xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
41 #include <linux/blk-cgroup.h>
42 #endif
43 
44 typedef struct vdev_disk {
45 	struct block_device		*vd_bdev;
46 	krwlock_t			vd_lock;
47 } vdev_disk_t;
48 
49 /*
50  * Unique identifier for the exclusive vdev holder.
51  */
52 static void *zfs_vdev_holder = VDEV_HOLDER;
53 
54 /*
55  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
56  * device is missing. The missing path may be transient since the links
57  * can be briefly removed and recreated in response to udev events.
58  */
59 static unsigned zfs_vdev_open_timeout_ms = 1000;
60 
61 /*
62  * Size of the "reserved" partition, in blocks.
63  */
64 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
65 
66 /*
67  * Virtual device vector for disks.
68  */
69 typedef struct dio_request {
70 	zio_t			*dr_zio;	/* Parent ZIO */
71 	atomic_t		dr_ref;		/* References */
72 	int			dr_error;	/* Bio error */
73 	int			dr_bio_count;	/* Count of bio's */
74 	struct bio		*dr_bio[0];	/* Attached bio's */
75 } dio_request_t;
76 
77 static fmode_t
78 vdev_bdev_mode(spa_mode_t spa_mode)
79 {
80 	fmode_t mode = 0;
81 
82 	if (spa_mode & SPA_MODE_READ)
83 		mode |= FMODE_READ;
84 
85 	if (spa_mode & SPA_MODE_WRITE)
86 		mode |= FMODE_WRITE;
87 
88 	return (mode);
89 }
90 
91 /*
92  * Returns the usable capacity (in bytes) for the partition or disk.
93  */
94 static uint64_t
95 bdev_capacity(struct block_device *bdev)
96 {
97 	return (i_size_read(bdev->bd_inode));
98 }
99 
100 #if !defined(HAVE_BDEV_WHOLE)
101 static inline struct block_device *
102 bdev_whole(struct block_device *bdev)
103 {
104 	return (bdev->bd_contains);
105 }
106 #endif
107 
108 /*
109  * Returns the maximum expansion capacity of the block device (in bytes).
110  *
111  * It is possible to expand a vdev when it has been created as a wholedisk
112  * and the containing block device has increased in capacity.  Or when the
113  * partition containing the pool has been manually increased in size.
114  *
115  * This function is only responsible for calculating the potential expansion
116  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
117  * responsible for verifying the expected partition layout in the wholedisk
118  * case, and updating the partition table if appropriate.  Once the partition
119  * size has been increased the additional capacity will be visible using
120  * bdev_capacity().
121  *
122  * The returned maximum expansion capacity is always expected to be larger, or
123  * at the very least equal, to its usable capacity to prevent overestimating
124  * the pool expandsize.
125  */
126 static uint64_t
127 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
128 {
129 	uint64_t psize;
130 	int64_t available;
131 
132 	if (wholedisk && bdev != bdev_whole(bdev)) {
133 		/*
134 		 * When reporting maximum expansion capacity for a wholedisk
135 		 * deduct any capacity which is expected to be lost due to
136 		 * alignment restrictions.  Over reporting this value isn't
137 		 * harmful and would only result in slightly less capacity
138 		 * than expected post expansion.
139 		 * The estimated available space may be slightly smaller than
140 		 * bdev_capacity() for devices where the number of sectors is
141 		 * not a multiple of the alignment size and the partition layout
142 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
143 		 * "reserved" EFI partition: in such cases return the device
144 		 * usable capacity.
145 		 */
146 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
147 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
148 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
149 		psize = MAX(available, bdev_capacity(bdev));
150 	} else {
151 		psize = bdev_capacity(bdev);
152 	}
153 
154 	return (psize);
155 }
156 
157 static void
158 vdev_disk_error(zio_t *zio)
159 {
160 	/*
161 	 * This function can be called in interrupt context, for instance while
162 	 * handling IRQs coming from a misbehaving disk device; use printk()
163 	 * which is safe from any context.
