xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/vdev_disk.c (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/abd.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/zio.h>
37 #include <linux/blkpg.h>
38 #include <linux/msdos_fs.h>
39 #include <linux/vfs_compat.h>
40 #ifdef HAVE_LINUX_BLK_CGROUP_HEADER
41 #include <linux/blk-cgroup.h>
42 #endif
43 
44 typedef struct vdev_disk {
45 	struct block_device		*vd_bdev;
46 	krwlock_t			vd_lock;
47 } vdev_disk_t;
48 
49 /*
50  * Unique identifier for the exclusive vdev holder.
51  */
52 static void *zfs_vdev_holder = VDEV_HOLDER;
53 
54 /*
55  * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
56  * device is missing. The missing path may be transient since the links
57  * can be briefly removed and recreated in response to udev events.
58  */
59 static uint_t zfs_vdev_open_timeout_ms = 1000;
60 
61 /*
62  * Size of the "reserved" partition, in blocks.
63  */
64 #define	EFI_MIN_RESV_SIZE	(16 * 1024)
65 
66 /*
67  * Virtual device vector for disks.
68  */
69 typedef struct dio_request {
70 	zio_t			*dr_zio;	/* Parent ZIO */
71 	atomic_t		dr_ref;		/* References */
72 	int			dr_error;	/* Bio error */
73 	int			dr_bio_count;	/* Count of bio's */
74 	struct bio		*dr_bio[];	/* Attached bio's */
75 } dio_request_t;
76 
77 /*
78  * BIO request failfast mask.
79  */
80 
81 static unsigned int zfs_vdev_failfast_mask = 1;
82 
83 #ifdef HAVE_BLK_MODE_T
84 static blk_mode_t
85 #else
86 static fmode_t
87 #endif
88 vdev_bdev_mode(spa_mode_t spa_mode, boolean_t exclusive)
89 {
90 #ifdef HAVE_BLK_MODE_T
91 	blk_mode_t mode = 0;
92 
93 	if (spa_mode & SPA_MODE_READ)
94 		mode |= BLK_OPEN_READ;
95 
96 	if (spa_mode & SPA_MODE_WRITE)
97 		mode |= BLK_OPEN_WRITE;
98 
99 	if (exclusive)
100 		mode |= BLK_OPEN_EXCL;
101 #else
102 	fmode_t mode = 0;
103 
104 	if (spa_mode & SPA_MODE_READ)
105 		mode |= FMODE_READ;
106 
107 	if (spa_mode & SPA_MODE_WRITE)
108 		mode |= FMODE_WRITE;
109 
110 	if (exclusive)
111 		mode |= FMODE_EXCL;
112 #endif
113 
114 	return (mode);
115 }
116 
117 /*
118  * Returns the usable capacity (in bytes) for the partition or disk.
119  */
120 static uint64_t
121 bdev_capacity(struct block_device *bdev)
122 {
123 	return (i_size_read(bdev->bd_inode));
124 }
125 
126 #if !defined(HAVE_BDEV_WHOLE)
127 static inline struct block_device *
128 bdev_whole(struct block_device *bdev)
129 {
130 	return (bdev->bd_contains);
131 }
132 #endif
133 
134 #if defined(HAVE_BDEVNAME)
135 #define	vdev_bdevname(bdev, name)	bdevname(bdev, name)
136 #else
137 static inline void
138 vdev_bdevname(struct block_device *bdev, char *name)
139 {
140 	snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
141 }
142 #endif
143 
144 /*
145  * Returns the maximum expansion capacity of the block device (in bytes).
146  *
147  * It is possible to expand a vdev when it has been created as a wholedisk
148  * and the containing block device has increased in capacity.  Or when the
149  * partition containing the pool has been manually increased in size.
150  *
151  * This function is only responsible for calculating the potential expansion
152  * size so it can be reported by 'zpool list'.  The efi_use_whole_disk() is
153  * responsible for verifying the expected partition layout in the wholedisk
154  * case, and updating the partition table if appropriate.  Once the partition
155  * size has been increased the additional capacity will be visible using
156  * bdev_capacity().
157  *
158  * The returned maximum expansion capacity is always expected to be larger, or
159  * at the very least equal, to its usable capacity to prevent overestimating
160  * the pool expandsize.
161  */
162 static uint64_t
163 bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
164 {
165 	uint64_t psize;
166 	int64_t available;
167 
168 	if (wholedisk && bdev != bdev_whole(bdev)) {
169 		/*
170 		 * When reporting maximum expansion capacity for a wholedisk
171 		 * deduct any capacity which is expected to be lost due to
172 		 * alignment restrictions.  Over reporting this value isn't
173 		 * harmful and would only result in slightly less capacity
174 		 * than expected post expansion.
