xref: /freebsd/sys/contrib/openzfs/module/os/linux/spl/spl-proc.c (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *
10  *  The SPL is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or (at your
13  *  option) any later version.
14  *
15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22  *
23  *  Solaris Porting Layer (SPL) Proc Implementation.
24  */
25 
26 #include <sys/systeminfo.h>
27 #include <sys/kstat.h>
28 #include <sys/kmem.h>
29 #include <sys/kmem_cache.h>
30 #include <sys/vmem.h>
31 #include <sys/taskq.h>
32 #include <sys/proc.h>
33 #include <linux/ctype.h>
34 #include <linux/kmod.h>
35 #include <linux/seq_file.h>
36 #include <linux/uaccess.h>
37 #include <linux/version.h>
38 #include "zfs_gitrev.h"
39 
40 #if defined(CONSTIFY_PLUGIN) && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0)
41 typedef struct ctl_table __no_const spl_ctl_table;
42 #else
43 typedef struct ctl_table spl_ctl_table;
44 #endif
45 
46 static unsigned long table_min = 0;
47 static unsigned long table_max = ~0;
48 
49 static struct ctl_table_header *spl_header = NULL;
50 #ifndef HAVE_REGISTER_SYSCTL_TABLE
51 static struct ctl_table_header *spl_kmem = NULL;
52 static struct ctl_table_header *spl_kstat = NULL;
53 #endif
54 static struct proc_dir_entry *proc_spl = NULL;
55 static struct proc_dir_entry *proc_spl_kmem = NULL;
56 static struct proc_dir_entry *proc_spl_kmem_slab = NULL;
57 static struct proc_dir_entry *proc_spl_taskq_all = NULL;
58 static struct proc_dir_entry *proc_spl_taskq = NULL;
59 struct proc_dir_entry *proc_spl_kstat = NULL;
60 
61 #ifdef DEBUG_KMEM
62 static int
63 proc_domemused(struct ctl_table *table, int write,
64     void __user *buffer, size_t *lenp, loff_t *ppos)
65 {
66 	int rc = 0;
67 	unsigned long val;
68 	spl_ctl_table dummy = *table;
69 
70 	dummy.data = &val;
71 	dummy.proc_handler = &proc_dointvec;
72 	dummy.extra1 = &table_min;
73 	dummy.extra2 = &table_max;
74 
75 	if (write) {
76 		*ppos += *lenp;
77 	} else {
78 #ifdef HAVE_ATOMIC64_T
79 		val = atomic64_read((atomic64_t *)table->data);
80 #else
81 		val = atomic_read((atomic_t *)table->data);
82 #endif /* HAVE_ATOMIC64_T */
83 		rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos);
84 	}
85 
86 	return (rc);
87 }
88 #endif /* DEBUG_KMEM */
89 
90 static int
91 proc_doslab(struct ctl_table *table, int write,
92     void __user *buffer, size_t *lenp, loff_t *ppos)
93 {
94 	int rc = 0;
95 	unsigned long val = 0, mask;
96 	spl_ctl_table dummy = *table;
97 	spl_kmem_cache_t *skc = NULL;
98 
99 	dummy.data = &val;
100 	dummy.proc_handler = &proc_dointvec;
101 	dummy.extra1 = &table_min;
102 	dummy.extra2 = &table_max;
103 
104 	if (write) {
105 		*ppos += *lenp;
106 	} else {
107 		down_read(&spl_kmem_cache_sem);
108 		mask = (unsigned long)table->data;
109 
110 		list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
111 
112 			/* Only use slabs of the correct kmem/vmem type */
113 			if (!(skc->skc_flags & mask))
114 				continue;
115 
116 			/* Sum the specified field for selected slabs */
117 			switch (mask & (KMC_TOTAL | KMC_ALLOC | KMC_MAX)) {
118 			case KMC_TOTAL:
119 				val += skc->skc_slab_size * skc->skc_slab_total;
120 				break;
121 			case KMC_ALLOC:
122 				val += skc->skc_obj_size * skc->skc_obj_alloc;
