xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/arc_os.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 #include <sys/spa.h>
30 #include <sys/zio.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio_compress.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/zfs_context.h>
35 #include <sys/arc.h>
36 #include <sys/zfs_refcount.h>
37 #include <sys/vdev.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/multilist.h>
43 #include <sys/abd.h>
44 #include <sys/zil.h>
45 #include <sys/fm/fs/zfs.h>
46 #ifdef _KERNEL
47 #include <sys/shrinker.h>
48 #include <sys/vmsystm.h>
49 #include <sys/zpl.h>
50 #include <linux/page_compat.h>
51 #endif
52 #include <sys/callb.h>
53 #include <sys/kstat.h>
54 #include <sys/zthr.h>
55 #include <zfs_fletcher.h>
56 #include <sys/arc_impl.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/aggsum.h>
59 
60 /*
61  * This is a limit on how many pages the ARC shrinker makes available for
62  * eviction in response to one page allocation attempt.  Note that in
63  * practice, the kernel's shrinker can ask us to evict up to about 4x this
64  * for one allocation attempt.
65  *
66  * The default limit of 10,000 (in practice, 160MB per allocation attempt
67  * with 4K pages) limits the amount of time spent attempting to reclaim ARC
68  * memory to less than 100ms per allocation attempt, even with a small
69  * average compressed block size of ~8KB.
70  *
71  * See also the comment in arc_shrinker_count().
72  * Set to 0 to disable limit.
73  */
74 int zfs_arc_shrinker_limit = 10000;
75 
76 
77 /*
78  * Return a default max arc size based on the amount of physical memory.
79  */
80 uint64_t
81 arc_default_max(uint64_t min, uint64_t allmem)
82 {
83 	/* Default to 1/2 of all memory. */
84 	return (MAX(allmem / 2, min));
85 }
86 
87 #ifdef _KERNEL
88 /*
89  * Return maximum amount of memory that we could possibly use.  Reduced
90  * to half of all memory in user space which is primarily used for testing.
91  */
92 uint64_t
93 arc_all_memory(void)
94 {
95 #ifdef CONFIG_HIGHMEM
96 	return (ptob(zfs_totalram_pages - zfs_totalhigh_pages));
97 #else
98 	return (ptob(zfs_totalram_pages));
99 #endif /* CONFIG_HIGHMEM */
100 }
101 
102 /*
103  * Return the amount of memory that is considered free.  In user space
104  * which is primarily used for testing we pretend that free memory ranges
105  * from 0-20% of all memory.
106  */
107 uint64_t
108 arc_free_memory(void)
109 {
110 #ifdef CONFIG_HIGHMEM
111 	struct sysinfo si;
112 	si_meminfo(&si);
113 	return (ptob(si.freeram - si.freehigh));
114 #else
115 	return (ptob(nr_free_pages() +
116 	    nr_inactive_file_pages()));
117 #endif /* CONFIG_HIGHMEM */
118 }
119 
120 /*
121  * Return the amount of memory that can be consumed before reclaim will be
122  * needed.  Positive if there is sufficient free memory, negative indicates
123  * the amount of memory that needs to be freed up.
124  */
125 int64_t
126 arc_available_memory(void)
127 {
128 	return (arc_free_memory() - arc_sys_free);
129 }
130 
131 static uint64_t
132 arc_evictable_memory(void)
133 {
134 	int64_t asize = aggsum_value(&arc_size);
135 	uint64_t arc_clean =
136 	    zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
137 	    zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
138 	    zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
139 	    zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
140 	uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
141 
142 	/*
143 	 * Scale reported evictable memory in proportion to page cache, cap
144 	 * at specified min/max.
145 	 */
146 	uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
147 	min = MAX(arc_c_min, MIN(arc_c_max, min));
148 
149 	if (arc_dirty >= min)
150 		return (arc_clean);
151 
152 	return (MAX((int64_t)asize - (int64_t)min, 0));
153 }
154 
155 /*
156  * The _count() function returns the number of free-able objects.
157  * The _scan() function returns the number of objects that were freed.
158  */
159 static unsigned long
160 arc_shrinker_count(struct shrinker *shrink, struct shrink_control *sc)
161 {
162 	/*
163 	 * __GFP_FS won't be set if we are called from ZFS code (see
164 	 * kmem_flags_convert(), which removes it).  To avoid a deadlock, we
165 	 * don't allow evicting in this case.  We return 0 rather than
166 	 * SHRINK_STOP so that the shrinker logic doesn't accumulate a
167 	 * deficit against us.
168 	 */
169 	if (!(sc->gfp_mask & __GFP_FS)) {
170 		return (0);
171 	}
172 
173 	/*
174 	 * This code is reached in the "direct reclaim" case, where the
175 	 * kernel (outside ZFS) is trying to allocate a page, and the system
176 	 * is low on memory.
177 	 *
178 	 * The kernel's shrinker code doesn't understand how many pages the
179 	 * ARC's callback actually frees, so it may ask the ARC to shrink a
180 	 * lot for one page allocation. This is problematic because it may
181 	 * take a long time, thus delaying the page allocation, and because
182 	 * it may force the ARC to unnecessarily shrink very small.