164 	 */
165 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
166 	    "offset=%llu size=%llu flags=%x\n", spa_name(zio->io_spa),
167 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
168 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
169 	    zio->io_flags);
170 }
171 
172 static int
173 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
174     uint64_t *logical_ashift, uint64_t *physical_ashift)
175 {
176 	struct block_device *bdev;
177 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa));
178 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
179 	vdev_disk_t *vd;
180 
181 	/* Must have a pathname and it must be absolute. */
182 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
183 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
184 		vdev_dbgmsg(v, "invalid vdev_path");
185 		return (SET_ERROR(EINVAL));
186 	}
187 
188 	/*
189 	 * Reopen the device if it is currently open.  When expanding a
190 	 * partition force re-scanning the partition table if userland
191 	 * did not take care of this already. We need to do this while closed
192 	 * in order to get an accurate updated block device size.  Then
193 	 * since udev may need to recreate the device links increase the
194 	 * open retry timeout before reporting the device as unavailable.
195 	 */
196 	vd = v->vdev_tsd;
197 	if (vd) {
198 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
199 		boolean_t reread_part = B_FALSE;
200 
201 		rw_enter(&vd->vd_lock, RW_WRITER);
202 		bdev = vd->vd_bdev;
203 		vd->vd_bdev = NULL;
204 
205 		if (bdev) {
206 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
207 				bdevname(bdev_whole(bdev), disk_name + 5);
208 				/*
209 				 * If userland has BLKPG_RESIZE_PARTITION,
210 				 * then it should have updated the partition
211 				 * table already. We can detect this by
212 				 * comparing our current physical size
213 				 * with that of the device. If they are
214 				 * the same, then we must not have
215 				 * BLKPG_RESIZE_PARTITION or it failed to
216 				 * update the partition table online. We
217 				 * fallback to rescanning the partition
218 				 * table from the kernel below. However,
219 				 * if the capacity already reflects the
220 				 * updated partition, then we skip
221 				 * rescanning the partition table here.
222 				 */
223 				if (v->vdev_psize == bdev_capacity(bdev))
224 					reread_part = B_TRUE;
225 			}
226 
227 			blkdev_put(bdev, mode | FMODE_EXCL);
228 		}
229 
230 		if (reread_part) {
231 			bdev = blkdev_get_by_path(disk_name, mode | FMODE_EXCL,
232 			    zfs_vdev_holder);
233 			if (!IS_ERR(bdev)) {
234 				int error = vdev_bdev_reread_part(bdev);
235 				blkdev_put(bdev, mode | FMODE_EXCL);
236 				if (error == 0) {
237 					timeout = MSEC2NSEC(
238 					    zfs_vdev_open_timeout_ms * 2);
239 				}
240 			}
241 		}
242 	} else {
243 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
244 
245 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
246 		rw_enter(&vd->vd_lock, RW_WRITER);
247 	}
248 
249 	/*
250 	 * Devices are always opened by the path provided at configuration
251 	 * time.  This means that if the provided path is a udev by-id path
252 	 * then drives may be re-cabled without an issue.  If the provided
253 	 * path is a udev by-path path, then the physical location information
254 	 * will be preserved.  This can be critical for more complicated
255 	 * configurations where drives are located in specific physical
256 	 * locations to maximize the systems tolerance to component failure.
257 	 *
258 	 * Alternatively, you can provide your own udev rule to flexibly map
259 	 * the drives as you see fit.  It is not advised that you use the
260 	 * /dev/[hd]d devices which may be reordered due to probing order.
261 	 * Devices in the wrong locations will be detected by the higher
262 	 * level vdev validation.
263 	 *
264 	 * The specified paths may be briefly removed and recreated in
265 	 * response to udev events.  This should be exceptionally unlikely
266 	 * because the zpool command makes every effort to verify these paths
267 	 * have already settled prior to reaching this point.  Therefore,
268 	 * a ENOENT failure at this point is highly likely to be transient
269 	 * and it is reasonable to sleep and retry before giving up.  In
270 	 * practice delays have been observed to be on the order of 100ms.
