1109 int flags = 0; 1110 1111 dio_request_t *dr; 1112 uint64_t abd_offset; 1113 uint64_t bio_offset; 1114 int bio_size; 1115 int bio_count = 16; 1116 int error = 0; 1117 struct blk_plug plug; 1118 unsigned short nr_vecs; 1119 1120 /* 1121 * Accessing outside the block device is never allowed. 1122 */ 1123 if (io_offset + io_size > bdev->bd_inode->i_size) { 1124 vdev_dbgmsg(zio->io_vd, 1125 "Illegal access %llu size %llu, device size %llu", 1126 (u_longlong_t)io_offset, 1127 (u_longlong_t)io_size, 1128 (u_longlong_t)i_size_read(bdev->bd_inode)); 1129 return (SET_ERROR(EIO)); 1130 } 1131 1132 retry: 1133 dr = vdev_classic_dio_alloc(bio_count); 1134 1135 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) && 1136 zio->io_vd->vdev_failfast == B_TRUE) { 1137 bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1, 1138 zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4); 1139 } 1140 1141 dr->dr_zio = zio; 1142 1143 /* 1144 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which 1145 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio 1146 * can cover at least 128KB and at most 1MB. When the required number 1147 * of iovec's exceeds this, we are forced to break the IO in multiple 1148 * bio's and wait for them all to complete. This is likely if the 1149 * recordsize property is increased beyond 1MB. The default 1150 * bio_count=16 should typically accommodate the maximum-size zio of 1151 * 16MB. 1152 */ 1153 1154 abd_offset = 0; 1155 bio_offset = io_offset; 1156 bio_size = io_size; 1157 for (int i = 0; i <= dr->dr_bio_count; i++) { 1158 1159 /* Finished constructing bio's for given buffer */ 1160 if (bio_size <= 0) 1161 break; 1162 1163 /* 1164 * If additional bio's are required, we have to retry, but 1165 * this should be rare - see the comment above. 1166 */ 1167 if (dr->dr_bio_count == i) { 1168 vdev_classic_dio_free(dr); 1169 bio_count *= 2; 1170 goto retry; 1171 } 1172 1173 nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset); 1174 dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs); 1175 if (unlikely(dr->dr_bio[i] == NULL)) { 1176 vdev_classic_dio_free(dr); 1177 return (SET_ERROR(ENOMEM)); 1178 } 1179 1180 /* Matching put called by vdev_classic_physio_completion */ 1181 vdev_classic_dio_get(dr); 1182 1183 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9; 1184 dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion; 1185 dr->dr_bio[i]->bi_private = dr; 1186 bio_set_op_attrs(dr->dr_bio[i], rw, flags); 1187 1188 /* Remaining size is returned to become the new size */ 1189 bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd, 1190 bio_size, abd_offset); 1191 1192 /* Advance in buffer and construct another bio if needed */ 1193 abd_offset += BIO_BI_SIZE(dr->dr_bio[i]); 1194 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]); 1195 } 1196 1197 /* Extra reference to protect dio_request during vdev_submit_bio */ 1198 vdev_classic_dio_get(dr); 1199 1200 if (dr->dr_bio_count > 1) 1201 blk_start_plug(&plug); 1202 1203 /* Submit all bio's associated with this dio */ 1204 for (int i = 0; i < dr->dr_bio_count; i++) { 1205 if (dr->dr_bio[i]) 1206 vdev_submit_bio(dr->dr_bio[i]); 1207 } 1208 1209 if (dr->dr_bio_count > 1) 1210 blk_finish_plug(&plug); 1211 1212 vdev_classic_dio_put(dr); 1213 1214 return (error); 1215 } 1216 1217 /* ========== */ 1218 1219 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error) 1220 { 1221 zio_t *zio = bio->bi_private; 1222 #ifdef HAVE_1ARG_BIO_END_IO_T 1223 zio->io_error = BIO_END_IO_ERROR(bio); 1224 #else 1225 zio->io_error = -error; 1226 #endif 1227 1228 if (zio->io_error && (zio->io_error == EOPNOTSUPP)) 1229 zio->io_vd->vdev_nowritecache = B_TRUE; 1230 1231 bio_put(bio); 1232 ASSERT3S(zio->io_error, >=, 0); 1233 if (zio->io_error) 1234 vdev_disk_error(zio); 1235 zio_interrupt(zio); 1236 } 1237 1238 static int 1239 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio) 1240 { 1241 struct request_queue *q; 1242 struct bio *bio; 1243 1244 q = bdev_get_queue(bdev); 1245 if (!q) 1246 return (SET_ERROR(ENXIO)); 1247 1248 bio = vdev_bio_alloc(bdev, GFP_NOIO, 0); 1249 if (unlikely(bio == NULL)) 1250 return (SET_ERROR(ENOMEM)); 1251 1252 bio->bi_end_io = vdev_disk_io_flush_completion; 1253 bio->bi_private = zio; 1254 bio_set_flush(bio); 1255 vdev_submit_bio(bio); 1256 invalidate_bdev(bdev); 1257 1258 return (0); 1259 } 1260 1261 BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error) 1262 { 1263 zio_t *zio = bio->bi_private; 1264 #ifdef HAVE_1ARG_BIO_END_IO_T 1265 zio->io_error = BIO_END_IO_ERROR(bio); 1266 #else 1267 zio->io_error = -error; 1268 #endif 1269 bio_put(bio); 1270 if (zio->io_error) 1271 vdev_disk_error(zio); 1272 zio_interrupt(zio); 1273 } 1274 1275 /* 1276 * Wrappers for the different secure erase and discard APIs. We use async 1277 * when available; in this case, *biop is set to the last bio in the chain. 1278 */ 1279 static int 1280 vdev_bdev_issue_secure_erase(zfs_bdev_handle_t *bdh, sector_t sector, 1281 sector_t nsect, struct bio **biop) 1282 { 1283 *biop = NULL; 1284 int error; 1285 1286 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE) 1287 error = blkdev_issue_secure_erase(BDH_BDEV(bdh), 1288 sector, nsect, GFP_NOFS); 1289 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS) 1290 error = __blkdev_issue_discard(BDH_BDEV(bdh), 1291 sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE, biop); 1292 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS) 1293 error = blkdev_issue_discard(BDH_BDEV(bdh), 1294 sector, nsect, GFP_NOFS, BLKDEV_DISCARD_SECURE); 1295 #else 1296 #error "unsupported kernel" 1297 #endif 1298 1299 return (error); 1300 } 1301 1302 static int 1303 vdev_bdev_issue_discard(zfs_bdev_handle_t *bdh, sector_t sector, 1304 sector_t nsect, struct bio **biop) 1305 { 1306 *biop = NULL; 1307 int error; 1308 1309 #if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS) 1310 error = __blkdev_issue_discard(BDH_BDEV(bdh), 1311 sector, nsect, GFP_NOFS, 0, biop); 1312 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS) 1313 error = __blkdev_issue_discard(BDH_BDEV(bdh), 1314 sector, nsect, GFP_NOFS, biop); 1315 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS) 1316 error = blkdev_issue_discard(BDH_BDEV(bdh), 1317 sector, nsect, GFP_NOFS, 0); 1318 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS) 1319 error = blkdev_issue_discard(BDH_BDEV(bdh), 1320 sector, nsect, GFP_NOFS); 1321 #else 1322 #error "unsupported kernel" 1323 #endif 1324 1325 return (error); 1326 } 1327 1328 /* 1329 * Entry point for TRIM ops. This calls the right wrapper for secure erase or 1330 * discard, and then does the appropriate finishing work for error vs success 1331 * and async vs sync. 1332 */ 1333 static int 1334 vdev_disk_io_trim(zio_t *zio) 1335 { 1336 int error; 1337 struct bio *bio; 1338 1339 zfs_bdev_handle_t *bdh = ((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh; 1340 sector_t sector = zio->io_offset >> 9; 1341 sector_t nsects = zio->io_size >> 9; 1342 1343 if (zio->io_trim_flags & ZIO_TRIM_SECURE) 1344 error = vdev_bdev_issue_secure_erase(bdh, sector, nsects, &bio); 1345 else 1346 error = vdev_bdev_issue_discard(bdh, sector, nsects, &bio); 1347 1348 if (error != 0) 1349 return (SET_ERROR(-error)); 1350 1351 if (bio == NULL) { 1352 /* 1353 * This was a synchronous op that completed successfully, so 1354 * return it to ZFS immediately. 1355 */ 1356 zio_interrupt(zio); 1357 } else { 1358 /* 1359 * This was an asynchronous op; set up completion callback and 1360 * issue it. 1361 */ 1362 bio->bi_private = zio; 1363 bio->bi_end_io = vdev_disk_discard_end_io; 1364 vdev_submit_bio(bio); 1365 } 1366 1367 return (0); 1368 } 1369 1370 int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL; 1371 1372 static void 1373 vdev_disk_io_start(zio_t *zio) 1374 { 1375 vdev_t *v = zio->io_vd; 1376 vdev_disk_t *vd = v->vdev_tsd; 1377 int error; 1378 1379 /* 1380 * If the vdev is closed, it's likely in the REMOVED or FAULTED state. 