175 		 * The estimated available space may be slightly smaller than
176 		 * bdev_capacity() for devices where the number of sectors is
177 		 * not a multiple of the alignment size and the partition layout
178 		 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
179 		 * "reserved" EFI partition: in such cases return the device
180 		 * usable capacity.
181 		 */
182 		available = i_size_read(bdev_whole(bdev)->bd_inode) -
183 		    ((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
184 		    PARTITION_END_ALIGNMENT) << SECTOR_BITS);
185 		psize = MAX(available, bdev_capacity(bdev));
186 	} else {
187 		psize = bdev_capacity(bdev);
188 	}
189 
190 	return (psize);
191 }
192 
193 static void
194 vdev_disk_error(zio_t *zio)
195 {
196 	/*
197 	 * This function can be called in interrupt context, for instance while
198 	 * handling IRQs coming from a misbehaving disk device; use printk()
199 	 * which is safe from any context.
200 	 */
201 	printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
202 	    "offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
203 	    zio->io_vd->vdev_path, zio->io_error, zio->io_type,
204 	    (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
205 	    zio->io_flags);
206 }
207 
208 static void
209 vdev_disk_kobj_evt_post(vdev_t *v)
210 {
211 	vdev_disk_t *vd = v->vdev_tsd;
212 	if (vd && vd->vd_bdev) {
213 		spl_signal_kobj_evt(vd->vd_bdev);
214 	} else {
215 		vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
216 		    v->vdev_path);
217 	}
218 }
219 
220 #if !defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
221 /*
222  * Define a dummy struct blk_holder_ops for kernel versions
223  * prior to 6.5.
224  */
225 struct blk_holder_ops {};
226 #endif
227 
228 static struct block_device *
229 vdev_blkdev_get_by_path(const char *path, spa_mode_t mode, void *holder,
230     const struct blk_holder_ops *hops)
231 {
232 #ifdef HAVE_BLKDEV_GET_BY_PATH_4ARG
233 	return (blkdev_get_by_path(path,
234 	    vdev_bdev_mode(mode, B_TRUE), holder, hops));
235 #else
236 	return (blkdev_get_by_path(path,
237 	    vdev_bdev_mode(mode, B_TRUE), holder));
238 #endif
239 }
240 
241 static void
242 vdev_blkdev_put(struct block_device *bdev, spa_mode_t mode, void *holder)
243 {
244 #ifdef HAVE_BLKDEV_PUT_HOLDER
245 	return (blkdev_put(bdev, holder));
246 #else
247 	return (blkdev_put(bdev, vdev_bdev_mode(mode, B_TRUE)));
248 #endif
249 }
250 
251 static int
252 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
253     uint64_t *logical_ashift, uint64_t *physical_ashift)
254 {
255 	struct block_device *bdev;
256 #ifdef HAVE_BLK_MODE_T
257 	blk_mode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa), B_FALSE);
258 #else
259 	fmode_t mode = vdev_bdev_mode(spa_mode(v->vdev_spa), B_FALSE);
260 #endif
261 	hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
262 	vdev_disk_t *vd;
263 
264 	/* Must have a pathname and it must be absolute. */
265 	if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
266 		v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
267 		vdev_dbgmsg(v, "invalid vdev_path");
268 		return (SET_ERROR(EINVAL));
269 	}
270 
271 	/*
272 	 * Reopen the device if it is currently open.  When expanding a
273 	 * partition force re-scanning the partition table if userland
274 	 * did not take care of this already. We need to do this while closed
275 	 * in order to get an accurate updated block device size.  Then
276 	 * since udev may need to recreate the device links increase the
277 	 * open retry timeout before reporting the device as unavailable.
278 	 */
279 	vd = v->vdev_tsd;
280 	if (vd) {
281 		char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
282 		boolean_t reread_part = B_FALSE;
283 
284 		rw_enter(&vd->vd_lock, RW_WRITER);
285 		bdev = vd->vd_bdev;
286 		vd->vd_bdev = NULL;
287 
288 		if (bdev) {
289 			if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
290 				vdev_bdevname(bdev_whole(bdev), disk_name + 5);
291 				/*
292 				 * If userland has BLKPG_RESIZE_PARTITION,
293 				 * then it should have updated the partition
294 				 * table already. We can detect this by
295 				 * comparing our current physical size
296 				 * with that of the device. If they are
297 				 * the same, then we must not have
298 				 * BLKPG_RESIZE_PARTITION or it failed to
299 				 * update the partition table online. We
300 				 * fallback to rescanning the partition
301 				 * table from the kernel below. However,
302 				 * if the capacity already reflects the
303 				 * updated partition, then we skip
304 				 * rescanning the partition table here.