271 	 *
272 	 * When ERESTARTSYS is returned it indicates the block device is
273 	 * a zvol which could not be opened due to the deadlock detection
274 	 * logic in zvol_open().  Extend the timeout and retry the open
275 	 * subsequent attempts are expected to eventually succeed.
276 	 */
277 	hrtime_t start = gethrtime();
278 	bdev = ERR_PTR(-ENXIO);
279 	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
280 		bdev = blkdev_get_by_path(v->vdev_path, mode | FMODE_EXCL,
281 		    zfs_vdev_holder);
282 		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
283 			schedule_timeout(MSEC_TO_TICK(10));
284 		} else if (unlikely(PTR_ERR(bdev) == -ERESTARTSYS)) {
285 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
286 			continue;
287 		} else if (IS_ERR(bdev)) {
288 			break;
289 		}
290 	}
291 
292 	if (IS_ERR(bdev)) {
293 		int error = -PTR_ERR(bdev);
294 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
295 		    (u_longlong_t)(gethrtime() - start),
296 		    (u_longlong_t)timeout);
297 		vd->vd_bdev = NULL;
298 		v->vdev_tsd = vd;
299 		rw_exit(&vd->vd_lock);
300 		return (SET_ERROR(error));
301 	} else {
302 		vd->vd_bdev = bdev;
303 		v->vdev_tsd = vd;
304 		rw_exit(&vd->vd_lock);
305 	}
306 
307 	/*  Determine the physical block size */
308 	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
309 
310 	/*  Determine the logical block size */
311 	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
312 
313 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
314 	v->vdev_nowritecache = B_FALSE;
315 
316 	/* Set when device reports it supports TRIM. */
317 	v->vdev_has_trim = bdev_discard_supported(vd->vd_bdev);
318 
319 	/* Set when device reports it supports secure TRIM. */
320 	v->vdev_has_securetrim = bdev_secure_discard_supported(vd->vd_bdev);
321 
322 	/* Inform the ZIO pipeline that we are non-rotational */
323 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
324 
325 	/* Physical volume size in bytes for the partition */
326 	*psize = bdev_capacity(vd->vd_bdev);
327 
328 	/* Physical volume size in bytes including possible expansion space */
329 	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
330 
331 	/* Based on the minimum sector size set the block size */
332 	*physical_ashift = highbit64(MAX(physical_block_size,
333 	    SPA_MINBLOCKSIZE)) - 1;
334 
335 	*logical_ashift = highbit64(MAX(logical_block_size,
336 	    SPA_MINBLOCKSIZE)) - 1;
337 
338 	return (0);
339 }
340 
341 static void
342 vdev_disk_close(vdev_t *v)
343 {
344 	vdev_disk_t *vd = v->vdev_tsd;
345 
346 	if (v->vdev_reopening || vd == NULL)
347 		return;
348 
349 	if (vd->vd_bdev != NULL) {
350 		blkdev_put(vd->vd_bdev,
351 		    vdev_bdev_mode(spa_mode(v->vdev_spa)) | FMODE_EXCL);
352 	}
353 
354 	rw_destroy(&vd->vd_lock);
355 	kmem_free(vd, sizeof (vdev_disk_t));
356 	v->vdev_tsd = NULL;
357 }
358 
359 static dio_request_t *
360 vdev_disk_dio_alloc(int bio_count)
361 {
362 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
363 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
364 	atomic_set(&dr->dr_ref, 0);
365 	dr->dr_bio_count = bio_count;
366 	dr->dr_error = 0;
367 
368 	for (int i = 0; i < dr->dr_bio_count; i++)
369 		dr->dr_bio[i] = NULL;
370 
371 	return (dr);
372 }
373 
374 static void
375 vdev_disk_dio_free(dio_request_t *dr)
376 {
377 	int i;
378 
379 	for (i = 0; i < dr->dr_bio_count; i++)
380 		if (dr->dr_bio[i])
381 			bio_put(dr->dr_bio[i]);
382 
383 	kmem_free(dr, sizeof (dio_request_t) +
384 	    sizeof (struct bio *) * dr->dr_bio_count);