123 				break;
124 			case KMC_MAX:
125 				val += skc->skc_obj_size * skc->skc_obj_max;
126 				break;
127 			}
128 		}
129 
130 		up_read(&spl_kmem_cache_sem);
131 		rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos);
132 	}
133 
134 	return (rc);
135 }
136 
137 static int
138 proc_dohostid(struct ctl_table *table, int write,
139     void __user *buffer, size_t *lenp, loff_t *ppos)
140 {
141 	char *end, str[32];
142 	unsigned long hid;
143 	spl_ctl_table dummy = *table;
144 
145 	dummy.data = str;
146 	dummy.maxlen = sizeof (str) - 1;
147 
148 	if (!write)
149 		snprintf(str, sizeof (str), "%lx",
150 		    (unsigned long) zone_get_hostid(NULL));
151 
152 	/* always returns 0 */
153 	proc_dostring(&dummy, write, buffer, lenp, ppos);
154 
155 	if (write) {
156 		/*
157 		 * We can't use proc_doulongvec_minmax() in the write
158 		 * case here because hostid, while a hex value, has no
159 		 * leading 0x, which confuses the helper function.
160 		 */
161 
162 		hid = simple_strtoul(str, &end, 16);
163 		if (str == end)
164 			return (-EINVAL);
165 		spl_hostid = hid;
166 	}
167 
168 	return (0);
169 }
170 
171 static void
172 taskq_seq_show_headers(struct seq_file *f)
173 {
174 	seq_printf(f, "%-25s %5s %5s %5s %5s %5s %5s %12s %5s %10s\n",
175 	    "taskq", "act", "nthr", "spwn", "maxt", "pri",
176 	    "mina", "maxa", "cura", "flags");
177 }
178 
179 /* indices into the lheads array below */
180 #define	LHEAD_PEND	0
181 #define	LHEAD_PRIO	1
182 #define	LHEAD_DELAY	2
183 #define	LHEAD_WAIT	3
184 #define	LHEAD_ACTIVE	4
185 #define	LHEAD_SIZE	5
186 
187 static unsigned int spl_max_show_tasks = 512;
188 /* CSTYLED */
189 module_param(spl_max_show_tasks, uint, 0644);
190 MODULE_PARM_DESC(spl_max_show_tasks, "Max number of tasks shown in taskq proc");
191 
192 static int
193 taskq_seq_show_impl(struct seq_file *f, void *p, boolean_t allflag)
194 {
195 	taskq_t *tq = p;
196 	taskq_thread_t *tqt = NULL;
197 	spl_wait_queue_entry_t *wq;
198 	struct task_struct *tsk;
199 	taskq_ent_t *tqe;
200 	char name[100];
201 	struct list_head *lheads[LHEAD_SIZE], *lh;
202 	static char *list_names[LHEAD_SIZE] =
203 	    {"pend", "prio", "delay", "wait", "active" };
204 	int i, j, have_lheads = 0;
205 	unsigned long wflags, flags;
206 
207 	spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
208 	spin_lock_irqsave(&tq->tq_wait_waitq.lock, wflags);
209 
210 	/* get the various lists and check whether they're empty */
211 	lheads[LHEAD_PEND] = &tq->tq_pend_list;
212 	lheads[LHEAD_PRIO] = &tq->tq_prio_list;
213 	lheads[LHEAD_DELAY] = &tq->tq_delay_list;
214 #ifdef HAVE_WAIT_QUEUE_HEAD_ENTRY
215 	lheads[LHEAD_WAIT] = &tq->tq_wait_waitq.head;
216 #else
217 	lheads[LHEAD_WAIT] = &tq->tq_wait_waitq.task_list;
218 #endif
219 	lheads[LHEAD_ACTIVE] = &tq->tq_active_list;
220 
221 	for (i = 0; i < LHEAD_SIZE; ++i) {
222 		if (list_empty(lheads[i]))
223 			lheads[i] = NULL;
224 		else
225 			++have_lheads;
226 	}
227 
228 	/* early return in non-"all" mode if lists are all empty */
229 	if (!allflag && !have_lheads) {
230 		spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags);
231 		spin_unlock_irqrestore(&tq->tq_lock, flags);
232 		return (0);
233 	}
234 
235 	/* unlock the waitq quickly */
