xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/arc_os.c (revision 76cc4c20473495c839c4df9cfe0bf46632738f03)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 #include <sys/spa.h>
30 #include <sys/zio.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio_compress.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/zfs_context.h>
35 #include <sys/arc.h>
36 #include <sys/zfs_refcount.h>
37 #include <sys/vdev.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/multilist.h>
43 #include <sys/abd.h>
44 #include <sys/zil.h>
45 #include <sys/fm/fs/zfs.h>
46 #ifdef _KERNEL
47 #include <sys/shrinker.h>
48 #include <sys/vmsystm.h>
49 #include <sys/zpl.h>
50 #include <linux/page_compat.h>
51 #endif
52 #include <sys/callb.h>
53 #include <sys/kstat.h>
54 #include <sys/zthr.h>
55 #include <zfs_fletcher.h>
56 #include <sys/arc_impl.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/aggsum.h>
59 
60 /*
61  * This is a limit on how many pages the ARC shrinker makes available for
62  * eviction in response to one page allocation attempt.  Note that in
63  * practice, the kernel's shrinker can ask us to evict up to about 4x this
64  * for one allocation attempt.
65  *
66  * The default limit of 10,000 (in practice, 160MB per allocation attempt
67  * with 4K pages) limits the amount of time spent attempting to reclaim ARC
68  * memory to less than 100ms per allocation attempt, even with a small
69  * average compressed block size of ~8KB.
70  *
71  * See also the comment in arc_shrinker_count().
72  * Set to 0 to disable limit.
73  */
74 int zfs_arc_shrinker_limit = 10000;
75 
76 
77 /*
78  * Return a default max arc size based on the amount of physical memory.
79  */
80 uint64_t
81 arc_default_max(uint64_t min, uint64_t allmem)
82 {
83 	/* Default to 1/2 of all memory. */
84 	return (MAX(allmem / 2, min));
85 }
86 
87 #ifdef _KERNEL
88 /*
89  * Return maximum amount of memory that we could possibly use.  Reduced
90  * to half of all memory in user space which is primarily used for testing.
91  */
92 uint64_t
93 arc_all_memory(void)
94 {
95 #ifdef CONFIG_HIGHMEM
96 	return (ptob(zfs_totalram_pages - zfs_totalhigh_pages));
97 #else
98 	return (ptob(zfs_totalram_pages));
99 #endif /* CONFIG_HIGHMEM */
100 }
101 
102 /*
103  * Return the amount of memory that is considered free.  In user space
104  * which is primarily used for testing we pretend that free memory ranges
105  * from 0-20% of all memory.
106  */
107 uint64_t
108 arc_free_memory(void)
109 {
110 #ifdef CONFIG_HIGHMEM
111 	struct sysinfo si;
112 	si_meminfo(&si);
113 	return (ptob(si.freeram - si.freehigh));
114 #else
115 	return (ptob(nr_free_pages() +
116 	    nr_inactive_file_pages() +
117 	    nr_slab_reclaimable_pages()));
118 #endif /* CONFIG_HIGHMEM */
119 }
120 
121 /*
122  * Return the amount of memory that can be consumed before reclaim will be
123  * needed.  Positive if there is sufficient free memory, negative indicates
124  * the amount of memory that needs to be freed up.
125  */
126 int64_t
127 arc_available_memory(void)
128 {
129 	return (arc_free_memory() - arc_sys_free);
130 }
131 
132 static uint64_t
133 arc_evictable_memory(void)
134 {
135 	int64_t asize = aggsum_value(&arc_size);
136 	uint64_t arc_clean =
137 	    zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
138 	    zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
139 	    zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
140 	    zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
141 	uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
142 
143 	/*
144 	 * Scale reported evictable memory in proportion to page cache, cap
145 	 * at specified min/max.
146 	 */
147 	uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
148 	min = MAX(arc_c_min, MIN(arc_c_max, min));
149 
150 	if (arc_dirty >= min)
151 		return (arc_clean);
152 
153 	return (MAX((int64_t)asize - (int64_t)min, 0));
154 }
155 
156 /*
157  * The _count() function returns the number of free-able objects.
158  * The _scan() function returns the number of objects that were freed.
159  */
160 static unsigned long
161 arc_shrinker_count(struct shrinker *shrink, struct shrink_control *sc)
162 {
163 	/*
164 	 * __GFP_FS won't be set if we are called from ZFS code (see
165 	 * kmem_flags_convert(), which removes it).  To avoid a deadlock, we
166 	 * don't allow evicting in this case.  We return 0 rather than
167 	 * SHRINK_STOP so that the shrinker logic doesn't accumulate a
168 	 * deficit against us.
169 	 */
170 	if (!(sc->gfp_mask & __GFP_FS)) {
171 		return (0);
172 	}
173 
174 	/*
175 	 * This code is reached in the "direct reclaim" case, where the
176 	 * kernel (outside ZFS) is trying to allocate a page, and the system
177 	 * is low on memory.