305 				 */
306 				if (v->vdev_psize == bdev_capacity(bdev))
307 					reread_part = B_TRUE;
308 			}
309 
310 			vdev_blkdev_put(bdev, mode, zfs_vdev_holder);
311 		}
312 
313 		if (reread_part) {
314 			bdev = vdev_blkdev_get_by_path(disk_name, mode,
315 			    zfs_vdev_holder, NULL);
316 			if (!IS_ERR(bdev)) {
317 				int error = vdev_bdev_reread_part(bdev);
318 				vdev_blkdev_put(bdev, mode, zfs_vdev_holder);
319 				if (error == 0) {
320 					timeout = MSEC2NSEC(
321 					    zfs_vdev_open_timeout_ms * 2);
322 				}
323 			}
324 		}
325 	} else {
326 		vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
327 
328 		rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
329 		rw_enter(&vd->vd_lock, RW_WRITER);
330 	}
331 
332 	/*
333 	 * Devices are always opened by the path provided at configuration
334 	 * time.  This means that if the provided path is a udev by-id path
335 	 * then drives may be re-cabled without an issue.  If the provided
336 	 * path is a udev by-path path, then the physical location information
337 	 * will be preserved.  This can be critical for more complicated
338 	 * configurations where drives are located in specific physical
339 	 * locations to maximize the systems tolerance to component failure.
340 	 *
341 	 * Alternatively, you can provide your own udev rule to flexibly map
342 	 * the drives as you see fit.  It is not advised that you use the
343 	 * /dev/[hd]d devices which may be reordered due to probing order.
344 	 * Devices in the wrong locations will be detected by the higher
345 	 * level vdev validation.
346 	 *
347 	 * The specified paths may be briefly removed and recreated in
348 	 * response to udev events.  This should be exceptionally unlikely
349 	 * because the zpool command makes every effort to verify these paths
350 	 * have already settled prior to reaching this point.  Therefore,
351 	 * a ENOENT failure at this point is highly likely to be transient
352 	 * and it is reasonable to sleep and retry before giving up.  In
353 	 * practice delays have been observed to be on the order of 100ms.
354 	 *
355 	 * When ERESTARTSYS is returned it indicates the block device is
356 	 * a zvol which could not be opened due to the deadlock detection
357 	 * logic in zvol_open().  Extend the timeout and retry the open
358 	 * subsequent attempts are expected to eventually succeed.
359 	 */
360 	hrtime_t start = gethrtime();
361 	bdev = ERR_PTR(-ENXIO);
362 	while (IS_ERR(bdev) && ((gethrtime() - start) < timeout)) {
363 		bdev = vdev_blkdev_get_by_path(v->vdev_path, mode,
364 		    zfs_vdev_holder, NULL);
365 		if (unlikely(PTR_ERR(bdev) == -ENOENT)) {
366 			/*
367 			 * There is no point of waiting since device is removed
368 			 * explicitly
369 			 */
370 			if (v->vdev_removed)
371 				break;
372 
373 			schedule_timeout(MSEC_TO_TICK(10));
374 		} else if (unlikely(PTR_ERR(bdev) == -ERESTARTSYS)) {
375 			timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
376 			continue;
377 		} else if (IS_ERR(bdev)) {
378 			break;
379 		}
380 	}
381 
382 	if (IS_ERR(bdev)) {
383 		int error = -PTR_ERR(bdev);
384 		vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
385 		    (u_longlong_t)(gethrtime() - start),
386 		    (u_longlong_t)timeout);
387 		vd->vd_bdev = NULL;
388 		v->vdev_tsd = vd;
389 		rw_exit(&vd->vd_lock);
390 		return (SET_ERROR(error));
391 	} else {
392 		vd->vd_bdev = bdev;
393 		v->vdev_tsd = vd;
394 		rw_exit(&vd->vd_lock);
395 	}
396 
397 	/*  Determine the physical block size */
398 	int physical_block_size = bdev_physical_block_size(vd->vd_bdev);
399 
400 	/*  Determine the logical block size */
401 	int logical_block_size = bdev_logical_block_size(vd->vd_bdev);
402 
403 	/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
404 	v->vdev_nowritecache = B_FALSE;
405 
406 	/* Set when device reports it supports TRIM. */