236 	if (!lheads[LHEAD_WAIT])
237 		spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags);
238 
239 	/* show the base taskq contents */
240 	snprintf(name, sizeof (name), "%s/%d", tq->tq_name, tq->tq_instance);
241 	seq_printf(f, "%-25s ", name);
242 	seq_printf(f, "%5d %5d %5d %5d %5d %5d %12d %5d %10x\n",
243 	    tq->tq_nactive, tq->tq_nthreads, tq->tq_nspawn,
244 	    tq->tq_maxthreads, tq->tq_pri, tq->tq_minalloc, tq->tq_maxalloc,
245 	    tq->tq_nalloc, tq->tq_flags);
246 
247 	/* show the active list */
248 	if (lheads[LHEAD_ACTIVE]) {
249 		j = 0;
250 		list_for_each_entry(tqt, &tq->tq_active_list, tqt_active_list) {
251 			if (j == 0)
252 				seq_printf(f, "\t%s:",
253 				    list_names[LHEAD_ACTIVE]);
254 			else if (j == 2) {
255 				seq_printf(f, "\n\t       ");
256 				j = 0;
257 			}
258 			seq_printf(f, " [%d]%pf(%ps)",
259 			    tqt->tqt_thread->pid,
260 			    tqt->tqt_task->tqent_func,
261 			    tqt->tqt_task->tqent_arg);
262 			++j;
263 		}
264 		seq_printf(f, "\n");
265 	}
266 
267 	for (i = LHEAD_PEND; i <= LHEAD_WAIT; ++i)
268 		if (lheads[i]) {
269 			j = 0;
270 			list_for_each(lh, lheads[i]) {
271 				if (spl_max_show_tasks != 0 &&
272 				    j >= spl_max_show_tasks) {
273 					seq_printf(f, "\n\t(truncated)");
274 					break;
275 				}
276 				/* show the wait waitq list */
277 				if (i == LHEAD_WAIT) {
278 #ifdef HAVE_WAIT_QUEUE_HEAD_ENTRY
279 					wq = list_entry(lh,
280 					    spl_wait_queue_entry_t, entry);
281 #else
282 					wq = list_entry(lh,
283 					    spl_wait_queue_entry_t, task_list);
284 #endif
285 					if (j == 0)
286 						seq_printf(f, "\t%s:",
287 						    list_names[i]);
288 					else if (j % 8 == 0)
289 						seq_printf(f, "\n\t     ");
290 
291 					tsk = wq->private;
292 					seq_printf(f, " %d", tsk->pid);
293 				/* pend, prio and delay lists */
294 				} else {
295 					tqe = list_entry(lh, taskq_ent_t,
296 					    tqent_list);
297 					if (j == 0)
298 						seq_printf(f, "\t%s:",
299 						    list_names[i]);
300 					else if (j % 2 == 0)
301 						seq_printf(f, "\n\t     ");
302 
303 					seq_printf(f, " %pf(%ps)",
304 					    tqe->tqent_func,
305 					    tqe->tqent_arg);
306 				}
307 				++j;
308 			}
309 			seq_printf(f, "\n");
310 		}
311 	if (lheads[LHEAD_WAIT])
312 		spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags);
313 	spin_unlock_irqrestore(&tq->tq_lock, flags);
314 
315 	return (0);
316 }
317 
318 static int
319 taskq_all_seq_show(struct seq_file *f, void *p)
320 {
321 	return (taskq_seq_show_impl(f, p, B_TRUE));
322 }
323 
324 static int
325 taskq_seq_show(struct seq_file *f, void *p)
326 {
327 	return (taskq_seq_show_impl(f, p, B_FALSE));
328 }
329 
330 static void *
331 taskq_seq_start(struct seq_file *f, loff_t *pos)
332 {
333 	struct list_head *p;
334 	loff_t n = *pos;
335 
336 	down_read(&tq_list_sem);
337 	if (!n)
338 		taskq_seq_show_headers(f);
339 
340 	p = tq_list.next;
341 	while (n--) {
342 		p = p->next;
343 		if (p == &tq_list)
344 		return (NULL);
345 	}
346 
347 	return (list_entry(p, taskq_t, tq_taskqs));
348 }
349 
350 static void *
351 taskq_seq_next(struct seq_file *f, void *p, loff_t *pos)
352 {
353 	taskq_t *tq = p;
354 
355 	++*pos;
356 	return ((tq->tq_taskqs.next == &tq_list) ?