385 }
386 
387 static void
388 vdev_disk_dio_get(dio_request_t *dr)
389 {
390 	atomic_inc(&dr->dr_ref);
391 }
392 
393 static int
394 vdev_disk_dio_put(dio_request_t *dr)
395 {
396 	int rc = atomic_dec_return(&dr->dr_ref);
397 
398 	/*
399 	 * Free the dio_request when the last reference is dropped and
400 	 * ensure zio_interpret is called only once with the correct zio
401 	 */
402 	if (rc == 0) {
403 		zio_t *zio = dr->dr_zio;
404 		int error = dr->dr_error;
405 
406 		vdev_disk_dio_free(dr);
407 
408 		if (zio) {
409 			zio->io_error = error;
410 			ASSERT3S(zio->io_error, >=, 0);
411 			if (zio->io_error)
412 				vdev_disk_error(zio);
413 
414 			zio_delay_interrupt(zio);
415 		}
416 	}
417 
418 	return (rc);
419 }
420 
421 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
422 {
423 	dio_request_t *dr = bio->bi_private;
424 	int rc;
425 
426 	if (dr->dr_error == 0) {
427 #ifdef HAVE_1ARG_BIO_END_IO_T
428 		dr->dr_error = BIO_END_IO_ERROR(bio);
429 #else
430 		if (error)
431 			dr->dr_error = -(error);
432 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
433 			dr->dr_error = EIO;
434 #endif
435 	}
436 
437 	/* Drop reference acquired by __vdev_disk_physio */
438 	rc = vdev_disk_dio_put(dr);
439 }
440 
441 static inline void
442 vdev_submit_bio_impl(struct bio *bio)
443 {
444 #ifdef HAVE_1ARG_SUBMIT_BIO
445 	(void) submit_bio(bio);
446 #else
447 	(void) submit_bio(bio_data_dir(bio), bio);
448 #endif
449 }
450 
451 /*
452  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
453  * replace it with preempt_schedule under the following condition:
454  */
455 #if defined(CONFIG_ARM64) && \
456     defined(CONFIG_PREEMPTION) && \
457     defined(CONFIG_BLK_CGROUP)
458 #define	preempt_schedule_notrace(x) preempt_schedule(x)
459 #endif
460 
461 /*
462  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
463  * as an argument removing the need to set it with bio_set_dev().  This
464  * removes the need for all of the following compatibility code.
465  */
466 #if !defined(HAVE_BIO_ALLOC_4ARG)
467 
468 #ifdef HAVE_BIO_SET_DEV
469 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
470 /*
471  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
472  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
473  * As a side effect the function was converted to GPL-only.  Define our
474  * own version when needed which uses rcu_read_lock_sched().
475  *
476  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
477  * part, moving blkg_tryget into the private one. Define our own version.
478  */
479 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
480 static inline bool
481 vdev_blkg_tryget(struct blkcg_gq *blkg)
482 {
483 	struct percpu_ref *ref = &blkg->refcnt;
484 	unsigned long __percpu *count;
485 	bool rc;
486 
487 	rcu_read_lock_sched();
488 
489 	if (__ref_is_percpu(ref, &count)) {
490 		this_cpu_inc(*count);
491 		rc = true;
492 	} else {
493 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
494 		rc = atomic_long_inc_not_zero(&ref->data->count);
495 #else
496 		rc = atomic_long_inc_not_zero(&ref->count);
497 #endif
498 	}
499 
500 	rcu_read_unlock_sched();
501 
502 	return (rc);
503 }
504 #else
505 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
506 #endif
507 #ifdef HAVE_BIO_SET_DEV_MACRO
508 /*
509  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
510  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
511  * the entire macro.  Provide a minimal version which always assigns the
512  * request queue's root_blkg to the bio.
