1 /* 2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3 * Copyright (C) 2007 The Regents of the University of California. 4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6 * UCRL-CODE-235197 7 * 8 * This file is part of the SPL, Solaris Porting Layer. 9 * 10 * The SPL is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * The SPL is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22 * 23 * Solaris Porting Layer (SPL) Task Queue Implementation. 24 */ 25 26 #include <sys/timer.h> 27 #include <sys/taskq.h> 28 #include <sys/kmem.h> 29 #include <sys/tsd.h> 30 #include <sys/trace_spl.h> 31 #ifdef HAVE_CPU_HOTPLUG 32 #include <linux/cpuhotplug.h> 33 #endif 34 35 static int spl_taskq_thread_bind = 0; 36 module_param(spl_taskq_thread_bind, int, 0644); 37 MODULE_PARM_DESC(spl_taskq_thread_bind, "Bind taskq thread to CPU by default"); 38 39 static uint_t spl_taskq_thread_timeout_ms = 10000; 40 /* BEGIN CSTYLED */ 41 module_param(spl_taskq_thread_timeout_ms, uint, 0644); 42 /* END CSTYLED */ 43 MODULE_PARM_DESC(spl_taskq_thread_timeout_ms, 44 "Time to require a dynamic thread be idle before it gets cleaned up"); 45 46 static int spl_taskq_thread_dynamic = 1; 47 module_param(spl_taskq_thread_dynamic, int, 0444); 48 MODULE_PARM_DESC(spl_taskq_thread_dynamic, "Allow dynamic taskq threads"); 49 50 static int spl_taskq_thread_priority = 1; 51 module_param(spl_taskq_thread_priority, int, 0644); 52 MODULE_PARM_DESC(spl_taskq_thread_priority, 53 "Allow non-default priority for taskq threads"); 54 55 static uint_t spl_taskq_thread_sequential = 4; 56 /* BEGIN CSTYLED */ 57 module_param(spl_taskq_thread_sequential, uint, 0644); 58 /* END CSTYLED */ 59 MODULE_PARM_DESC(spl_taskq_thread_sequential, 60 "Create new taskq threads after N sequential tasks"); 61 62 /* 63 * Global system-wide dynamic task queue available for all consumers. This 64 * taskq is not intended for long-running tasks; instead, a dedicated taskq 65 * should be created. 66 */ 67 taskq_t *system_taskq; 68 EXPORT_SYMBOL(system_taskq); 69 /* Global dynamic task queue for long delay */ 70 taskq_t *system_delay_taskq; 71 EXPORT_SYMBOL(system_delay_taskq); 72 73 /* Private dedicated taskq for creating new taskq threads on demand. */ 74 static taskq_t *dynamic_taskq; 75 static taskq_thread_t *taskq_thread_create(taskq_t *); 76 77 #ifdef HAVE_CPU_HOTPLUG 78 /* Multi-callback id for cpu hotplugging. */ 79 static int spl_taskq_cpuhp_state; 80 #endif 81 82 /* List of all taskqs */ 83 LIST_HEAD(tq_list); 84 struct rw_semaphore tq_list_sem; 85 static uint_t taskq_tsd; 86 87 static int 88 task_km_flags(uint_t flags) 89 { 90 if (flags & TQ_NOSLEEP) 91 return (KM_NOSLEEP); 92 93 if (flags & TQ_PUSHPAGE) 94 return (KM_PUSHPAGE); 95 96 return (KM_SLEEP); 97 } 98 99 /* 100 * taskq_find_by_name - Find the largest instance number of a named taskq. 101 */ 102 static int 103 taskq_find_by_name(const char *name) 104 { 105 struct list_head *tql = NULL; 106 taskq_t *tq; 107 108 list_for_each_prev(tql, &tq_list) { 109 tq = list_entry(tql, taskq_t, tq_taskqs); 110 if (strcmp(name, tq->tq_name) == 0) 111 return (tq->tq_instance); 112 } 113 return (-1); 114 } 115 116 /* 117 * NOTE: Must be called with tq->tq_lock held, returns a list_t which 118 * is not attached to the free, work, or pending taskq lists. 119 */ 120 static taskq_ent_t * 121 task_alloc(taskq_t *tq, uint_t flags, unsigned long *irqflags) 122 { 123 taskq_ent_t *t; 124 int count = 0; 125 126 ASSERT(tq); 127 retry: 128 /* Acquire taskq_ent_t's from free list if available */ 129 if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) { 130 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list); 131 132 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC)); 133 ASSERT(!(t->tqent_flags & TQENT_FLAG_CANCEL)); 134 ASSERT(!timer_pending(&t->tqent_timer)); 135 136 list_del_init(&t->tqent_list); 137 return (t); 138 } 139 140 /* Free list is empty and memory allocations are prohibited */ 141 if (flags & TQ_NOALLOC) 142 return (NULL); 143 144 /* Hit maximum taskq_ent_t pool size */ 145 if (tq->tq_nalloc >= tq->tq_maxalloc) { 146 if (flags & TQ_NOSLEEP) 147 return (NULL); 148 149 /* 150 * Sleep periodically polling the free list for an available 151 * taskq_ent_t. Dispatching with TQ_SLEEP should always succeed 152 * but we cannot block forever waiting for an taskq_ent_t to 153 * show up in the free list, otherwise a deadlock can happen. 154 * 155 * Therefore, we need to allocate a new task even if the number 156 * of allocated tasks is above tq->tq_maxalloc, but we still 157 * end up delaying the task allocation by one second, thereby 158 * throttling the task dispatch rate. 159 */ 160 spin_unlock_irqrestore(&tq->tq_lock, *irqflags); 161 schedule_timeout(HZ / 100); 162 spin_lock_irqsave_nested(&tq->tq_lock, *irqflags, 163 tq->tq_lock_class); 164 if (count < 100) { 165 count++; 166 goto retry; 167 } 168 } 169 170 spin_unlock_irqrestore(&tq->tq_lock, *irqflags); 171 t = kmem_alloc(sizeof (taskq_ent_t), task_km_flags(flags)); 172 spin_lock_irqsave_nested(&tq->tq_lock, *irqflags, tq->tq_lock_class); 173 174 if (t) { 175 taskq_init_ent(t); 176 tq->tq_nalloc++; 177 } 178 179 return (t); 180 } 181 182 /* 183 * NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t 184 * to already be removed from the free, work, or pending taskq lists. 