357 	    NULL : list_entry(tq->tq_taskqs.next, taskq_t, tq_taskqs));
358 }
359 
360 static void
361 slab_seq_show_headers(struct seq_file *f)
362 {
363 	seq_printf(f,
364 	    "--------------------- cache ----------"
365 	    "---------------------------------------------  "
366 	    "----- slab ------  "
367 	    "---- object -----  "
368 	    "--- emergency ---\n");
369 	seq_printf(f,
370 	    "name                                  "
371 	    "  flags      size     alloc slabsize  objsize  "
372 	    "total alloc   max  "
373 	    "total alloc   max  "
374 	    "dlock alloc   max\n");
375 }
376 
377 static int
378 slab_seq_show(struct seq_file *f, void *p)
379 {
380 	spl_kmem_cache_t *skc = p;
381 
382 	ASSERT(skc->skc_magic == SKC_MAGIC);
383 
384 	if (skc->skc_flags & KMC_SLAB) {
385 		/*
386 		 * This cache is backed by a generic Linux kmem cache which
387 		 * has its own accounting. For these caches we only track
388 		 * the number of active allocated objects that exist within
389 		 * the underlying Linux slabs. For the overall statistics of
390 		 * the underlying Linux cache please refer to /proc/slabinfo.
391 		 */
392 		spin_lock(&skc->skc_lock);
393 		uint64_t objs_allocated =
394 		    percpu_counter_sum(&skc->skc_linux_alloc);
395 		seq_printf(f, "%-36s  ", skc->skc_name);
396 		seq_printf(f, "0x%05lx %9s %9lu %8s %8u  "
397 		    "%5s %5s %5s  %5s %5lu %5s  %5s %5s %5s\n",
398 		    (long unsigned)skc->skc_flags,
399 		    "-",
400 		    (long unsigned)(skc->skc_obj_size * objs_allocated),
401 		    "-",
402 		    (unsigned)skc->skc_obj_size,
403 		    "-", "-", "-", "-",
404 		    (long unsigned)objs_allocated,
405 		    "-", "-", "-", "-");
406 		spin_unlock(&skc->skc_lock);
407 		return (0);
408 	}
409 
410 	spin_lock(&skc->skc_lock);
411 	seq_printf(f, "%-36s  ", skc->skc_name);
412 	seq_printf(f, "0x%05lx %9lu %9lu %8u %8u  "
413 	    "%5lu %5lu %5lu  %5lu %5lu %5lu  %5lu %5lu %5lu\n",
414 	    (long unsigned)skc->skc_flags,
415 	    (long unsigned)(skc->skc_slab_size * skc->skc_slab_total),
416 	    (long unsigned)(skc->skc_obj_size * skc->skc_obj_alloc),
417 	    (unsigned)skc->skc_slab_size,
418 	    (unsigned)skc->skc_obj_size,
419 	    (long unsigned)skc->skc_slab_total,
420 	    (long unsigned)skc->skc_slab_alloc,
421 	    (long unsigned)skc->skc_slab_max,
422 	    (long unsigned)skc->skc_obj_total,
423 	    (long unsigned)skc->skc_obj_alloc,
424 	    (long unsigned)skc->skc_obj_max,
425 	    (long unsigned)skc->skc_obj_deadlock,
426 	    (long unsigned)skc->skc_obj_emergency,
427 	    (long unsigned)skc->skc_obj_emergency_max);
428 	spin_unlock(&skc->skc_lock);