183 	 *
184 	 * Therefore, we limit the amount of data that we say is evictable,
185 	 * which limits the amount that the shrinker will ask us to evict for
186 	 * one page allocation attempt.
187 	 *
188 	 * In practice, we may be asked to shrink 4x the limit to satisfy one
189 	 * page allocation, before the kernel's shrinker code gives up on us.
190 	 * When that happens, we rely on the kernel code to find the pages
191 	 * that we freed before invoking the OOM killer.  This happens in
192 	 * __alloc_pages_slowpath(), which retries and finds the pages we
193 	 * freed when it calls get_page_from_freelist().
194 	 *
195 	 * See also the comment above zfs_arc_shrinker_limit.
196 	 */
197 	int64_t limit = zfs_arc_shrinker_limit != 0 ?
198 	    zfs_arc_shrinker_limit : INT64_MAX;
199 	return (MIN(limit, btop((int64_t)arc_evictable_memory())));
200 }
201 
202 static unsigned long
203 arc_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc)
204 {
205 	ASSERT((sc->gfp_mask & __GFP_FS) != 0);
206 
207 	/* The arc is considered warm once reclaim has occurred */
208 	if (unlikely(arc_warm == B_FALSE))
209 		arc_warm = B_TRUE;
210 
211 	/*
212 	 * Evict the requested number of pages by reducing arc_c and waiting
213 	 * for the requested amount of data to be evicted.
214 	 */
215 	arc_reduce_target_size(ptob(sc->nr_to_scan));
216 	arc_wait_for_eviction(ptob(sc->nr_to_scan));
217 	if (current->reclaim_state != NULL)
218 		current->reclaim_state->reclaimed_slab += sc->nr_to_scan;
219 
220 	/*
221 	 * We are experiencing memory pressure which the arc_evict_zthr was
222 	 * unable to keep up with. Set arc_no_grow to briefly pause arc
223 	 * growth to avoid compounding the memory pressure.
224 	 */
225 	arc_no_grow = B_TRUE;
226 
227 	/*
228 	 * When direct reclaim is observed it usually indicates a rapid
229 	 * increase in memory pressure.  This occurs because the kswapd
230 	 * threads were unable to asynchronously keep enough free memory
231 	 * available.
232 	 */
233 	if (current_is_kswapd()) {
234 		ARCSTAT_BUMP(arcstat_memory_indirect_count);
235 	} else {
236 		ARCSTAT_BUMP(arcstat_memory_direct_count);
237 	}
238 
239 	return (sc->nr_to_scan);
240 }
241 
242 SPL_SHRINKER_DECLARE(arc_shrinker,
243     arc_shrinker_count, arc_shrinker_scan, DEFAULT_SEEKS);
244 
245 int
246 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
247 {
248 	uint64_t free_memory = arc_free_memory();
249 
250 	if (free_memory > arc_all_memory() * arc_lotsfree_percent / 100)
251 		return (0);
252 
253 	if (txg > spa->spa_lowmem_last_txg) {
254 		spa->spa_lowmem_last_txg = txg;
255 		spa->spa_lowmem_page_load = 0;
256 	}
257 	/*
258 	 * If we are in pageout, we know that memory is already tight,
259 	 * the arc is already going to be evicting, so we just want to
260 	 * continue to let page writes occur as quickly as possible.
261 	 */
262 	if (current_is_kswapd()) {
263 		if (spa->spa_lowmem_page_load >
264 		    MAX(arc_sys_free / 4, free_memory) / 4) {
265 			DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
266 			return (SET_ERROR(ERESTART));
267 		}
268 		/* Note: reserve is inflated, so we deflate */
269 		atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
270 		return (0);
271 	} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
272 		/* memory is low, delay before restarting */
273 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
274 		DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
275 		return (SET_ERROR(EAGAIN));
276 	}
277 	spa->spa_lowmem_page_load = 0;
278 	return (0);
279 }
280 
281 void
282 arc_lowmem_init(void)
283 {
284 	uint64_t allmem = arc_all_memory();
285 
286 	/*
287 	 * Register a shrinker to support synchronous (direct) memory
288 	 * reclaim from the arc.  This is done to prevent kswapd from
289 	 * swapping out pages when it is preferable to shrink the arc.
290 	 */
291 	spl_register_shrinker(&arc_shrinker);
292 
293 	/*
294 	 * The ARC tries to keep at least this much memory available for the
295 	 * system.  This gives the ARC time to shrink in response to memory
296 	 * pressure, before running completely out of memory and invoking the
297 	 * direct-reclaim ARC shrinker.
298 	 *
299 	 * This should be more than twice high_wmark_pages(), so that
300 	 * arc_wait_for_eviction() will wait until at least the
301 	 * high_wmark_pages() are free (see arc_evict_state_impl()).
302 	 *
303 	 * Note: Even when the system is very low on memory, the kernel's
304 	 * shrinker code may only ask for one "batch" of pages (512KB) to be
305 	 * evicted.  If concurrent allocations consume these pages, there may
306 	 * still be insufficient free pages, and the OOM killer takes action.