185 */ 186 static void 187 task_free(taskq_t *tq, taskq_ent_t *t) 188 { 189 ASSERT(tq); 190 ASSERT(t); 191 ASSERT(list_empty(&t->tqent_list)); 192 ASSERT(!timer_pending(&t->tqent_timer)); 193 194 kmem_free(t, sizeof (taskq_ent_t)); 195 tq->tq_nalloc--; 196 } 197 198 /* 199 * NOTE: Must be called with tq->tq_lock held, either destroys the 200 * taskq_ent_t if too many exist or moves it to the free list for later use. 201 */ 202 static void 203 task_done(taskq_t *tq, taskq_ent_t *t) 204 { 205 ASSERT(tq); 206 ASSERT(t); 207 208 /* Wake tasks blocked in taskq_wait_id() */ 209 wake_up_all(&t->tqent_waitq); 210 211 list_del_init(&t->tqent_list); 212 213 if (tq->tq_nalloc <= tq->tq_minalloc) { 214 t->tqent_id = TASKQID_INVALID; 215 t->tqent_func = NULL; 216 t->tqent_arg = NULL; 217 t->tqent_flags = 0; 218 219 list_add_tail(&t->tqent_list, &tq->tq_free_list); 220 } else { 221 task_free(tq, t); 222 } 223 } 224 225 /* 226 * When a delayed task timer expires remove it from the delay list and 227 * add it to the priority list in order for immediate processing. 228 */ 229 static void 230 task_expire_impl(taskq_ent_t *t) 231 { 232 taskq_ent_t *w; 233 taskq_t *tq = t->tqent_taskq; 234 struct list_head *l = NULL; 235 unsigned long flags; 236 237 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); 238 239 if (t->tqent_flags & TQENT_FLAG_CANCEL) { 240 ASSERT(list_empty(&t->tqent_list)); 241 spin_unlock_irqrestore(&tq->tq_lock, flags); 242 return; 243 } 244 245 t->tqent_birth = jiffies; 246 DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t); 247 248 /* 249 * The priority list must be maintained in strict task id order 250 * from lowest to highest for lowest_id to be easily calculable. 251 */ 252 list_del(&t->tqent_list); 253 list_for_each_prev(l, &tq->tq_prio_list) { 254 w = list_entry(l, taskq_ent_t, tqent_list); 255 if (w->tqent_id < t->tqent_id) { 256 list_add(&t->tqent_list, l); 257 break; 258 } 259 } 260 if (l == &tq->tq_prio_list) 261 list_add(&t->tqent_list, &tq->tq_prio_list); 262 263 spin_unlock_irqrestore(&tq->tq_lock, flags); 264 265 wake_up(&tq->tq_work_waitq); 266 } 267 268 static void 269 task_expire(spl_timer_list_t tl) 270 { 271 struct timer_list *tmr = (struct timer_list *)tl; 272 taskq_ent_t *t = from_timer(t, tmr, tqent_timer); 273 task_expire_impl(t); 274 } 275 276 /* 277 * Returns the lowest incomplete taskqid_t. The taskqid_t may 278 * be queued on the pending list, on the priority list, on the 279 * delay list, or on the work list currently being handled, but 280 * it is not 100% complete yet. 281 */ 282 static taskqid_t 283 taskq_lowest_id(taskq_t *tq) 284 { 285 taskqid_t lowest_id = tq->tq_next_id; 286 taskq_ent_t *t; 287 taskq_thread_t *tqt; 288 289 if (!list_empty(&tq->tq_pend_list)) { 290 t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list); 291 lowest_id = MIN(lowest_id, t->tqent_id); 292 } 293 294 if (!list_empty(&tq->tq_prio_list)) { 295 t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list); 296 lowest_id = MIN(lowest_id, t->tqent_id); 297 } 298 299 if (!list_empty(&tq->tq_delay_list)) { 300 t = list_entry(tq->tq_delay_list.next, taskq_ent_t, tqent_list); 301 lowest_id = MIN(lowest_id, t->tqent_id); 302 } 303 304 if (!list_empty(&tq->tq_active_list)) { 305 tqt = list_entry(tq->tq_active_list.next, taskq_thread_t, 306 tqt_active_list); 307 ASSERT(tqt->tqt_id != TASKQID_INVALID); 308 lowest_id = MIN(lowest_id, tqt->tqt_id); 309 } 310 311 return (lowest_id); 312 } 313 314 /* 315 * Insert a task into a list keeping the list sorted by increasing taskqid. 316 */ 317 static void 318 taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt) 319 { 320 taskq_thread_t *w; 321 struct list_head *l = NULL; 322 323 ASSERT(tq); 324 ASSERT(tqt); 325 326 list_for_each_prev(l, &tq->tq_active_list) { 327 w = list_entry(l, taskq_thread_t, tqt_active_list); 328 if (w->tqt_id < tqt->tqt_id) { 329 list_add(&tqt->tqt_active_list, l); 330 break; 331 } 332 } 333 if (l == &tq->tq_active_list) 334 list_add(&tqt->tqt_active_list, &tq->tq_active_list); 335 } 336 337 /* 338 * Find and return a task from the given list if it exists. The list 339 * must be in lowest to highest task id order. 340 */ 341 static taskq_ent_t * 342 taskq_find_list(taskq_t *tq, struct list_head *lh, taskqid_t id) 343 { 344 struct list_head *l = NULL; 345 taskq_ent_t *t; 346 347 list_for_each(l, lh) { 348 t = list_entry(l, taskq_ent_t, tqent_list); 349 350 if (t->tqent_id == id) 351 return (t); 352 353 if (t->tqent_id > id) 354 break; 355 } 356 357 return (NULL); 358 } 359 360 /* 361 * Find an already dispatched task given the task id regardless of what 362 * state it is in. If a task is still pending it will be returned. 363 * If a task is executing, then -EBUSY will be returned instead. 364 * If the task has already been run then NULL is returned. 365 */ 366 static taskq_ent_t * 367 taskq_find(taskq_t *tq, taskqid_t id) 368 { 369 taskq_thread_t *tqt; 370 struct list_head *l = NULL; 371 taskq_ent_t *t; 372 373 t = taskq_find_list(tq, &tq->tq_delay_list, id); 374 if (t) 375 return (t); 376 377 t = taskq_find_list(tq, &tq->tq_prio_list, id); 378 if (t) 379 return (t); 380 381 t = taskq_find_list(tq, &tq->tq_pend_list, id); 382 if (t) 383 return (t); 384 385 list_for_each(l, &tq->tq_active_list) { 386 tqt = list_entry(l, taskq_thread_t, tqt_active_list); 387 if (tqt->tqt_id == id) { 388 /* 389 * Instead of returning tqt_task, we just return a non 390 * NULL value to prevent misuse, since tqt_task only 391 * has two valid fields. 