429 	return (0);
430 }
431 
432 static void *
433 slab_seq_start(struct seq_file *f, loff_t *pos)
434 {
435 	struct list_head *p;
436 	loff_t n = *pos;
437 
438 	down_read(&spl_kmem_cache_sem);
439 	if (!n)
440 		slab_seq_show_headers(f);
441 
442 	p = spl_kmem_cache_list.next;
443 	while (n--) {
444 		p = p->next;
445 		if (p == &spl_kmem_cache_list)
446 			return (NULL);
447 	}
448 
449 	return (list_entry(p, spl_kmem_cache_t, skc_list));
450 }
451 
452 static void *
453 slab_seq_next(struct seq_file *f, void *p, loff_t *pos)
454 {
455 	spl_kmem_cache_t *skc = p;
456 
457 	++*pos;
458 	return ((skc->skc_list.next == &spl_kmem_cache_list) ?
459 	    NULL : list_entry(skc->skc_list.next, spl_kmem_cache_t, skc_list));
460 }
461 
462 static void
463 slab_seq_stop(struct seq_file *f, void *v)
464 {
465 	up_read(&spl_kmem_cache_sem);
466 }
467 
468 static const struct seq_operations slab_seq_ops = {
469 	.show  = slab_seq_show,
470 	.start = slab_seq_start,
471 	.next  = slab_seq_next,
472 	.stop  = slab_seq_stop,
473 };
474 
475 static int
476 proc_slab_open(struct inode *inode, struct file *filp)
477 {
478 	return (seq_open(filp, &slab_seq_ops));
479 }
480 
481 static const kstat_proc_op_t proc_slab_operations = {
482 #ifdef HAVE_PROC_OPS_STRUCT
483 	.proc_open	= proc_slab_open,
484 	.proc_read	= seq_read,
485 	.proc_lseek	= seq_lseek,
486 	.proc_release	= seq_release,
487 #else
488 	.open		= proc_slab_open,
489 	.read		= seq_read,
490 	.llseek		= seq_lseek,
491 	.release	= seq_release,
492 #endif
493 };
494 
495 static void
496 taskq_seq_stop(struct seq_file *f, void *v)
497 {
498 	up_read(&tq_list_sem);
499 }
500 
501 static const struct seq_operations taskq_all_seq_ops = {
502 	.show	= taskq_all_seq_show,
503 	.start	= taskq_seq_start,
504 	.next	= taskq_seq_next,
505 	.stop	= taskq_seq_stop,
506 };
507 
508 static const struct seq_operations taskq_seq_ops = {
509 	.show	= taskq_seq_show,
510 	.start	= taskq_seq_start,
511 	.next	= taskq_seq_next,
512 	.stop	= taskq_seq_stop,
513 };
514 
515 static int
516 proc_taskq_all_open(struct inode *inode, struct file *filp)
517 {
518 	return (seq_open(filp, &taskq_all_seq_ops));
519 }
520 
521 static int
522 proc_taskq_open(struct inode *inode, struct file *filp)
523 {
524 	return (seq_open(filp, &taskq_seq_ops));
525 }
526 
527 static const kstat_proc_op_t proc_taskq_all_operations = {
528 #ifdef HAVE_PROC_OPS_STRUCT
529 	.proc_open	= proc_taskq_all_open,
530 	.proc_read	= seq_read,
531 	.proc_lseek	= seq_lseek,
532 	.proc_release	= seq_release,
533 #else
534 	.open		= proc_taskq_all_open,
535 	.read		= seq_read,