1381 * Nothing to be done here but return failure. 1382 */ 1383 if (vd == NULL) { 1384 zio->io_error = ENXIO; 1385 zio_interrupt(zio); 1386 return; 1387 } 1388 1389 rw_enter(&vd->vd_lock, RW_READER); 1390 1391 /* 1392 * If the vdev is closed, it's likely due to a failed reopen and is 1393 * in the UNAVAIL state. Nothing to be done here but return failure. 1394 */ 1395 if (vd->vd_bdh == NULL) { 1396 rw_exit(&vd->vd_lock); 1397 zio->io_error = ENXIO; 1398 zio_interrupt(zio); 1399 return; 1400 } 1401 1402 switch (zio->io_type) { 1403 case ZIO_TYPE_FLUSH: 1404 1405 if (!vdev_readable(v)) { 1406 /* Drive not there, can't flush */ 1407 error = SET_ERROR(ENXIO); 1408 } else if (zfs_nocacheflush) { 1409 /* Flushing disabled by operator, declare success */ 1410 error = 0; 1411 } else if (v->vdev_nowritecache) { 1412 /* This vdev not capable of flushing */ 1413 error = SET_ERROR(ENOTSUP); 1414 } else { 1415 /* 1416 * Issue the flush. If successful, the response will 1417 * be handled in the completion callback, so we're done. 1418 */ 1419 error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio); 1420 if (error == 0) { 1421 rw_exit(&vd->vd_lock); 1422 return; 1423 } 1424 } 1425 1426 /* Couldn't issue the flush, so set the error and return it */ 1427 rw_exit(&vd->vd_lock); 1428 zio->io_error = error; 1429 zio_execute(zio); 1430 return; 1431 1432 case ZIO_TYPE_TRIM: 1433 error = vdev_disk_io_trim(zio); 1434 rw_exit(&vd->vd_lock); 1435 if (error) { 1436 zio->io_error = error; 1437 zio_execute(zio); 1438 } 1439 return; 1440 1441 case ZIO_TYPE_READ: 1442 case ZIO_TYPE_WRITE: 1443 zio->io_target_timestamp = zio_handle_io_delay(zio); 1444 error = vdev_disk_io_rw_fn(zio); 1445 rw_exit(&vd->vd_lock); 1446 if (error) { 1447 zio->io_error = error; 1448 zio_interrupt(zio); 1449 } 1450 return; 1451 1452 default: 1453 /* 1454 * Getting here means our parent vdev has made a very strange 1455 * request of us, and shouldn't happen. Assert here to force a 1456 * crash in dev builds, but in production return the IO 1457 * unhandled. The pool will likely suspend anyway but that's 1458 * nicer than crashing the kernel. 1459 */ 1460 ASSERT3S(zio->io_type, ==, -1); 1461 1462 rw_exit(&vd->vd_lock); 1463 zio->io_error = SET_ERROR(ENOTSUP); 1464 zio_interrupt(zio); 1465 return; 1466 } 1467 1468 __builtin_unreachable(); 1469 } 1470 1471 static void 1472 vdev_disk_io_done(zio_t *zio) 1473 { 1474 /* 1475 * If the device returned EIO, we revalidate the media. If it is 1476 * determined the media has changed this triggers the asynchronous 1477 * removal of the device from the configuration. 1478 */ 1479 if (zio->io_error == EIO) { 1480 vdev_t *v = zio->io_vd; 1481 vdev_disk_t *vd = v->vdev_tsd; 1482 1483 if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) { 1484 invalidate_bdev(BDH_BDEV(vd->vd_bdh)); 1485 v->vdev_remove_wanted = B_TRUE; 1486 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 1487 } 1488 } 1489 } 1490 1491 static void 1492 vdev_disk_hold(vdev_t *vd) 1493 { 1494 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 1495 1496 /* We must have a pathname, and it must be absolute. */ 1497 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') 1498 return; 1499 1500 /* 1501 * Only prefetch path and devid info if the device has 1502 * never been opened. 1503 */ 1504 if (vd->vdev_tsd != NULL) 1505 return; 1506 1507 } 1508 1509 static void 1510 vdev_disk_rele(vdev_t *vd) 1511 { 1512 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 1513 1514 /* XXX: Implement me as a vnode rele for the device */ 1515 } 1516 1517 /* 1518 * BIO submission method. See comment above about vdev_classic. 