178 	 *
179 	 * The kernel's shrinker code doesn't understand how many pages the
180 	 * ARC's callback actually frees, so it may ask the ARC to shrink a
181 	 * lot for one page allocation. This is problematic because it may
182 	 * take a long time, thus delaying the page allocation, and because
183 	 * it may force the ARC to unnecessarily shrink very small.
184 	 *
185 	 * Therefore, we limit the amount of data that we say is evictable,
186 	 * which limits the amount that the shrinker will ask us to evict for
187 	 * one page allocation attempt.
188 	 *
189 	 * In practice, we may be asked to shrink 4x the limit to satisfy one
190 	 * page allocation, before the kernel's shrinker code gives up on us.
191 	 * When that happens, we rely on the kernel code to find the pages
192 	 * that we freed before invoking the OOM killer.  This happens in
193 	 * __alloc_pages_slowpath(), which retries and finds the pages we
194 	 * freed when it calls get_page_from_freelist().
195 	 *
196 	 * See also the comment above zfs_arc_shrinker_limit.
197 	 */
198 	int64_t limit = zfs_arc_shrinker_limit != 0 ?
199 	    zfs_arc_shrinker_limit : INT64_MAX;
200 	return (MIN(limit, btop((int64_t)arc_evictable_memory())));
201 }
202 
203 static unsigned long
204 arc_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc)
205 {
206 	ASSERT((sc->gfp_mask & __GFP_FS) != 0);
207 
208 	/* The arc is considered warm once reclaim has occurred */
209 	if (unlikely(arc_warm == B_FALSE))
210 		arc_warm = B_TRUE;
211 
212 	/*
213 	 * Evict the requested number of pages by reducing arc_c and waiting
214 	 * for the requested amount of data to be evicted.
215 	 */
216 	arc_reduce_target_size(ptob(sc->nr_to_scan));
217 	arc_wait_for_eviction(ptob(sc->nr_to_scan));
218 	if (current->reclaim_state != NULL)
219 		current->reclaim_state->reclaimed_slab += sc->nr_to_scan;
220 
221 	/*
222 	 * We are experiencing memory pressure which the arc_evict_zthr was
223 	 * unable to keep up with. Set arc_no_grow to briefly pause arc
224 	 * growth to avoid compounding the memory pressure.
225 	 */
226 	arc_no_grow = B_TRUE;
227 
228 	/*
229 	 * When direct reclaim is observed it usually indicates a rapid
230 	 * increase in memory pressure.  This occurs because the kswapd
231 	 * threads were unable to asynchronously keep enough free memory
232 	 * available.
233 	 */
234 	if (current_is_kswapd()) {
235 		ARCSTAT_BUMP(arcstat_memory_indirect_count);
236 	} else {
237 		ARCSTAT_BUMP(arcstat_memory_direct_count);
238 	}
239 
240 	return (sc->nr_to_scan);
241 }
242 
243 SPL_SHRINKER_DECLARE(arc_shrinker,
244     arc_shrinker_count, arc_shrinker_scan, DEFAULT_SEEKS);
245 
246 int
247 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
248 {
249 	uint64_t free_memory = arc_free_memory();
250 
251 	if (free_memory > arc_all_memory() * arc_lotsfree_percent / 100)
252 		return (0);
253 
254 	if (txg > spa->spa_lowmem_last_txg) {
255 		spa->spa_lowmem_last_txg = txg;
256 		spa->spa_lowmem_page_load = 0;
257 	}
258 	/*
259 	 * If we are in pageout, we know that memory is already tight,
260 	 * the arc is already going to be evicting, so we just want to
261 	 * continue to let page writes occur as quickly as possible.
262 	 */
263 	if (current_is_kswapd()) {
264 		if (spa->spa_lowmem_page_load >
265 		    MAX(arc_sys_free / 4, free_memory) / 4) {
266 			DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
267 			return (SET_ERROR(ERESTART));
268 		}
269 		/* Note: reserve is inflated, so we deflate */
270 		atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
271 		return (0);
272 	} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
273 		/* memory is low, delay before restarting */
274 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
275 		DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
276 		return (SET_ERROR(EAGAIN));
277 	}
278 	spa->spa_lowmem_page_load = 0;
279 	return (0);
280 }
281 
282 void
283 arc_lowmem_init(void)
284 {
285 	uint64_t allmem = arc_all_memory();
286 
287 	/*
288 	 * Register a shrinker to support synchronous (direct) memory
289 	 * reclaim from the arc.  This is done to prevent kswapd from
290 	 * swapping out pages when it is preferable to shrink the arc.
291 	 */
292 	spl_register_shrinker(&arc_shrinker);
293 
294 	/*
295 	 * The ARC tries to keep at least this much memory available for the
296 	 * system.  This gives the ARC time to shrink in response to memory
297 	 * pressure, before running completely out of memory and invoking the
298 	 * direct-reclaim ARC shrinker.
299 	 *
300 	 * This should be more than twice high_wmark_pages(), so that
301 	 * arc_wait_for_eviction() will wait until at least the
302 	 * high_wmark_pages() are free (see arc_evict_state_impl()).
303 	 *
304 	 * Note: Even when the system is very low on memory, the kernel's
305 	 * shrinker code may only ask for one "batch" of pages (512KB) to be
306 	 * evicted.  If concurrent allocations consume these pages, there may
307 	 * still be insufficient free pages, and the OOM killer takes action.