513  */
514 static inline void
515 vdev_bio_associate_blkg(struct bio *bio)
516 {
517 #if defined(HAVE_BIO_BDEV_DISK)
518 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
519 #else
520 	struct request_queue *q = bio->bi_disk->queue;
521 #endif
522 
523 	ASSERT3P(q, !=, NULL);
524 	ASSERT3P(bio->bi_blkg, ==, NULL);
525 
526 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
527 		bio->bi_blkg = q->root_blkg;
528 }
529 
530 #define	bio_associate_blkg vdev_bio_associate_blkg
531 #else
532 static inline void
533 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
534 {
535 #if defined(HAVE_BIO_BDEV_DISK)
536 	struct request_queue *q = bdev->bd_disk->queue;
537 #else
538 	struct request_queue *q = bio->bi_disk->queue;
539 #endif
540 	bio_clear_flag(bio, BIO_REMAPPED);
541 	if (bio->bi_bdev != bdev)
542 		bio_clear_flag(bio, BIO_THROTTLED);
543 	bio->bi_bdev = bdev;
544 
545 	ASSERT3P(q, !=, NULL);
546 	ASSERT3P(bio->bi_blkg, ==, NULL);
547 
548 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
549 		bio->bi_blkg = q->root_blkg;
550 }
551 #define	bio_set_dev		vdev_bio_set_dev
552 #endif
553 #endif
554 #else
555 /*
556  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
557  */
558 static inline void
559 bio_set_dev(struct bio *bio, struct block_device *bdev)
560 {
561 	bio->bi_bdev = bdev;
562 }
563 #endif /* HAVE_BIO_SET_DEV */
564 #endif /* !HAVE_BIO_ALLOC_4ARG */
565 
566 static inline void
567 vdev_submit_bio(struct bio *bio)
568 {
569 	struct bio_list *bio_list = current->bio_list;
570 	current->bio_list = NULL;
571 	vdev_submit_bio_impl(bio);
572 	current->bio_list = bio_list;
573 }
574 
575 static inline struct bio *
576 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
577     unsigned short nr_vecs)
578 {
579 	struct bio *bio;
580 
581 #ifdef HAVE_BIO_ALLOC_4ARG
582 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
583 #else
584 	bio = bio_alloc(gfp_mask, nr_vecs);
585 	if (likely(bio != NULL))
586 		bio_set_dev(bio, bdev);
587 #endif
588 
589 	return (bio);
590 }
591 
592 static inline unsigned int
593 vdev_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
594 {
595 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
596 	    bio_size, abd_offset);
597 
598 #ifdef HAVE_BIO_MAX_SEGS
599 	return (bio_max_segs(nr_segs));
600 #else
601 	return (MIN(nr_segs, BIO_MAX_PAGES));
602 #endif
603 }
604 
605 static int
606 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
607     size_t io_size, uint64_t io_offset, int rw, int flags)
608 {
609 	dio_request_t *dr;
610 	uint64_t abd_offset;
611 	uint64_t bio_offset;
612 	int bio_size;
613 	int bio_count = 16;
614 	int error = 0;
615 	struct blk_plug plug;
616 	unsigned short nr_vecs;
617 
618 	/*
619 	 * Accessing outside the block device is never allowed.