407 	v->vdev_has_trim = bdev_discard_supported(vd->vd_bdev);
408 
409 	/* Set when device reports it supports secure TRIM. */
410 	v->vdev_has_securetrim = bdev_secure_discard_supported(vd->vd_bdev);
411 
412 	/* Inform the ZIO pipeline that we are non-rotational */
413 	v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(vd->vd_bdev));
414 
415 	/* Physical volume size in bytes for the partition */
416 	*psize = bdev_capacity(vd->vd_bdev);
417 
418 	/* Physical volume size in bytes including possible expansion space */
419 	*max_psize = bdev_max_capacity(vd->vd_bdev, v->vdev_wholedisk);
420 
421 	/* Based on the minimum sector size set the block size */
422 	*physical_ashift = highbit64(MAX(physical_block_size,
423 	    SPA_MINBLOCKSIZE)) - 1;
424 
425 	*logical_ashift = highbit64(MAX(logical_block_size,
426 	    SPA_MINBLOCKSIZE)) - 1;
427 
428 	return (0);
429 }
430 
431 static void
432 vdev_disk_close(vdev_t *v)
433 {
434 	vdev_disk_t *vd = v->vdev_tsd;
435 
436 	if (v->vdev_reopening || vd == NULL)
437 		return;
438 
439 	if (vd->vd_bdev != NULL) {
440 		vdev_blkdev_put(vd->vd_bdev, spa_mode(v->vdev_spa),
441 		    zfs_vdev_holder);
442 	}
443 
444 	rw_destroy(&vd->vd_lock);
445 	kmem_free(vd, sizeof (vdev_disk_t));
446 	v->vdev_tsd = NULL;
447 }
448 
449 static dio_request_t *
450 vdev_disk_dio_alloc(int bio_count)
451 {
452 	dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
453 	    sizeof (struct bio *) * bio_count, KM_SLEEP);
454 	atomic_set(&dr->dr_ref, 0);
455 	dr->dr_bio_count = bio_count;
456 	dr->dr_error = 0;
457 
458 	for (int i = 0; i < dr->dr_bio_count; i++)
459 		dr->dr_bio[i] = NULL;
460 
461 	return (dr);
462 }
463 
464 static void
465 vdev_disk_dio_free(dio_request_t *dr)
466 {
467 	int i;
468 
469 	for (i = 0; i < dr->dr_bio_count; i++)
470 		if (dr->dr_bio[i])
471 			bio_put(dr->dr_bio[i]);
472 
473 	kmem_free(dr, sizeof (dio_request_t) +
474 	    sizeof (struct bio *) * dr->dr_bio_count);
475 }
476 
477 static void
478 vdev_disk_dio_get(dio_request_t *dr)
479 {
480 	atomic_inc(&dr->dr_ref);
481 }
482 
483 static void
484 vdev_disk_dio_put(dio_request_t *dr)
485 {
486 	int rc = atomic_dec_return(&dr->dr_ref);
487 
488 	/*
489 	 * Free the dio_request when the last reference is dropped and
490 	 * ensure zio_interpret is called only once with the correct zio
491 	 */
492 	if (rc == 0) {
493 		zio_t *zio = dr->dr_zio;
494 		int error = dr->dr_error;
495 
496 		vdev_disk_dio_free(dr);
497 
498 		if (zio) {
499 			zio->io_error = error;
500 			ASSERT3S(zio->io_error, >=, 0);
501 			if (zio->io_error)
502 				vdev_disk_error(zio);
503 
504 			zio_delay_interrupt(zio);
505 		}
506 	}
507 }
508 
509 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error)
510 {
511 	dio_request_t *dr = bio->bi_private;
512 
513 	if (dr->dr_error == 0) {
514 #ifdef HAVE_1ARG_BIO_END_IO_T
515 		dr->dr_error = BIO_END_IO_ERROR(bio);
516 #else
517 		if (error)
518 			dr->dr_error = -(error);
519 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
520 			dr->dr_error = EIO;
521 #endif
522 	}
523 
524 	/* Drop reference acquired by __vdev_disk_physio */
525 	vdev_disk_dio_put(dr);
526 }
527 
528 static inline void
529 vdev_submit_bio_impl(struct bio *bio)
530 {
531 #ifdef HAVE_1ARG_SUBMIT_BIO
532 	(void) submit_bio(bio);
533 #else
534 	(void) submit_bio(bio_data_dir(bio), bio);
535 #endif
536 }
537 
538 /*
539  * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
540  * replace it with preempt_schedule under the following condition:
541  */
542 #if defined(CONFIG_ARM64) && \
543     defined(CONFIG_PREEMPTION) && \
544     defined(CONFIG_BLK_CGROUP)
545 #define	preempt_schedule_notrace(x) preempt_schedule(x)
546 #endif
547 
548 /*
549  * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
550  * as an argument removing the need to set it with bio_set_dev().  This
551  * removes the need for all of the following compatibility code.