392 */ 393 return (ERR_PTR(-EBUSY)); 394 } 395 } 396 397 return (NULL); 398 } 399 400 /* 401 * Theory for the taskq_wait_id(), taskq_wait_outstanding(), and 402 * taskq_wait() functions below. 403 * 404 * Taskq waiting is accomplished by tracking the lowest outstanding task 405 * id and the next available task id. As tasks are dispatched they are 406 * added to the tail of the pending, priority, or delay lists. As worker 407 * threads become available the tasks are removed from the heads of these 408 * lists and linked to the worker threads. This ensures the lists are 409 * kept sorted by lowest to highest task id. 410 * 411 * Therefore the lowest outstanding task id can be quickly determined by 412 * checking the head item from all of these lists. This value is stored 413 * with the taskq as the lowest id. It only needs to be recalculated when 414 * either the task with the current lowest id completes or is canceled. 415 * 416 * By blocking until the lowest task id exceeds the passed task id the 417 * taskq_wait_outstanding() function can be easily implemented. Similarly, 418 * by blocking until the lowest task id matches the next task id taskq_wait() 419 * can be implemented. 420 * 421 * Callers should be aware that when there are multiple worked threads it 422 * is possible for larger task ids to complete before smaller ones. Also 423 * when the taskq contains delay tasks with small task ids callers may 424 * block for a considerable length of time waiting for them to expire and 425 * execute. 426 */ 427 static int 428 taskq_wait_id_check(taskq_t *tq, taskqid_t id) 429 { 430 int rc; 431 unsigned long flags; 432 433 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); 434 rc = (taskq_find(tq, id) == NULL); 435 spin_unlock_irqrestore(&tq->tq_lock, flags); 436 437 return (rc); 438 } 439 440 /* 441 * The taskq_wait_id() function blocks until the passed task id completes. 442 * This does not guarantee that all lower task ids have completed. 443 */ 444 void 445 taskq_wait_id(taskq_t *tq, taskqid_t id) 446 { 447 wait_event(tq->tq_wait_waitq, taskq_wait_id_check(tq, id)); 448 } 449 EXPORT_SYMBOL(taskq_wait_id); 450 451 static int 452 taskq_wait_outstanding_check(taskq_t *tq, taskqid_t id) 453 { 454 int rc; 455 unsigned long flags; 456 457 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); 458 rc = (id < tq->tq_lowest_id); 459 spin_unlock_irqrestore(&tq->tq_lock, flags); 460 461 return (rc); 462 } 463 464 /* 465 * The taskq_wait_outstanding() function will block until all tasks with a 466 * lower taskqid than the passed 'id' have been completed. Note that all 467 * task id's are assigned monotonically at dispatch time. Zero may be 468 * passed for the id to indicate all tasks dispatch up to this point, 469 * but not after, should be waited for. 470 */ 471 void 472 taskq_wait_outstanding(taskq_t *tq, taskqid_t id) 473 { 474 id = id ? id : tq->tq_next_id - 1; 475 wait_event(tq->tq_wait_waitq, taskq_wait_outstanding_check(tq, id)); 476 } 477 EXPORT_SYMBOL(taskq_wait_outstanding); 478 479 static int 480 taskq_wait_check(taskq_t *tq) 481 { 482 int rc; 483 unsigned long flags; 484 485 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); 486 rc = (tq->tq_lowest_id == tq->tq_next_id); 487 spin_unlock_irqrestore(&tq->tq_lock, flags); 488 489 return (rc); 490 } 491 492 /* 493 * The taskq_wait() function will block until the taskq is empty. 494 * This means that if a taskq re-dispatches work to itself taskq_wait() 495 * callers will block indefinitely. 496 */ 497 void 498 taskq_wait(taskq_t *tq) 499 { 500 wait_event(tq->tq_wait_waitq, taskq_wait_check(tq)); 501 } 502 EXPORT_SYMBOL(taskq_wait); 503 504 int 505 taskq_member(taskq_t *tq, kthread_t *t) 506 { 507 return (tq == (taskq_t *)tsd_get_by_thread(taskq_tsd, t)); 508 } 509 EXPORT_SYMBOL(taskq_member); 510 511 taskq_t * 512 taskq_of_curthread(void) 513 { 514 return (tsd_get(taskq_tsd)); 515 } 516 EXPORT_SYMBOL(taskq_of_curthread); 517 518 /* 519 * Cancel an already dispatched task given the task id. Still pending tasks 520 * will be immediately canceled, and if the task is active the function will 521 * block until it completes. Preallocated tasks which are canceled must be 522 * freed by the caller. 523 */ 524 int 525 taskq_cancel_id(taskq_t *tq, taskqid_t id) 526 { 527 taskq_ent_t *t; 528 int rc = ENOENT; 529 unsigned long flags; 530 531 ASSERT(tq); 532 533 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); 534 t = taskq_find(tq, id); 535 if (t && t != ERR_PTR(-EBUSY)) { 536 list_del_init(&t->tqent_list); 537 t->tqent_flags |= TQENT_FLAG_CANCEL; 538 539 /* 540 * When canceling the lowest outstanding task id we 541 * must recalculate the new lowest outstanding id. 542 */ 543 if (tq->tq_lowest_id == t->tqent_id) { 544 tq->tq_lowest_id = taskq_lowest_id(tq); 545 ASSERT3S(tq->tq_lowest_id, >, t->tqent_id); 546 } 547 548 /* 549 * The task_expire() function takes the tq->tq_lock so drop 550 * drop the lock before synchronously cancelling the timer. 551 */ 552 if (timer_pending(&t->tqent_timer)) { 553 spin_unlock_irqrestore(&tq->tq_lock, flags); 554 del_timer_sync(&t->tqent_timer); 555 spin_lock_irqsave_nested(&tq->tq_lock, flags, 556 tq->tq_lock_class); 557 } 558 559 if (!