620 	 */
621 	if (io_offset + io_size > bdev->bd_inode->i_size) {
622 		vdev_dbgmsg(zio->io_vd,
623 		    "Illegal access %llu size %llu, device size %llu",
624 		    (u_longlong_t)io_offset,
625 		    (u_longlong_t)io_size,
626 		    (u_longlong_t)i_size_read(bdev->bd_inode));
627 		return (SET_ERROR(EIO));
628 	}
629 
630 retry:
631 	dr = vdev_disk_dio_alloc(bio_count);
632 
633 	if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
634 		bio_set_flags_failfast(bdev, &flags);
635 
636 	dr->dr_zio = zio;
637 
638 	/*
639 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
640 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
641 	 * can cover at least 128KB and at most 1MB.  When the required number
642 	 * of iovec's exceeds this, we are forced to break the IO in multiple
643 	 * bio's and wait for them all to complete.  This is likely if the
644 	 * recordsize property is increased beyond 1MB.  The default
645 	 * bio_count=16 should typically accommodate the maximum-size zio of
646 	 * 16MB.
647 	 */
648 
649 	abd_offset = 0;
650 	bio_offset = io_offset;
651 	bio_size = io_size;
652 	for (int i = 0; i <= dr->dr_bio_count; i++) {
653 
654 		/* Finished constructing bio's for given buffer */
655 		if (bio_size <= 0)
656 			break;
657 
658 		/*
659 		 * If additional bio's are required, we have to retry, but
660 		 * this should be rare - see the comment above.
661 		 */
662 		if (dr->dr_bio_count == i) {
663 			vdev_disk_dio_free(dr);
664 			bio_count *= 2;
665 			goto retry;
666 		}
667 
668 		nr_vecs = vdev_bio_max_segs(zio, bio_size, abd_offset);
669 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
670 		if (unlikely(dr->dr_bio[i] == NULL)) {
671 			vdev_disk_dio_free(dr);
672 			return (SET_ERROR(ENOMEM));
673 		}
674 
675 		/* Matching put called by vdev_disk_physio_completion */
676 		vdev_disk_dio_get(dr);
677 
678 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
679 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
680 		dr->dr_bio[i]->bi_private = dr;
681 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
682 
683 		/* Remaining size is returned to become the new size */
684 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
685 		    bio_size, abd_offset);
686 
687 		/* Advance in buffer and construct another bio if needed */
688 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
689 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
690 	}
691 
692 	/* Extra reference to protect dio_request during vdev_submit_bio */
693 	vdev_disk_dio_get(dr);
694 
695 	if (dr->dr_bio_count > 1)
696 		blk_start_plug(&plug);
697 
698 	/* Submit all bio's associated with this dio */
699 	for (int i = 0; i < dr->dr_bio_count; i++) {
700 		if (dr->dr_bio[i])
701 			vdev_submit_bio(dr->dr_bio[i]);
702 	}
703 
704 	if (dr->dr_bio_count > 1)
705 		blk_finish_plug(&plug);
706 
707 	(void) vdev_disk_dio_put(dr);
708 
709 	return (error);
710 }
711 
712 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
713 {
714 	zio_t *zio = bio->bi_private;
715 #ifdef HAVE_1ARG_BIO_END_IO_T
716 	zio->io_error = BIO_END_IO_ERROR(bio);
717 #else
718 	zio->io_error = -error;
719 #endif
720 
721 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
722 		zio->io_vd->vdev_nowritecache = B_TRUE;
723 
724 	bio_put(bio);
725 	ASSERT3S(zio->io_error, >=, 0);
726 	if (zio->io_error)
727 		vdev_disk_error(zio);
728 	zio_interrupt(zio);
729 }
730 
731 static int
732 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
733 {
734 	struct request_queue *q;
735 	struct bio *bio;
736 
737 	q = bdev_get_queue(bdev);
738 	if (!q)
739 		return (SET_ERROR(ENXIO));
740 
741 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
742 	if (unlikely(bio == NULL))
743 		return (SET_ERROR(ENOMEM));
744 
745 	bio->bi_end_io = vdev_disk_io_flush_completion;
746 	bio->bi_private = zio;
747 	bio_set_flush(bio);
748 	vdev_submit_bio(bio);
749 	invalidate_bdev(bdev);
750 
751 	return (0);
752 }
753 
754 static int
755 vdev_disk_io_trim(zio_t *zio)
756 {
757 	vdev_t *v = zio->io_vd;
758 	vdev_disk_t *vd = v->vdev_tsd;
759 
760 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
761 	if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
762 		return (-blkdev_issue_secure_erase(vd->vd_bdev,
763 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
764 	} else {
765 		return (-blkdev_issue_discard(vd->vd_bdev,
766 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
767 	}
768 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
769 	unsigned long trim_flags = 0;
770 #if defined(BLKDEV_DISCARD_SECURE)
771 	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
772 		trim_flags |= BLKDEV_DISCARD_SECURE;
773 #endif
774 	return (-blkdev_issue_discard(vd->vd_bdev,
775 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
776 #else
777 #error "Unsupported kernel"
778 #endif
779 }
780 
781 static void
782 vdev_disk_io_start(zio_t *zio)
783 {
784 	vdev_t *v = zio->io_vd;
785 	vdev_disk_t *vd = v->vdev_tsd;
786 	int rw, error;
787 
788 	/*
789 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
790 	 * Nothing to be done here but return failure.