552  */
553 #if !defined(HAVE_BIO_ALLOC_4ARG)
554 
555 #ifdef HAVE_BIO_SET_DEV
556 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
557 /*
558  * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
559  * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
560  * As a side effect the function was converted to GPL-only.  Define our
561  * own version when needed which uses rcu_read_lock_sched().
562  *
563  * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
564  * part, moving blkg_tryget into the private one. Define our own version.
565  */
566 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
567 static inline bool
568 vdev_blkg_tryget(struct blkcg_gq *blkg)
569 {
570 	struct percpu_ref *ref = &blkg->refcnt;
571 	unsigned long __percpu *count;
572 	bool rc;
573 
574 	rcu_read_lock_sched();
575 
576 	if (__ref_is_percpu(ref, &count)) {
577 		this_cpu_inc(*count);
578 		rc = true;
579 	} else {
580 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
581 		rc = atomic_long_inc_not_zero(&ref->data->count);
582 #else
583 		rc = atomic_long_inc_not_zero(&ref->count);
584 #endif
585 	}
586 
587 	rcu_read_unlock_sched();
588 
589 	return (rc);
590 }
591 #else
592 #define	vdev_blkg_tryget(bg)	blkg_tryget(bg)
593 #endif
594 #ifdef HAVE_BIO_SET_DEV_MACRO
595 /*
596  * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
597  * GPL-only bio_associate_blkg() symbol thus inadvertently converting
598  * the entire macro.  Provide a minimal version which always assigns the
599  * request queue's root_blkg to the bio.
600  */
601 static inline void
602 vdev_bio_associate_blkg(struct bio *bio)
603 {
604 #if defined(HAVE_BIO_BDEV_DISK)
605 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
606 #else
607 	struct request_queue *q = bio->bi_disk->queue;
608 #endif
609 
610 	ASSERT3P(q, !=, NULL);
611 	ASSERT3P(bio->bi_blkg, ==, NULL);
612 
613 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
614 		bio->bi_blkg = q->root_blkg;
615 }
616 
617 #define	bio_associate_blkg vdev_bio_associate_blkg
618 #else
619 static inline void
620 vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
621 {
622 #if defined(HAVE_BIO_BDEV_DISK)
623 	struct request_queue *q = bdev->bd_disk->queue;
624 #else
625 	struct request_queue *q = bio->bi_disk->queue;
626 #endif
627 	bio_clear_flag(bio, BIO_REMAPPED);
628 	if (bio->bi_bdev != bdev)
629 		bio_clear_flag(bio, BIO_THROTTLED);
630 	bio->bi_bdev = bdev;
631 
632 	ASSERT3P(q, !=, NULL);
633 	ASSERT3P(bio->bi_blkg, ==, NULL);
634 
635 	if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
636 		bio->bi_blkg = q->root_blkg;
637 }
638 #define	bio_set_dev		vdev_bio_set_dev
639 #endif
640 #endif
641 #else
642 /*
643  * Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
644  */
645 static inline void
646 bio_set_dev(struct bio *bio, struct block_device *bdev)
647 {
648 	bio->bi_bdev = bdev;
649 }
650 #endif /* HAVE_BIO_SET_DEV */
651 #endif /* !HAVE_BIO_ALLOC_4ARG */
652 
653 static inline void
654 vdev_submit_bio(struct bio *bio)
655 {
656 	struct bio_list *bio_list = current->bio_list;
657 	current->bio_list = NULL;
658 	vdev_submit_bio_impl(bio);
659 	current->bio_list = bio_list;
660 }
661 
662 static inline struct bio *
663 vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
664     unsigned short nr_vecs)
665 {
666 	struct bio *bio;
667 
668 #ifdef HAVE_BIO_ALLOC_4ARG
669 	bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
670 #else
671 	bio = bio_alloc(gfp_mask, nr_vecs);
672 	if (likely(bio != NULL))
673 		bio_set_dev(bio, bdev);
674 #endif
675 
676 	return (bio);
677 }
678 
679 static inline unsigned int
680 vdev_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
681 {
682 	unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
683 	    bio_size, abd_offset);
684 
685 #ifdef HAVE_BIO_MAX_SEGS
686 	return (bio_max_segs(nr_segs));
687 #else
688 	return (MIN(nr_segs, BIO_MAX_PAGES));
689 #endif
690 }
691 
692 static int
693 __vdev_disk_physio(struct block_device *bdev, zio_t *zio,
694     size_t io_size, uint64_t io_offset, int rw, int flags)
695 {
696 	dio_request_t *dr;
697 	uint64_t abd_offset;
698 	uint64_t bio_offset;
699 	int bio_size;
700 	int bio_count = 16;
701 	int error = 0;
702 	struct blk_plug plug;
703 	unsigned short nr_vecs;
704 
705 	/*
706 	 * Accessing outside the block device is never allowed.