308 	 *
309 	 * By setting arc_sys_free large enough, and having
310 	 * arc_wait_for_eviction() wait until there is at least arc_sys_free/2
311 	 * free memory, it is much less likely that concurrent allocations can
312 	 * consume all the memory that was evicted before checking for
313 	 * OOM.
314 	 *
315 	 * It's hard to iterate the zones from a linux kernel module, which
316 	 * makes it difficult to determine the watermark dynamically. Instead
317 	 * we compute the maximum high watermark for this system, based
318 	 * on the amount of memory, assuming default parameters on Linux kernel
319 	 * 5.3.
320 	 */
321 
322 	/*
323 	 * Base wmark_low is 4 * the square root of Kbytes of RAM.
324 	 */
325 	long wmark = 4 * int_sqrt(allmem/1024) * 1024;
326 
327 	/*
328 	 * Clamp to between 128K and 64MB.
329 	 */
330 	wmark = MAX(wmark, 128 * 1024);
331 	wmark = MIN(wmark, 64 * 1024 * 1024);
332 
333 	/*
334 	 * watermark_boost can increase the wmark by up to 150%.
335 	 */
336 	wmark += wmark * 150 / 100;
337 
338 	/*
339 	 * arc_sys_free needs to be more than 2x the watermark, because
340 	 * arc_wait_for_eviction() waits for half of arc_sys_free.  Bump this up
341 	 * to 3x to ensure we're above it.
342 	 */
343 	arc_sys_free = wmark * 3 + allmem / 32;
344 }
345 
346 void
347 arc_lowmem_fini(void)
348 {
349 	spl_unregister_shrinker(&arc_shrinker);
350 }
351 
352 int
353 param_set_arc_long(const char *buf, zfs_kernel_param_t *kp)
354 {
355 	int error;
356 
357 	error = param_set_long(buf, kp);
358 	if (error < 0)
359 		return (SET_ERROR(error));
360 
361 	arc_tuning_update(B_TRUE);
362 
363 	return (0);
364 }
365 
366 int
367 param_set_arc_int(const char *buf, zfs_kernel_param_t *kp)
368 {
369 	int error;
370 
371 	error = param_set_int(buf, kp);
372 	if (error < 0)
373 		return (SET_ERROR(error));
374 
375 	arc_tuning_update(B_TRUE);
376 
377 	return (0);
378 }
379 #else /* _KERNEL */
380 int64_t
381 arc_available_memory(void)
382 {
383 	int64_t lowest = INT64_MAX;
384 
385 	/* Every 100 calls, free a small amount */
386 	if (spa_get_random(100) == 0)
387 		lowest = -1024;
388 
389 	return (lowest);
390 }
391 
392 int
393 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
394 {
395 	return (0);
396 }
397 
398 uint64_t
399 arc_all_memory(void)
400 {
401 	return (ptob(physmem) / 2);
402 }
403 
404 uint64_t
405 arc_free_memory(void)
406 {
407 	return (spa_get_random(arc_all_memory() * 20 / 100));
408 }
409 #endif /* _KERNEL */
410 
411 /*
412  * Helper function for arc_prune_async() it is responsible for safely
413  * handling the execution of a registered arc_prune_func_t.
414  */
415 static void
416 arc_prune_task(void *ptr)
417 {
418 	arc_prune_t *ap = (arc_prune_t *)ptr;
419 	arc_prune_func_t *func = ap->p_pfunc;
420 
421 	if (func != NULL)
422 		func(ap->p_adjust, ap->p_private);
423 
424 	zfs_refcount_remove(&ap->p_refcnt, func);
425 }
426 
427 /*
428  * Notify registered consumers they must drop holds on a portion of the ARC
429  * buffered they reference.  This provides a mechanism to ensure the ARC can
430  * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers.  This
431  * is analogous to dnlc_reduce_cache() but more generic.
432  *
433  * This operation is performed asynchronously so it may be safely called
434  * in the context of the arc_reclaim_thread().  A reference is taken here
435  * for each registered arc_prune_t and the arc_prune_task() is responsible
436  * for releasing it once the registered arc_prune_func_t has completed.
437  */
438 void
439 arc_prune_async(int64_t adjust)
440 {
441 	arc_prune_t *ap;
442 
443 	mutex_enter(&arc_prune_mtx);
444 	for (ap = list_head(&arc_prune_list); ap != NULL;
445 	    ap = list_next(&arc_prune_list, ap)) {
446 
447 		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
448 			continue;
449 
450 		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
451 		ap->p_adjust = adjust;
452 		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
453 		    ap, TQ_SLEEP) == TASKQID_INVALID) {
454 			zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
455 			continue;
456 		}
457 		ARCSTAT_BUMP(arcstat_prune);
458 	}
459 	mutex_exit(&arc_prune_mtx);
460 }
461 
462 /* BEGIN CSTYLED */
463 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_limit, INT, ZMOD_RW,
464 	"Limit on number of pages that ARC shrinker can reclaim at once");
465 /* END CSTYLED */
466