791 	 */
792 	if (vd == NULL) {
793 		zio->io_error = ENXIO;
794 		zio_interrupt(zio);
795 		return;
796 	}
797 
798 	rw_enter(&vd->vd_lock, RW_READER);
799 
800 	/*
801 	 * If the vdev is closed, it's likely due to a failed reopen and is
802 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
803 	 */
804 	if (vd->vd_bdev == NULL) {
805 		rw_exit(&vd->vd_lock);
806 		zio->io_error = ENXIO;
807 		zio_interrupt(zio);
808 		return;
809 	}
810 
811 	switch (zio->io_type) {
812 	case ZIO_TYPE_IOCTL:
813 
814 		if (!vdev_readable(v)) {
815 			rw_exit(&vd->vd_lock);
816 			zio->io_error = SET_ERROR(ENXIO);
817 			zio_interrupt(zio);
818 			return;
819 		}
820 
821 		switch (zio->io_cmd) {
822 		case DKIOCFLUSHWRITECACHE:
823 
824 			if (zfs_nocacheflush)
825 				break;
826 
827 			if (v->vdev_nowritecache) {
828 				zio->io_error = SET_ERROR(ENOTSUP);
829 				break;
830 			}
831 
832 			error = vdev_disk_io_flush(vd->vd_bdev, zio);
833 			if (error == 0) {
834 				rw_exit(&vd->vd_lock);
835 				return;
836 			}
837 
838 			zio->io_error = error;
839 
840 			break;
841 
842 		default:
843 			zio->io_error = SET_ERROR(ENOTSUP);
844 		}
845 
846 		rw_exit(&vd->vd_lock);
847 		zio_execute(zio);
848 		return;
849 	case ZIO_TYPE_WRITE:
850 		rw = WRITE;
851 		break;
852 
853 	case ZIO_TYPE_READ:
854 		rw = READ;
855 		break;
856 
857 	case ZIO_TYPE_TRIM:
858 		zio->io_error = vdev_disk_io_trim(zio);
859 		rw_exit(&vd->vd_lock);
860 		zio_interrupt(zio);
861 		return;
862 
863 	default:
864 		rw_exit(&vd->vd_lock);
865 		zio->io_error = SET_ERROR(ENOTSUP);
866 		zio_interrupt(zio);
867 		return;
868 	}
869 
870 	zio->io_target_timestamp = zio_handle_io_delay(zio);
871 	error = __vdev_disk_physio(vd->vd_bdev, zio,
872 	    zio->io_size, zio->io_offset, rw, 0);
873 	rw_exit(&vd->vd_lock);
874 
875 	if (error) {
876 		zio->io_error = error;
877 		zio_interrupt(zio);
878 		return;
879 	}
880 }
881 
882 static void
883 vdev_disk_io_done(zio_t *zio)
884 {
885 	/*
886 	 * If the device returned EIO, we revalidate the media.  If it is
887 	 * determined the media has changed this triggers the asynchronous
888 	 * removal of the device from the configuration.