707 	 */
708 	if (io_offset + io_size > bdev->bd_inode->i_size) {
709 		vdev_dbgmsg(zio->io_vd,
710 		    "Illegal access %llu size %llu, device size %llu",
711 		    (u_longlong_t)io_offset,
712 		    (u_longlong_t)io_size,
713 		    (u_longlong_t)i_size_read(bdev->bd_inode));
714 		return (SET_ERROR(EIO));
715 	}
716 
717 retry:
718 	dr = vdev_disk_dio_alloc(bio_count);
719 
720 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
721 	    zio->io_vd->vdev_failfast == B_TRUE) {
722 		bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
723 		    zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
724 	}
725 
726 	dr->dr_zio = zio;
727 
728 	/*
729 	 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
730 	 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
731 	 * can cover at least 128KB and at most 1MB.  When the required number
732 	 * of iovec's exceeds this, we are forced to break the IO in multiple
733 	 * bio's and wait for them all to complete.  This is likely if the
734 	 * recordsize property is increased beyond 1MB.  The default
735 	 * bio_count=16 should typically accommodate the maximum-size zio of
736 	 * 16MB.
737 	 */
738 
739 	abd_offset = 0;
740 	bio_offset = io_offset;
741 	bio_size = io_size;
742 	for (int i = 0; i <= dr->dr_bio_count; i++) {
743 
744 		/* Finished constructing bio's for given buffer */
745 		if (bio_size <= 0)
746 			break;
747 
748 		/*
749 		 * If additional bio's are required, we have to retry, but
750 		 * this should be rare - see the comment above.
751 		 */
752 		if (dr->dr_bio_count == i) {
753 			vdev_disk_dio_free(dr);
754 			bio_count *= 2;
755 			goto retry;
756 		}
757 
758 		nr_vecs = vdev_bio_max_segs(zio, bio_size, abd_offset);
759 		dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
760 		if (unlikely(dr->dr_bio[i] == NULL)) {
761 			vdev_disk_dio_free(dr);
762 			return (SET_ERROR(ENOMEM));
763 		}
764 
765 		/* Matching put called by vdev_disk_physio_completion */
766 		vdev_disk_dio_get(dr);
767 
768 		BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
769 		dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
770 		dr->dr_bio[i]->bi_private = dr;
771 		bio_set_op_attrs(dr->dr_bio[i], rw, flags);
772 
773 		/* Remaining size is returned to become the new size */
774 		bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
775 		    bio_size, abd_offset);
776 
777 		/* Advance in buffer and construct another bio if needed */
778 		abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
779 		bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
780 	}
781 
782 	/* Extra reference to protect dio_request during vdev_submit_bio */
783 	vdev_disk_dio_get(dr);
784 
785 	if (dr->dr_bio_count > 1)
786 		blk_start_plug(&plug);
787 
788 	/* Submit all bio's associated with this dio */
789 	for (int i = 0; i < dr->dr_bio_count; i++) {
790 		if (dr->dr_bio[i])
791 			vdev_submit_bio(dr->dr_bio[i]);
792 	}
793 
794 	if (dr->dr_bio_count > 1)
795 		blk_finish_plug(&plug);
796 
797 	vdev_disk_dio_put(dr);
798 
799 	return (error);
800 }
801 
802 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
803 {
804 	zio_t *zio = bio->bi_private;
805 #ifdef HAVE_1ARG_BIO_END_IO_T
806 	zio->io_error = BIO_END_IO_ERROR(bio);
807 #else
808 	zio->io_error = -error;
809 #endif
810 
811 	if (zio->io_error && (zio->io_error == EOPNOTSUPP))
812 		zio->io_vd->vdev_nowritecache = B_TRUE;
813 
814 	bio_put(bio);
815 	ASSERT3S(zio->io_error, >=, 0);
816 	if (zio->io_error)
817 		vdev_disk_error(zio);
818 	zio_interrupt(zio);
819 }
820 
821 static int
822 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
823 {
824 	struct request_queue *q;
825 	struct bio *bio;
826 
827 	q = bdev_get_queue(bdev);
828 	if (!q)