(t->tqent_flags & TQENT_FLAG_PREALLOC)) 560 task_done(tq, t); 561 562 rc = 0; 563 } 564 spin_unlock_irqrestore(&tq->tq_lock, flags); 565 566 if (t == ERR_PTR(-EBUSY)) { 567 taskq_wait_id(tq, id); 568 rc = EBUSY; 569 } 570 571 return (rc); 572 } 573 EXPORT_SYMBOL(taskq_cancel_id); 574 575 static int taskq_thread_spawn(taskq_t *tq); 576 577 taskqid_t 578 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags) 579 { 580 taskq_ent_t *t; 581 taskqid_t rc = TASKQID_INVALID; 582 unsigned long irqflags; 583 584 ASSERT(tq); 585 ASSERT(func); 586 587 spin_lock_irqsave_nested(&tq->tq_lock, irqflags, tq->tq_lock_class); 588 589 /* Taskq being destroyed and all tasks drained */ 590 if (!(tq->tq_flags & TASKQ_ACTIVE)) 591 goto out; 592 593 /* Do not queue the task unless there is idle thread for it */ 594 ASSERT(tq->tq_nactive <= tq->tq_nthreads); 595 if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads)) { 596 /* Dynamic taskq may be able to spawn another thread */ 597 if (!(tq->tq_flags & TASKQ_DYNAMIC) || 598 taskq_thread_spawn(tq) == 0) 599 goto out; 600 } 601 602 if ((t = task_alloc(tq, flags, &irqflags)) == NULL) 603 goto out; 604 605 spin_lock(&t->tqent_lock); 606 607 /* Queue to the front of the list to enforce TQ_NOQUEUE semantics */ 608 if (flags & TQ_NOQUEUE) 609 list_add(&t->tqent_list, &tq->tq_prio_list); 610 /* Queue to the priority list instead of the pending list */ 611 else if (flags & TQ_FRONT) 612 list_add_tail(&t->tqent_list, &tq->tq_prio_list); 613 else 614 list_add_tail(&t->tqent_list, &tq->tq_pend_list); 615 616 t->tqent_id = rc = tq->tq_next_id; 617 tq->tq_next_id++; 618 t->tqent_func = func; 619 t->tqent_arg = arg; 620 t->tqent_taskq = tq; 621 t->tqent_timer.function = NULL; 622 t->tqent_timer.expires = 0; 623 624 t->tqent_birth = jiffies; 625 DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t); 626 627 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC)); 628 629 spin_unlock(&t->tqent_lock); 630 631 wake_up(&tq->tq_work_waitq); 632 out: 633 /* Spawn additional taskq threads if required. */ 634 if (!(flags & TQ_NOQUEUE) && tq->tq_nactive == tq->tq_nthreads) 635 (void) taskq_thread_spawn(tq); 636 637 spin_unlock_irqrestore(&tq->tq_lock, irqflags); 638 return (rc); 639 } 640 EXPORT_SYMBOL(taskq_dispatch); 641 642 taskqid_t 643 taskq_dispatch_delay(taskq_t *tq, task_func_t func, void *arg, 644 uint_t flags, clock_t expire_time) 645 { 646 taskqid_t rc = TASKQID_INVALID; 647 taskq_ent_t *t; 648 unsigned long irqflags; 649 650 ASSERT(tq); 651 ASSERT(func); 652 653 spin_lock_irqsave_nested(&tq->tq_lock, irqflags, tq->tq_lock_class); 654 655 /* Taskq being destroyed and all tasks drained */ 656 if (!(tq->tq_flags & TASKQ_ACTIVE)) 657 goto out; 658 659 if ((t = task_alloc(tq, flags, &irqflags)) == NULL) 660 goto out; 661 662 spin_lock(&t->tqent_lock); 663 664 /* Queue to the delay list for subsequent execution */ 665 list_add_tail(&t->tqent_list, &tq->tq_delay_list); 666 667 t->tqent_id = rc = tq->tq_next_id; 668 tq->tq_next_id++; 669 t->tqent_func = func; 670 t->tqent_arg = arg; 671 t->tqent_taskq = tq; 672 t->tqent_timer.function = task_expire; 673 t->tqent_timer.expires = (unsigned long)expire_time; 674 add_timer(&t->tqent_timer); 675 676 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC)); 677 678 spin_unlock(&t->tqent_lock); 679 out: 680 /* Spawn additional taskq threads if required. */ 681 if (tq->tq_nactive == tq->tq_nthreads) 682 (void) taskq_thread_spawn(tq); 683 spin_unlock_irqrestore(&tq->tq_lock, irqflags); 684 return (rc); 685 } 686 EXPORT_SYMBOL(taskq_dispatch_delay); 687 688 void 689 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags, 690 taskq_ent_t *t) 691 { 692 unsigned long irqflags; 693 ASSERT(tq); 694 ASSERT(func); 695 696 spin_lock_irqsave_nested(&tq->tq_lock, irqflags, 697 tq->tq_lock_class); 698 699 /* Taskq being destroyed and all tasks drained */ 700 if (!(tq->tq_flags & TASKQ_ACTIVE)) { 701 t->tqent_id = TASKQID_INVALID; 702 goto out; 703 } 704 705 if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads)) { 706 /* Dynamic taskq may be able to spawn another thread */ 707 if (!(tq->tq_flags & TASKQ_DYNAMIC) || 708 taskq_thread_spawn(tq) == 0) 709 goto out2; 710 flags |= TQ_FRONT; 711 } 712 713 spin_lock(&t->tqent_lock); 714 715 /* 716 * Make sure the entry is not on some other taskq; it is important to 717 * ASSERT() under lock 718 */ 719 ASSERT(taskq_empty_ent(t)); 720 721 /* 722 * Mark it as a prealloc'd task. This is important 723 * to ensure that we don't free it later. 724 */ 725 t->tqent_flags |= TQENT_FLAG_PREALLOC; 726 727 /* Queue to the priority list instead of the pending list */ 728 if (flags & TQ_FRONT) 729 list_add_tail(&t->tqent_list, &tq->tq_prio_list); 730 else 731 list_add_tail(&t->tqent_list, &tq->tq_pend_list); 732 733 t->tqent_id = tq->tq_next_id; 734 tq->tq_next_id++; 735 t->tqent_func = func; 736 t->tqent_arg = arg; 737 t->tqent_taskq = tq; 738 739 t->tqent_birth = jiffies; 740 DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t); 741 742 spin_unlock(&t->tqent_lock); 743 744 wake_up(&tq->tq_work_waitq); 745 out: 746 /* Spawn additional taskq threads if required. */ 747 if (tq->tq_nactive == tq->tq_nthreads) 748 (void) taskq_thread_spawn(tq); 749 out2: 750 spin_unlock_irqrestore(&tq->tq_lock, irqflags); 751 } 752 EXPORT_SYMBOL(taskq_dispatch_ent); 753 754 int 755 taskq_empty_ent(taskq_ent_t *t) 756 { 757 return (list_empty(&t->tqent_list)); 758 } 759 EXPORT_SYMBOL(taskq_empty_ent); 760 761 void 762 taskq_init_ent(taskq_ent_t *t) 763 { 764 spin_lock_init(&t->tqent_lock); 765 init_waitqueue_head(&t->tqent_waitq); 766 timer_setup(&t->tqent_timer, NULL, 0); 767 INIT_LIST_HEAD(&t->tqent_list); 768 t->tqent_id = 0; 769 t->tqent_func = NULL; 770 t->tqent_arg = NULL; 771 t->tqent_flags = 0; 772 t->tqent_taskq = NULL; 773 } 774 EXPORT_SYMBOL(taskq_init_ent); 775 776 /* 777 * Return the next pending task, preference is given to tasks on the 778 * priority list which were dispatched with TQ_FRONT. 