889 	 */
890 	if (zio->io_error == EIO) {
891 		vdev_t *v = zio->io_vd;
892 		vdev_disk_t *vd = v->vdev_tsd;
893 
894 		if (zfs_check_media_change(vd->vd_bdev)) {
895 			invalidate_bdev(vd->vd_bdev);
896 			v->vdev_remove_wanted = B_TRUE;
897 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
898 		}
899 	}
900 }
901 
902 static void
903 vdev_disk_hold(vdev_t *vd)
904 {
905 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
906 
907 	/* We must have a pathname, and it must be absolute. */
908 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
909 		return;
910 
911 	/*
912 	 * Only prefetch path and devid info if the device has
913 	 * never been opened.
914 	 */
915 	if (vd->vdev_tsd != NULL)
916 		return;
917 
918 }
919 
920 static void
921 vdev_disk_rele(vdev_t *vd)
922 {
923 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
924 
925 	/* XXX: Implement me as a vnode rele for the device */
926 }
927 
928 vdev_ops_t vdev_disk_ops = {
929 	.vdev_op_init = NULL,
930 	.vdev_op_fini = NULL,
931 	.vdev_op_open = vdev_disk_open,
932 	.vdev_op_close = vdev_disk_close,
933 	.vdev_op_asize = vdev_default_asize,
934 	.vdev_op_min_asize = vdev_default_min_asize,
935 	.vdev_op_min_alloc = NULL,
936 	.vdev_op_io_start = vdev_disk_io_start,
937 	.vdev_op_io_done = vdev_disk_io_done,
938 	.vdev_op_state_change = NULL,
939 	.vdev_op_need_resilver = NULL,
940 	.vdev_op_hold = vdev_disk_hold,
941 	.vdev_op_rele = vdev_disk_rele,
942 	.vdev_op_remap = NULL,
943 	.vdev_op_xlate = vdev_default_xlate,
944 	.vdev_op_rebuild_asize = NULL,
945 	.vdev_op_metaslab_init = NULL,
946 	.vdev_op_config_generate = NULL,
947 	.vdev_op_nparity = NULL,
948 	.vdev_op_ndisks = NULL,
949 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
950 	.vdev_op_leaf = B_TRUE			/* leaf vdev */
951 };
952 
953 /*
954  * The zfs_vdev_scheduler module option has been deprecated. Setting this
955  * value no longer has any effect.  It has not yet been entirely removed
956  * to allow the module to be loaded if this option is specified in the
957  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
958  */
959 static int
960 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
961 {
962 	int error = param_set_charp(val, kp);
963 	if (error == 0) {
964 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
965 		    "is not supported.\n");
966 	}
967 
968 	return (error);
969 }
970 
971 static const char *zfs_vdev_scheduler = "unused";
972 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
973     param_get_charp, &zfs_vdev_scheduler, 0644);
974 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
975 
976 int
977 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
978 {
979 	uint64_t val;
980 	int error;
981 
982 	error = kstrtoull(buf, 0, &val);
983 	if (error < 0)
984 		return (SET_ERROR(error));
985 
986 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
987 		return (SET_ERROR(-EINVAL));
988 
989 	error = param_set_ulong(buf, kp);
990 	if (error < 0)
991 		return (SET_ERROR(error));
992 
993 	return (0);
994 }
995 
996 int
997 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
998 {
999 	uint64_t val;
1000 	int error;
1001 
1002 	error = kstrtoull(buf, 0, &val);
1003 	if (error < 0)
1004 		return (SET_ERROR(error));
1005 
1006 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1007 		return (SET_ERROR(-EINVAL));
1008 
1009 	error = param_set_ulong(buf, kp);
1010 	if (error < 0)
1011 		return (SET_ERROR(error));
1012 
1013 	return (0);
1014 }
1015