829 		return (SET_ERROR(ENXIO));
830 
831 	bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
832 	if (unlikely(bio == NULL))
833 		return (SET_ERROR(ENOMEM));
834 
835 	bio->bi_end_io = vdev_disk_io_flush_completion;
836 	bio->bi_private = zio;
837 	bio_set_flush(bio);
838 	vdev_submit_bio(bio);
839 	invalidate_bdev(bdev);
840 
841 	return (0);
842 }
843 
844 static int
845 vdev_disk_io_trim(zio_t *zio)
846 {
847 	vdev_t *v = zio->io_vd;
848 	vdev_disk_t *vd = v->vdev_tsd;
849 
850 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
851 	if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
852 		return (-blkdev_issue_secure_erase(vd->vd_bdev,
853 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
854 	} else {
855 		return (-blkdev_issue_discard(vd->vd_bdev,
856 		    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
857 	}
858 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
859 	unsigned long trim_flags = 0;
860 #if defined(BLKDEV_DISCARD_SECURE)
861 	if (zio->io_trim_flags & ZIO_TRIM_SECURE)
862 		trim_flags |= BLKDEV_DISCARD_SECURE;
863 #endif
864 	return (-blkdev_issue_discard(vd->vd_bdev,
865 	    zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
866 #else
867 #error "Unsupported kernel"
868 #endif
869 }
870 
871 static void
872 vdev_disk_io_start(zio_t *zio)
873 {
874 	vdev_t *v = zio->io_vd;
875 	vdev_disk_t *vd = v->vdev_tsd;
876 	int rw, error;
877 
878 	/*
879 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
880 	 * Nothing to be done here but return failure.
881 	 */
882 	if (vd == NULL) {
883 		zio->io_error = ENXIO;
884 		zio_interrupt(zio);
885 		return;
886 	}
887 
888 	rw_enter(&vd->vd_lock, RW_READER);
889 
890 	/*
891 	 * If the vdev is closed, it's likely due to a failed reopen and is
892 	 * in the UNAVAIL state.  Nothing to be done here but return failure.
893 	 */
894 	if (vd->vd_bdev == NULL) {
895 		rw_exit(&vd->vd_lock);
896 		zio->io_error = ENXIO;
897 		zio_interrupt(zio);
898 		return;
899 	}
900 
901 	switch (zio->io_type) {
902 	case ZIO_TYPE_IOCTL:
903 
904 		if (!vdev_readable(v)) {
905 			rw_exit(&vd->vd_lock);
906 			zio->io_error = SET_ERROR(ENXIO);
907 			zio_interrupt(zio);
908 			return;
909 		}
910 
911 		switch (zio->io_cmd) {
912 		case DKIOCFLUSHWRITECACHE:
913 
914 			if (zfs_nocacheflush)
915 				break;
916 
917 			if (v->vdev_nowritecache) {
918 				zio->io_error = SET_ERROR(ENOTSUP);
919 				break;
920 			}
921 
922 			error = vdev_disk_io_flush(vd->vd_bdev, zio);
923 			if (error == 0) {
924 				rw_exit(&vd->vd_lock);
925 				return;
926 			}
927 
928 			zio->io_error = error;
929 
930 			break;
931 
932 		default:
933 			zio->io_error = SET_ERROR(ENOTSUP);
934 		}
935 
936 		rw_exit(&vd->vd_lock);
937 		zio_execute(zio);
938 		return;
939 	case ZIO_TYPE_WRITE:
940 		rw = WRITE;
941 		break;
942 
943 	case ZIO_TYPE_READ:
944 		rw = READ;
945 		break;
946 
947 	case ZIO_TYPE_TRIM:
948 		zio->io_error = vdev_disk_io_trim(zio);
949 		rw_exit(&vd->vd_lock);
950 		zio_interrupt(zio);
951 		return;
952 
953 	default:
954 		rw_exit(&vd->vd_lock);
955 		zio->io_error = SET_ERROR(ENOTSUP);
956 		zio_interrupt(zio);
957 		return;
958 	}
959 
960 	zio->io_target_timestamp = zio_handle_io_delay(zio);
961 	error = __vdev_disk_physio(vd->vd_bdev, zio,
962 	    zio->io_size, zio->io_offset, rw, 0);
963 	rw_exit(&vd->vd_lock);
964 
965 	if (error) {
966 		zio->io_error = error;
967 		zio_interrupt(zio);
968 		return;
969 	}
970 }
971 
972 static void
973 vdev_disk_io_done(zio_t *zio)
974 {
975 	/*
976 	 * If the device returned EIO, we revalidate the media.  If it is
977 	 * determined the media has changed this triggers the asynchronous
978 	 * removal of the device from the configuration.