779 */ 780 static taskq_ent_t * 781 taskq_next_ent(taskq_t *tq) 782 { 783 struct list_head *list; 784 785 if (!list_empty(&tq->tq_prio_list)) 786 list = &tq->tq_prio_list; 787 else if (!list_empty(&tq->tq_pend_list)) 788 list = &tq->tq_pend_list; 789 else 790 return (NULL); 791 792 return (list_entry(list->next, taskq_ent_t, tqent_list)); 793 } 794 795 /* 796 * Spawns a new thread for the specified taskq. 797 */ 798 static void 799 taskq_thread_spawn_task(void *arg) 800 { 801 taskq_t *tq = (taskq_t *)arg; 802 unsigned long flags; 803 804 if (taskq_thread_create(tq) == NULL) { 805 /* restore spawning count if failed */ 806 spin_lock_irqsave_nested(&tq->tq_lock, flags, 807 tq->tq_lock_class); 808 tq->tq_nspawn--; 809 spin_unlock_irqrestore(&tq->tq_lock, flags); 810 } 811 } 812 813 /* 814 * Spawn addition threads for dynamic taskqs (TASKQ_DYNAMIC) the current 815 * number of threads is insufficient to handle the pending tasks. These 816 * new threads must be created by the dedicated dynamic_taskq to avoid 817 * deadlocks between thread creation and memory reclaim. The system_taskq 818 * which is also a dynamic taskq cannot be safely used for this. 819 */ 820 static int 821 taskq_thread_spawn(taskq_t *tq) 822 { 823 int spawning = 0; 824 825 if (!(tq->tq_flags & TASKQ_DYNAMIC)) 826 return (0); 827 828 if ((tq->tq_nthreads + tq->tq_nspawn < tq->tq_maxthreads) && 829 (tq->tq_flags & TASKQ_ACTIVE)) { 830 spawning = (++tq->tq_nspawn); 831 taskq_dispatch(dynamic_taskq, taskq_thread_spawn_task, 832 tq, TQ_NOSLEEP); 833 } 834 835 return (spawning); 836 } 837 838 /* 839 * Threads in a dynamic taskq should only exit once it has been completely 840 * drained and no other threads are actively servicing tasks. This prevents 841 * threads from being created and destroyed more than is required. 842 * 843 * The first thread is the thread list is treated as the primary thread. 844 * There is nothing special about the primary thread but in order to avoid 845 * all the taskq pids from changing we opt to make it long running. 846 */ 847 static int 848 taskq_thread_should_stop(taskq_t *tq, taskq_thread_t *tqt) 849 { 850 if (!(tq->tq_flags & TASKQ_DYNAMIC)) 851 return (0); 852 853 if (list_first_entry(&(tq->tq_thread_list), taskq_thread_t, 854 tqt_thread_list) == tqt) 855 return (0); 856 857 int no_work = 858 ((tq->tq_nspawn == 0) && /* No threads are being spawned */ 859 (tq->tq_nactive == 0) && /* No threads are handling tasks */ 860 (tq->tq_nthreads > 1) && /* More than 1 thread is running */ 861 (!taskq_next_ent(tq)) && /* There are no pending tasks */ 862 (spl_taskq_thread_dynamic)); /* Dynamic taskqs are allowed */ 863 864 /* 865 * If we would have said stop before, let's instead wait a bit, maybe 866 * we'll see more work come our way soon... 867 */ 868 if (no_work) { 869 /* if it's 0, we want the old behavior. */ 870 /* if the taskq is being torn down, we also want to go away. */ 871 if (spl_taskq_thread_timeout_ms == 0 || 872 !(tq->tq_flags & TASKQ_ACTIVE)) 873 return (1); 874 unsigned long lasttime = tq->lastshouldstop; 875 if (lasttime > 0) { 876 if (time_after(jiffies, lasttime + 877 msecs_to_jiffies(spl_taskq_thread_timeout_ms))) 878 return (1); 879 else 880 return (0); 881 } else { 882 tq->lastshouldstop = jiffies; 883 } 884 } else { 885 tq->lastshouldstop = 0; 886 } 887 return (0); 888 } 889 890 static int 891 taskq_thread(void *args) 892 { 893 DECLARE_WAITQUEUE(wait, current); 894 sigset_t blocked; 895 taskq_thread_t *tqt = args; 896 taskq_t *tq; 897 taskq_ent_t *t; 898 int seq_tasks = 0; 899 unsigned long flags; 900 taskq_ent_t dup_task = {}; 901 902 ASSERT(tqt); 903 ASSERT(tqt->tqt_tq); 904 tq = tqt->tqt_tq; 905 current->flags |= PF_NOFREEZE; 906 907 (void) spl_fstrans_mark(); 908 909 sigfillset(&blocked); 910 sigprocmask(SIG_BLOCK, &blocked, NULL); 911 flush_signals(current); 912 913 tsd_set(taskq_tsd, tq); 914 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); 915 /* 916 * If we are dynamically spawned, decrease spawning count. Note that 917 * we could be created during taskq_create, in which case we shouldn't 918 * do the decrement. But it's fine because taskq_create will reset 919 * tq_nspawn later. 920 */ 921 if (tq->tq_flags & TASKQ_DYNAMIC) 922 tq->tq_nspawn--; 923 924 /* Immediately exit if more threads than allowed were created. */ 925 if (tq->tq_nthreads >= tq->tq_maxthreads) 926 goto error; 927 928 tq->tq_nthreads++; 929 list_add_tail(&tqt->tqt_thread_list, &tq->tq_thread_list); 930 wake_up(&tq->tq_wait_waitq); 931 set_current_state(TASK_INTERRUPTIBLE); 932 933 while (!kthread_should_stop()) { 934 935 if (list_empty(&tq->tq_pend_list) && 936 list_empty(&tq->tq_prio_list)) { 937 938 if (taskq_thread_should_stop(tq, tqt)) { 939 wake_up_all(&tq->tq_wait_waitq); 940 break; 941 } 942 943 add_wait_queue_exclusive(&tq->tq_work_waitq, &wait); 944 spin_unlock_irqrestore(&tq->tq_lock, flags); 945 946 schedule(); 947 seq_tasks = 0; 948 949 spin_lock_irqsave_nested(&tq->tq_lock, flags, 950 tq->tq_lock_class); 951 remove_wait_queue(&tq->tq_work_waitq, &wait); 952 } else { 953 __set_current_state(TASK_RUNNING); 954 } 955 956 if ((t = taskq_next_ent(tq)) != NULL) { 957 list_del_init(&t->tqent_list); 958 959 /* 960 * A TQENT_FLAG_PREALLOC task may be reused or freed 961 * during the task function call. Store tqent_id and 962 * tqent_flags here. 963 * 964 * Also use an on stack taskq_ent_t for tqt_task 965 * assignment in this case; we want to make sure 966 * to duplicate all fields, so the values are 967 * correct when it's accessed via DTRACE_PROBE*. 