1519 * Set zfs_vdev_disk_classic=0 for new, =1 for classic 1520 */ 1521 static uint_t zfs_vdev_disk_classic = 0; /* default new */ 1522 1523 /* Set submission function from module parameter */ 1524 static int 1525 vdev_disk_param_set_classic(const char *buf, zfs_kernel_param_t *kp) 1526 { 1527 int err = param_set_uint(buf, kp); 1528 if (err < 0) 1529 return (SET_ERROR(err)); 1530 1531 vdev_disk_io_rw_fn = 1532 zfs_vdev_disk_classic ? vdev_classic_physio : vdev_disk_io_rw; 1533 1534 printk(KERN_INFO "ZFS: forcing %s BIO submission\n", 1535 zfs_vdev_disk_classic ? "classic" : "new"); 1536 1537 return (0); 1538 } 1539 1540 /* 1541 * At first use vdev use, set the submission function from the default value if 1542 * it hasn't been set already. 1543 */ 1544 static int 1545 vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd) 1546 { 1547 (void) spa; 1548 (void) nv; 1549 (void) tsd; 1550 1551 if (vdev_disk_io_rw_fn == NULL) 1552 vdev_disk_io_rw_fn = zfs_vdev_disk_classic ? 1553 vdev_classic_physio : vdev_disk_io_rw; 1554 1555 return (0); 1556 } 1557 1558 vdev_ops_t vdev_disk_ops = { 1559 .vdev_op_init = vdev_disk_init, 1560 .vdev_op_fini = NULL, 1561 .vdev_op_open = vdev_disk_open, 1562 .vdev_op_close = vdev_disk_close, 1563 .vdev_op_asize = vdev_default_asize, 1564 .vdev_op_min_asize = vdev_default_min_asize, 1565 .vdev_op_min_alloc = NULL, 1566 .vdev_op_io_start = vdev_disk_io_start, 1567 .vdev_op_io_done = vdev_disk_io_done, 1568 .vdev_op_state_change = NULL, 1569 .vdev_op_need_resilver = NULL, 1570 .vdev_op_hold = vdev_disk_hold, 1571 .vdev_op_rele = vdev_disk_rele, 1572 .vdev_op_remap = NULL, 1573 .vdev_op_xlate = vdev_default_xlate, 1574 .vdev_op_rebuild_asize = NULL, 1575 .vdev_op_metaslab_init = NULL, 1576 .vdev_op_config_generate = NULL, 1577 .vdev_op_nparity = NULL, 1578 .vdev_op_ndisks = NULL, 1579 .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */ 1580 .vdev_op_leaf = B_TRUE, /* leaf vdev */ 1581 .vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post 1582 }; 1583 1584 /* 1585 * The zfs_vdev_scheduler module option has been deprecated. Setting this 1586 * value no longer has any effect. It has not yet been entirely removed 1587 * to allow the module to be loaded if this option is specified in the 1588 * /etc/modprobe.d/zfs.conf file. The following warning will be logged. 1589 */ 1590 static int 1591 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp) 1592 { 1593 int error = param_set_charp(val, kp); 1594 if (error == 0) { 1595 printk(KERN_INFO "The 'zfs_vdev_scheduler' module option " 1596 "is not supported.\n"); 1597 } 1598 1599 return (error); 1600 } 1601 1602 static const char *zfs_vdev_scheduler = "unused"; 1603 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler, 1604 param_get_charp, &zfs_vdev_scheduler, 0644); 1605 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler"); 1606 1607 int 1608 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp) 1609 { 1610 uint_t val; 1611 int error; 1612 1613 error = kstrtouint(buf, 0, &val); 1614 if (error < 0) 1615 return (SET_ERROR(error)); 1616 1617 if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift) 1618 return (SET_ERROR(-EINVAL)); 1619 1620 error = param_set_uint(buf, kp); 1621 if (error < 0) 1622 return (SET_ERROR(error)); 1623 1624 return (0); 1625 } 1626 1627 int 1628 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp) 1629 { 1630 uint_t val; 1631 int error; 1632 1633 error = kstrtouint(buf, 0, &val); 1634 if (error < 0) 1635 return (SET_ERROR(error)); 1636 1637 if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift) 1638 return (SET_ERROR(-EINVAL)); 1639 1640 error = param_set_uint(buf, kp); 1641 if (error < 0) 1642 return (SET_ERROR(error)); 1643 1644 return (0); 1645 } 1646 1647 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW, 1648 "Timeout before determining that a device is missing"); 1649 1650 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW, 1651 "Defines failfast mask: 1 - device, 2 - transport, 4 - driver"); 1652 1653 ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW, 1654 "Maximum number of data segments to add to an IO request (min 4)"); 1655 1656 ZFS_MODULE_PARAM_CALL(zfs_vdev_disk, zfs_vdev_disk_, classic, 1657 vdev_disk_param_set_classic, param_get_uint, ZMOD_RD, 1658 "Use classic BIO submission method"); 1659