307 	 *
308 	 * By setting arc_sys_free large enough, and having
309 	 * arc_wait_for_eviction() wait until there is at least arc_sys_free/2
310 	 * free memory, it is much less likely that concurrent allocations can
311 	 * consume all the memory that was evicted before checking for
312 	 * OOM.
313 	 *
314 	 * It's hard to iterate the zones from a linux kernel module, which
315 	 * makes it difficult to determine the watermark dynamically. Instead
316 	 * we compute the maximum high watermark for this system, based
317 	 * on the amount of memory, assuming default parameters on Linux kernel
318 	 * 5.3.
319 	 */
320 
321 	/*
322 	 * Base wmark_low is 4 * the square root of Kbytes of RAM.
323 	 */
324 	long wmark = 4 * int_sqrt(allmem/1024) * 1024;
325 
326 	/*
327 	 * Clamp to between 128K and 64MB.
328 	 */
329 	wmark = MAX(wmark, 128 * 1024);
330 	wmark = MIN(wmark, 64 * 1024 * 1024);
331 
332 	/*
333 	 * watermark_boost can increase the wmark by up to 150%.
334 	 */
335 	wmark += wmark * 150 / 100;
336 
337 	/*
338 	 * arc_sys_free needs to be more than 2x the watermark, because
339 	 * arc_wait_for_eviction() waits for half of arc_sys_free.  Bump this up
340 	 * to 3x to ensure we're above it.
341 	 */
342 	arc_sys_free = wmark * 3 + allmem / 32;
343 }
344 
345 void
346 arc_lowmem_fini(void)
347 {
348 	spl_unregister_shrinker(&arc_shrinker);
349 }
350 
351 int
352 param_set_arc_long(const char *buf, zfs_kernel_param_t *kp)
353 {
354 	int error;
355 
356 	error = param_set_long(buf, kp);
357 	if (error < 0)
358 		return (SET_ERROR(error));
359 
360 	arc_tuning_update(B_TRUE);
361 
362 	return (0);
363 }
364 
365 int
366 param_set_arc_int(const char *buf, zfs_kernel_param_t *kp)
367 {
368 	int error;
369 
370 	error = param_set_int(buf, kp);
371 	if (error < 0)
372 		return (SET_ERROR(error));
373 
374 	arc_tuning_update(B_TRUE);
375 
376 	return (0);
377 }
378 #else /* _KERNEL */
379 int64_t
380 arc_available_memory(void)
381 {
382 	int64_t lowest = INT64_MAX;
383 
384 	/* Every 100 calls, free a small amount */
385 	if (spa_get_random(100) == 0)
386 		lowest = -1024;
387 
388 	return (lowest);
389 }
390 
391 int
392 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
393 {
394 	return (0);
395 }
396 
397 uint64_t
398 arc_all_memory(void)
399 {
400 	return (ptob(physmem) / 2);
401 }
402 
403 uint64_t
404 arc_free_memory(void)
405 {
406 	return (spa_get_random(arc_all_memory() * 20 / 100));
407 }
408 #endif /* _KERNEL */
409 
410 /*
411  * Helper function for arc_prune_async() it is responsible for safely
412  * handling the execution of a registered arc_prune_func_t.
413  */
414 static void
415 arc_prune_task(void *ptr)
416 {
417 	arc_prune_t *ap = (arc_prune_t *)ptr;
418 	arc_prune_func_t *func = ap->p_pfunc;
419 
420 	if (func != NULL)
421 		func(ap->p_adjust, ap->p_private);
422 
423 	zfs_refcount_remove(&ap->p_refcnt, func);
424 }
425 
426 /*
427  * Notify registered consumers they must drop holds on a portion of the ARC
428  * buffered they reference.  This provides a mechanism to ensure the ARC can
429  * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers.  This
430  * is analogous to dnlc_reduce_cache() but more generic.
431  *
432  * This operation is performed asynchronously so it may be safely called
433  * in the context of the arc_reclaim_thread().  A reference is taken here
434  * for each registered arc_prune_t and the arc_prune_task() is responsible
435  * for releasing it once the registered arc_prune_func_t has completed.
436  */
437 void
438 arc_prune_async(int64_t adjust)
439 {
440 	arc_prune_t *ap;
441 
442 	mutex_enter(&arc_prune_mtx);
443 	for (ap = list_head(&arc_prune_list); ap != NULL;
444 	    ap = list_next(&arc_prune_list, ap)) {
445 
446 		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
447 			continue;
448 
449 		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
450 		ap->p_adjust = adjust;
451 		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
452 		    ap, TQ_SLEEP) == TASKQID_INVALID) {
453 			zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
454 			continue;
455 		}
456 		ARCSTAT_BUMP(arcstat_prune);
457 	}
458 	mutex_exit(&arc_prune_mtx);
459 }
460 
461 /* BEGIN CSTYLED */
462 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_limit, INT, ZMOD_RW,
463 	"Limit on number of pages that ARC shrinker can reclaim at once");
464 /* END CSTYLED */
465