968 */ 969 tqt->tqt_id = t->tqent_id; 970 tqt->tqt_flags = t->tqent_flags; 971 972 if (t->tqent_flags & TQENT_FLAG_PREALLOC) { 973 dup_task = *t; 974 t = &dup_task; 975 } 976 tqt->tqt_task = t; 977 978 taskq_insert_in_order(tq, tqt); 979 tq->tq_nactive++; 980 spin_unlock_irqrestore(&tq->tq_lock, flags); 981 982 DTRACE_PROBE1(taskq_ent__start, taskq_ent_t *, t); 983 984 /* Perform the requested task */ 985 t->tqent_func(t->tqent_arg); 986 987 DTRACE_PROBE1(taskq_ent__finish, taskq_ent_t *, t); 988 989 spin_lock_irqsave_nested(&tq->tq_lock, flags, 990 tq->tq_lock_class); 991 tq->tq_nactive--; 992 list_del_init(&tqt->tqt_active_list); 993 tqt->tqt_task = NULL; 994 995 /* For prealloc'd tasks, we don't free anything. */ 996 if (!(tqt->tqt_flags & TQENT_FLAG_PREALLOC)) 997 task_done(tq, t); 998 999 /* 1000 * When the current lowest outstanding taskqid is 1001 * done calculate the new lowest outstanding id 1002 */ 1003 if (tq->tq_lowest_id == tqt->tqt_id) { 1004 tq->tq_lowest_id = taskq_lowest_id(tq); 1005 ASSERT3S(tq->tq_lowest_id, >, tqt->tqt_id); 1006 } 1007 1008 /* Spawn additional taskq threads if required. */ 1009 if ((++seq_tasks) > spl_taskq_thread_sequential && 1010 taskq_thread_spawn(tq)) 1011 seq_tasks = 0; 1012 1013 tqt->tqt_id = TASKQID_INVALID; 1014 tqt->tqt_flags = 0; 1015 wake_up_all(&tq->tq_wait_waitq); 1016 } else { 1017 if (taskq_thread_should_stop(tq, tqt)) 1018 break; 1019 } 1020 1021 set_current_state(TASK_INTERRUPTIBLE); 1022 1023 } 1024 1025 __set_current_state(TASK_RUNNING); 1026 tq->tq_nthreads--; 1027 list_del_init(&tqt->tqt_thread_list); 1028 error: 1029 kmem_free(tqt, sizeof (taskq_thread_t)); 1030 spin_unlock_irqrestore(&tq->tq_lock, flags); 1031 1032 tsd_set(taskq_tsd, NULL); 1033 thread_exit(); 1034 1035 return (0); 1036 } 1037 1038 static taskq_thread_t * 1039 taskq_thread_create(taskq_t *tq) 1040 { 1041 static int last_used_cpu = 0; 1042 taskq_thread_t *tqt; 1043 1044 tqt = kmem_alloc(sizeof (*tqt), KM_PUSHPAGE); 1045 INIT_LIST_HEAD(&tqt->tqt_thread_list); 1046 INIT_LIST_HEAD(&tqt->tqt_active_list); 1047 tqt->tqt_tq = tq; 1048 tqt->tqt_id = TASKQID_INVALID; 1049 1050 tqt->tqt_thread = spl_kthread_create(taskq_thread, tqt, 1051 "%s", tq->tq_name); 1052 if (tqt->tqt_thread == NULL) { 1053 kmem_free(tqt, sizeof (taskq_thread_t)); 1054 return (NULL); 1055 } 1056 1057 if (spl_taskq_thread_bind) { 1058 last_used_cpu = (last_used_cpu + 1) % num_online_cpus(); 1059 kthread_bind(tqt->tqt_thread, last_used_cpu); 1060 } 1061 1062 if (spl_taskq_thread_priority) 1063 set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(tq->tq_pri)); 1064 1065 wake_up_process(tqt->tqt_thread); 1066 1067 return (tqt); 1068 } 1069 1070 taskq_t * 1071 taskq_create(const char *name, int threads_arg, pri_t pri, 1072 int minalloc, int maxalloc, uint_t flags) 1073 { 1074 taskq_t *tq; 1075 taskq_thread_t *tqt; 1076 int count = 0, rc = 0, i; 1077 unsigned long irqflags; 1078 int nthreads = threads_arg; 1079 1080 ASSERT(name != NULL); 1081 ASSERT(minalloc >= 0); 1082 ASSERT(!(flags & (TASKQ_CPR_SAFE))); /* Unsupported */ 1083 1084 /* Scale the number of threads using nthreads as a percentage */ 1085 if (flags & TASKQ_THREADS_CPU_PCT) { 1086 ASSERT(nthreads <= 100); 1087 ASSERT(nthreads >= 0); 1088 nthreads = MIN(threads_arg, 100); 1089 nthreads = MAX(nthreads, 0); 1090 nthreads = MAX((num_online_cpus() * nthreads) /100, 1); 1091 } 1092 1093 tq = kmem_alloc(sizeof (*tq), KM_PUSHPAGE); 1094 if (tq == NULL) 1095 return (NULL); 1096 1097 tq->tq_hp_support = B_FALSE; 1098 #ifdef HAVE_CPU_HOTPLUG 1099 if (flags & TASKQ_THREADS_CPU_PCT) { 1100 tq->tq_hp_support = B_TRUE; 1101 if (cpuhp_state_add_instance_nocalls(spl_taskq_cpuhp_state, 1102 &tq->tq_hp_cb_node) != 0) { 1103 kmem_free(tq, sizeof (*tq)); 1104 return (NULL); 1105 } 1106 } 1107 #endif 1108 1109 spin_lock_init(&tq->tq_lock); 1110 INIT_LIST_HEAD(&tq->tq_thread_list); 1111 INIT_LIST_HEAD(&tq->tq_active_list); 1112 tq->tq_name = kmem_strdup(name); 1113 tq->tq_nactive = 0; 1114 tq->tq_nthreads = 0; 1115 tq->tq_nspawn = 0; 1116 tq->tq_maxthreads = nthreads; 1117 tq->tq_cpu_pct = threads_arg; 1118 tq->tq_pri = pri; 1119 tq->tq_minalloc = minalloc; 1120 tq->tq_maxalloc = maxalloc; 1121 tq->tq_nalloc = 0; 1122 tq->tq_flags = (flags | TASKQ_ACTIVE); 1123 tq->tq_next_id = TASKQID_INITIAL; 1124 tq->tq_lowest_id = TASKQID_INITIAL; 1125 tq->lastshouldstop = 0; 1126 INIT_LIST_HEAD(&tq->tq_free_list); 1127 INIT_LIST_HEAD(&tq->tq_pend_list); 1128 INIT_LIST_HEAD(&tq->tq_prio_list); 1129 INIT_LIST_HEAD(&tq->tq_delay_list); 1130 init_waitqueue_head(&tq->tq_work_waitq); 1131 init_waitqueue_head(&tq->tq_wait_waitq); 1132 tq->tq_lock_class = TQ_LOCK_GENERAL; 1133 INIT_LIST_HEAD(&tq->tq_taskqs); 1134 1135 if (flags & TASKQ_PREPOPULATE) { 1136 spin_lock_irqsave_nested(&tq->tq_lock, irqflags, 1137 tq->tq_lock_class); 1138 1139 for (i = 0; i < minalloc; i++) 1140 task_done(tq, task_alloc(tq, TQ_PUSHPAGE | TQ_NEW, 1141 &irqflags)); 1142 1143 spin_unlock_irqrestore(&tq->tq_lock, irqflags); 1144 } 1145 1146 if ((flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) 1147 nthreads = 1; 1148 1149 for (i = 0; i < nthreads; i++) { 1150 tqt = taskq_thread_create(tq); 1151 if (tqt == NULL) 1152 rc = 1; 1153 else 1154 count++; 1155 } 1156 1157 /* Wait for all threads to be started before potential destroy */ 1158 wait_event(tq->tq_wait_waitq, tq->tq_nthreads == count); 1159 /* 1160 * taskq_thread might have touched nspawn, but we don't want them to 1161 * because they're not dynamically spawned. So we reset it to 0 1162 */ 1163 tq->tq_nspawn = 0; 1164 1165 if (rc) { 1166 taskq_destroy(tq); 1167 tq = NULL; 1168 } else { 1169 down_write(&tq_list_sem); 1170 tq->tq_instance = taskq_find_by_name(name) + 1; 1171 list_add_tail(&tq->tq_taskqs, &tq_list); 1172 up_write(&tq_list_sem); 1173 } 1174 1175 return (tq); 1176 } 1177 EXPORT_SYMBOL(taskq_create); 1178 1179 void 1180 taskq_destroy(taskq_t *tq) 1181 { 1182 struct task_struct *thread; 1183 taskq_thread_t *tqt; 1184 taskq_ent_t *t; 1185 unsigned long flags; 1186 1187 ASSERT(tq); 1188 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); 1189 tq->tq_flags &= ~TASKQ_ACTIVE; 1190 spin_unlock_irqrestore(&tq->tq_lock, flags); 1191 1192 #ifdef HAVE_CPU_HOTPLUG 1193 if (tq->tq_hp_support) { 1194 VERIFY0(cpuhp_state_remove_instance_nocalls( 1195 spl_taskq_cpuhp_state, &tq->tq_hp_cb_node)); 1196 } 1197 #endif 1198 /* 1199 * When TASKQ_ACTIVE is clear new tasks may not be added nor may 1200 * new worker threads be spawned for dynamic taskq. 1201 */ 1202 if (dynamic_taskq != NULL) 1203 taskq_wait_outstanding(dynamic_taskq, 0); 1204 1205 taskq_wait(tq); 1206 1207 /* remove taskq from global list used by the kstats */ 1208 down_write(&tq_list_sem); 1209 list_del(&tq->tq_taskqs); 1210 up_write(&tq_list_sem); 1211 1212 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); 1213 /* wait for spawning threads to insert themselves to the list */ 1214 while (tq->tq_nspawn) { 1215 spin_unlock_irqrestore(&tq->tq_lock, flags); 1216 schedule_timeout_interruptible(1); 1217 spin_lock_irqsave_nested(&tq->tq_lock, flags, 1218 tq->tq_lock_class); 1219 } 1220 1221 /* 1222 * Signal each thread to exit and block until it does. Each thread 1223 * is responsible for removing itself from the list and freeing its 1224 * taskq_thread_t. This allows for idle threads to opt to remove 1225 * themselves from the taskq. They can be recreated as needed. 1226 */ 1227 while (!list_empty(&tq->tq_thread_list)) { 1228 tqt = list_entry(tq->tq_thread_list.next, 1229 taskq_thread_t, tqt_thread_list); 1230 thread = tqt->tqt_thread; 1231 spin_unlock_irqrestore(&tq->tq_lock, flags); 1232 1233 kthread_stop(thread); 1234 1235 spin_lock_irqsave_nested(&tq->tq_lock, flags, 1236 tq->tq_lock_class); 1237 } 1238 1239 while (!list_empty(&tq->tq_free_list)) { 1240 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list); 1241 1242 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC)); 1243 1244 list_del_init(&t->tqent_list); 1245 task_free(tq, t); 1246 } 1247 1248 ASSERT0(tq->tq_nthreads); 1249 ASSERT0(tq->tq_nalloc); 1250 ASSERT0(tq->tq_nspawn); 1251 ASSERT(list_empty(&tq->tq_thread_list)); 1252 ASSERT(list_empty(&tq->tq_active_list)); 1253 ASSERT(list_empty(&tq->tq_free_list)); 1254 ASSERT(list_empty(&tq->tq_pend_list)); 1255 ASSERT(list_empty(&tq->tq_prio_list)); 1256 ASSERT(list_empty(&tq->tq_delay_list)); 1257 1258 spin_unlock_irqrestore(&tq->tq_lock, flags); 1259 1260 kmem_strfree(tq->tq_name); 1261 kmem_free(tq, sizeof (taskq_t)); 1262 } 1263 EXPORT_SYMBOL(taskq_destroy); 1264 1265 /* 1266 * Create a taskq with a specified number of pool threads. Allocate 1267 * and return an array of nthreads kthread_t pointers, one for each 1268 * thread in the pool. The array is not ordered and must be freed 1269 * by the caller. 1270 */ 1271 taskq_t * 1272 taskq_create_synced(const char *name, int nthreads, pri_t pri, 1273 int minalloc, int maxalloc, uint_t flags, kthread_t ***ktpp) 1274 { 1275 taskq_t *tq; 1276 taskq_thread_t *tqt; 1277 int i = 0; 1278 kthread_t **kthreads = kmem_zalloc(sizeof (*kthreads) * nthreads, 1279 KM_SLEEP); 1280 1281 flags &= ~(TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT | TASKQ_DC_BATCH); 1282 1283 /* taskq_create spawns all the threads before returning */ 1284 tq = taskq_create(name, nthreads, minclsyspri, nthreads, INT_MAX, 1285 flags | TASKQ_PREPOPULATE); 1286 VERIFY(tq != NULL); 1287 VERIFY(tq->tq_nthreads == nthreads); 1288 1289 list_for_each_entry(tqt, &tq->tq_thread_list, tqt_thread_list) { 1290 kthreads[i] = tqt->tqt_thread; 1291 i++; 1292 } 1293 1294 ASSERT3S(i, ==, nthreads); 1295 *ktpp = kthreads; 1296 1297 return (tq); 1298 } 1299 EXPORT_SYMBOL(taskq_create_synced); 1300 1301 static unsigned int spl_taskq_kick = 0; 1302 1303 /* 1304 * 2.6.36 API Change 1305 * module_param_cb is introduced to take kernel_param_ops and 1306 * module_param_call is marked as obsolete. Also set and get operations 1307 * were changed to take a 'const struct kernel_param *'. 