979 	 */
980 	if (zio->io_error == EIO) {
981 		vdev_t *v = zio->io_vd;
982 		vdev_disk_t *vd = v->vdev_tsd;
983 
984 		if (!zfs_check_disk_status(vd->vd_bdev)) {
985 			invalidate_bdev(vd->vd_bdev);
986 			v->vdev_remove_wanted = B_TRUE;
987 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
988 		}
989 	}
990 }
991 
992 static void
993 vdev_disk_hold(vdev_t *vd)
994 {
995 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
996 
997 	/* We must have a pathname, and it must be absolute. */
998 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
999 		return;
1000 
1001 	/*
1002 	 * Only prefetch path and devid info if the device has
1003 	 * never been opened.
1004 	 */
1005 	if (vd->vdev_tsd != NULL)
1006 		return;
1007 
1008 }
1009 
1010 static void
1011 vdev_disk_rele(vdev_t *vd)
1012 {
1013 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
1014 
1015 	/* XXX: Implement me as a vnode rele for the device */
1016 }
1017 
1018 vdev_ops_t vdev_disk_ops = {
1019 	.vdev_op_init = NULL,
1020 	.vdev_op_fini = NULL,
1021 	.vdev_op_open = vdev_disk_open,
1022 	.vdev_op_close = vdev_disk_close,
1023 	.vdev_op_asize = vdev_default_asize,
1024 	.vdev_op_min_asize = vdev_default_min_asize,
1025 	.vdev_op_min_alloc = NULL,
1026 	.vdev_op_io_start = vdev_disk_io_start,
1027 	.vdev_op_io_done = vdev_disk_io_done,
1028 	.vdev_op_state_change = NULL,
1029 	.vdev_op_need_resilver = NULL,
1030 	.vdev_op_hold = vdev_disk_hold,
1031 	.vdev_op_rele = vdev_disk_rele,
1032 	.vdev_op_remap = NULL,
1033 	.vdev_op_xlate = vdev_default_xlate,
1034 	.vdev_op_rebuild_asize = NULL,
1035 	.vdev_op_metaslab_init = NULL,
1036 	.vdev_op_config_generate = NULL,
1037 	.vdev_op_nparity = NULL,
1038 	.vdev_op_ndisks = NULL,
1039 	.vdev_op_type = VDEV_TYPE_DISK,		/* name of this vdev type */
1040 	.vdev_op_leaf = B_TRUE,			/* leaf vdev */
1041 	.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
1042 };
1043 
1044 /*
1045  * The zfs_vdev_scheduler module option has been deprecated. Setting this
1046  * value no longer has any effect.  It has not yet been entirely removed
1047  * to allow the module to be loaded if this option is specified in the
1048  * /etc/modprobe.d/zfs.conf file.  The following warning will be logged.
1049  */
1050 static int
1051 param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
1052 {
1053 	int error = param_set_charp(val, kp);
1054 	if (error == 0) {
1055 		printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
1056 		    "is not supported.\n");
1057 	}
1058 
1059 	return (error);
1060 }
1061 
1062 static const char *zfs_vdev_scheduler = "unused";
1063 module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
1064     param_get_charp, &zfs_vdev_scheduler, 0644);
1065 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
1066 
1067 int
1068 param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1069 {
1070 	uint_t val;
1071 	int error;
1072 
1073 	error = kstrtouint(buf, 0, &val);
1074 	if (error < 0)
1075 		return (SET_ERROR(error));
1076 
1077 	if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
1078 		return (SET_ERROR(-EINVAL));
1079 
1080 	error = param_set_uint(buf, kp);
1081 	if (error < 0)
1082 		return (SET_ERROR(error));
1083 
1084 	return (0);
1085 }
1086 
1087 int
1088 param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
1089 {
1090 	uint_t val;
1091 	int error;
1092 
1093 	error = kstrtouint(buf, 0, &val);
1094 	if (error < 0)
1095 		return (SET_ERROR(error));
1096 
1097 	if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
1098 		return (SET_ERROR(-EINVAL));
1099 
1100 	error = param_set_uint(buf, kp);
1101 	if (error < 0)
1102 		return (SET_ERROR(error));
1103 
1104 	return (0);
1105 }
1106 
1107 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
1108 	"Timeout before determining that a device is missing");
1109 
1110 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
1111 	"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1112