1308 */ 1309 static int 1310 #ifdef module_param_cb 1311 param_set_taskq_kick(const char *val, const struct kernel_param *kp) 1312 #else 1313 param_set_taskq_kick(const char *val, struct kernel_param *kp) 1314 #endif 1315 { 1316 int ret; 1317 taskq_t *tq = NULL; 1318 taskq_ent_t *t; 1319 unsigned long flags; 1320 1321 ret = param_set_uint(val, kp); 1322 if (ret < 0 || !spl_taskq_kick) 1323 return (ret); 1324 /* reset value */ 1325 spl_taskq_kick = 0; 1326 1327 down_read(&tq_list_sem); 1328 list_for_each_entry(tq, &tq_list, tq_taskqs) { 1329 spin_lock_irqsave_nested(&tq->tq_lock, flags, 1330 tq->tq_lock_class); 1331 /* Check if the first pending is older than 5 seconds */ 1332 t = taskq_next_ent(tq); 1333 if (t && time_after(jiffies, t->tqent_birth + 5*HZ)) { 1334 (void) taskq_thread_spawn(tq); 1335 printk(KERN_INFO "spl: Kicked taskq %s/%d\n", 1336 tq->tq_name, tq->tq_instance); 1337 } 1338 spin_unlock_irqrestore(&tq->tq_lock, flags); 1339 } 1340 up_read(&tq_list_sem); 1341 return (ret); 1342 } 1343 1344 #ifdef module_param_cb 1345 static const struct kernel_param_ops param_ops_taskq_kick = { 1346 .set = param_set_taskq_kick, 1347 .get = param_get_uint, 1348 }; 1349 module_param_cb(spl_taskq_kick, ¶m_ops_taskq_kick, &spl_taskq_kick, 0644); 1350 #else 1351 module_param_call(spl_taskq_kick, param_set_taskq_kick, param_get_uint, 1352 &spl_taskq_kick, 0644); 1353 #endif 1354 MODULE_PARM_DESC(spl_taskq_kick, 1355 "Write nonzero to kick stuck taskqs to spawn more threads"); 1356 1357 #ifdef HAVE_CPU_HOTPLUG 1358 /* 1359 * This callback will be called exactly once for each core that comes online, 1360 * for each dynamic taskq. We attempt to expand taskqs that have 1361 * TASKQ_THREADS_CPU_PCT set. We need to redo the percentage calculation every 1362 * time, to correctly determine whether or not to add a thread. 1363 */ 1364 static int 1365 spl_taskq_expand(unsigned int cpu, struct hlist_node *node) 1366 { 1367 taskq_t *tq = list_entry(node, taskq_t, tq_hp_cb_node); 1368 unsigned long flags; 1369 int err = 0; 1370 1371 ASSERT(tq); 1372 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); 1373 1374 if (!(tq->tq_flags & TASKQ_ACTIVE)) { 1375 spin_unlock_irqrestore(&tq->tq_lock, flags); 1376 return (err); 1377 } 1378 1379 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT); 1380 int nthreads = MIN(tq->tq_cpu_pct, 100); 1381 nthreads = MAX(((num_online_cpus() + 1) * nthreads) / 100, 1); 1382 tq->tq_maxthreads = nthreads; 1383 1384 if (!((tq->tq_flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) && 1385 tq->tq_maxthreads > tq->tq_nthreads) { 1386 spin_unlock_irqrestore(&tq->tq_lock, flags); 1387 taskq_thread_t *tqt = taskq_thread_create(tq); 1388 if (tqt == NULL) 1389 err = -1; 1390 return (err); 1391 } 1392 spin_unlock_irqrestore(&tq->tq_lock, flags); 1393 return (err); 1394 } 1395 1396 /* 1397 * While we don't support offlining CPUs, it is possible that CPUs will fail 1398 * to online successfully. We do need to be able to handle this case 1399 * gracefully. 1400 */ 1401 static int 1402 spl_taskq_prepare_down(unsigned int cpu, struct hlist_node *node) 1403 { 1404 taskq_t *tq = list_entry(node, taskq_t, tq_hp_cb_node); 1405 unsigned long flags; 1406 1407 ASSERT(tq); 1408 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); 1409 1410 if (!(tq->tq_flags & TASKQ_ACTIVE)) 1411 goto out; 1412 1413 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT); 1414 int nthreads = MIN(tq->tq_cpu_pct, 100); 1415 nthreads = MAX(((num_online_cpus()) * nthreads) / 100, 1); 1416 tq->tq_maxthreads = nthreads; 1417 1418 if (!((tq->tq_flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) && 1419 tq->tq_maxthreads < tq->tq_nthreads) { 1420 ASSERT3U(tq->tq_maxthreads, ==, tq->tq_nthreads - 1); 1421 taskq_thread_t *tqt = list_entry(tq->tq_thread_list.next, 1422 taskq_thread_t, tqt_thread_list); 1423 struct task_struct *thread = tqt->tqt_thread; 1424 spin_unlock_irqrestore(&tq->tq_lock, flags); 1425 1426 kthread_stop(thread); 1427 1428 return (0); 1429 } 1430 1431 out: 1432 spin_unlock_irqrestore(&tq->tq_lock, flags); 1433 return (0); 1434 } 1435 #endif 1436 1437 int 1438 spl_taskq_init(void) 1439 { 1440 init_rwsem(&tq_list_sem); 1441 tsd_create(&taskq_tsd, NULL); 1442 1443 #ifdef HAVE_CPU_HOTPLUG 1444 spl_taskq_cpuhp_state = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, 1445 "fs/spl_taskq:online", spl_taskq_expand, spl_taskq_prepare_down); 1446 #endif 1447 1448 system_taskq = taskq_create("spl_system_taskq", MAX(boot_ncpus, 64), 1449 maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC); 1450 if (system_taskq == NULL) 1451 return (-ENOMEM); 1452 1453 system_delay_taskq = taskq_create("spl_delay_taskq", MAX(boot_ncpus, 4), 1454 maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC); 1455 if (system_delay_taskq == NULL) { 1456 #ifdef HAVE_CPU_HOTPLUG 1457 cpuhp_remove_multi_state(spl_taskq_cpuhp_state); 1458 #endif 1459 taskq_destroy(system_taskq); 1460 return (-ENOMEM); 1461 } 1462 1463 dynamic_taskq = taskq_create("spl_dynamic_taskq", 1, 1464 maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE); 1465 if (dynamic_taskq == NULL) { 1466 #ifdef HAVE_CPU_HOTPLUG 1467 cpuhp_remove_multi_state(spl_taskq_cpuhp_state); 1468 #endif 1469 taskq_destroy(system_taskq); 1470 taskq_destroy(system_delay_taskq); 1471 return (-ENOMEM); 1472 } 1473 1474 /* 1475 * This is used to annotate tq_lock, so 1476 * taskq_dispatch -> taskq_thread_spawn -> taskq_dispatch 1477 * does not trigger a lockdep warning re: possible recursive locking 1478 */ 1479 dynamic_taskq->tq_lock_class = TQ_LOCK_DYNAMIC; 1480 1481 return (0); 1482 } 1483 1484 void 1485 spl_taskq_fini(void) 1486 { 1487 taskq_destroy(dynamic_taskq); 1488 dynamic_taskq = NULL; 1489 1490 taskq_destroy(system_delay_taskq); 1491 system_delay_taskq = NULL; 1492 1493 taskq_destroy(system_taskq); 1494 system_taskq = NULL; 1495 1496 tsd_destroy(&taskq_tsd); 1497 1498 #ifdef HAVE_CPU_HOTPLUG 1499 cpuhp_remove_multi_state(spl_taskq_cpuhp_state); 1500 spl_taskq_cpuhp_state = 0; 1501 #endif 1502 } 1503