536 	.llseek		= seq_lseek,
537 	.release	= seq_release,
538 #endif
539 };
540 
541 static const kstat_proc_op_t proc_taskq_operations = {
542 #ifdef HAVE_PROC_OPS_STRUCT
543 	.proc_open	= proc_taskq_open,
544 	.proc_read	= seq_read,
545 	.proc_lseek	= seq_lseek,
546 	.proc_release	= seq_release,
547 #else
548 	.open		= proc_taskq_open,
549 	.read		= seq_read,
550 	.llseek		= seq_lseek,
551 	.release	= seq_release,
552 #endif
553 };
554 
555 static struct ctl_table spl_kmem_table[] = {
556 #ifdef DEBUG_KMEM
557 	{
558 		.procname	= "kmem_used",
559 		.data		= &kmem_alloc_used,
560 #ifdef HAVE_ATOMIC64_T
561 		.maxlen		= sizeof (atomic64_t),
562 #else
563 		.maxlen		= sizeof (atomic_t),
564 #endif /* HAVE_ATOMIC64_T */
565 		.mode		= 0444,
566 		.proc_handler	= &proc_domemused,
567 	},
568 	{
569 		.procname	= "kmem_max",
570 		.data		= &kmem_alloc_max,
571 		.maxlen		= sizeof (unsigned long),
572 		.extra1		= &table_min,
573 		.extra2		= &table_max,
574 		.mode		= 0444,
575 		.proc_handler	= &proc_doulongvec_minmax,
576 	},
577 #endif /* DEBUG_KMEM */
578 	{
579 		.procname	= "slab_kvmem_total",
580 		.data		= (void *)(KMC_KVMEM | KMC_TOTAL),
581 		.maxlen		= sizeof (unsigned long),
582 		.extra1		= &table_min,
583 		.extra2		= &table_max,
584 		.mode		= 0444,
585 		.proc_handler	= &proc_doslab,
586 	},
587 	{
588 		.procname	= "slab_kvmem_alloc",
589 		.data		= (void *)(KMC_KVMEM | KMC_ALLOC),
590 		.maxlen		= sizeof (unsigned long),
591 		.extra1		= &table_min,
592 		.extra2		= &table_max,
593 		.mode		= 0444,
594 		.proc_handler	= &proc_doslab,
595 	},
596 	{
597 		.procname	= "slab_kvmem_max",
598 		.data		= (void *)(KMC_KVMEM | KMC_MAX),
599 		.maxlen		= sizeof (unsigned long),
600 		.extra1		= &table_min,
601 		.extra2		= &table_max,
602 		.mode		= 0444,
603 		.proc_handler	= &proc_doslab,
604 	},
605 	{},
606 };
607 
608 static struct ctl_table spl_kstat_table[] = {
609 	{},
610 };
611 
612 static struct ctl_table spl_table[] = {
613 	/*
614 	 * NB No .strategy entries have been provided since
615 	 * sysctl(8) prefers to go via /proc for portability.
616 	 */
617 	{
618 		.procname	= "gitrev",
619 		.data		= (char *)ZFS_META_GITREV,
620 		.maxlen		= sizeof (ZFS_META_GITREV),
621 		.mode		= 0444,
622 		.proc_handler	= &proc_dostring,
623 	},
624 	{
625 		.procname	= "hostid",
626 		.data		= &spl_hostid,
627 		.maxlen		= sizeof (unsigned long),
628 		.mode		= 0644,
629 		.proc_handler	= &proc_dohostid,
630 	},
631 #ifdef HAVE_REGISTER_SYSCTL_TABLE
632 	{
633 		.procname	= "kmem",
634 		.mode		= 0555,
635 		.child		= spl_kmem_table,
636 	},
637 	{
638 		.procname	= "kstat",
639 		.mode		= 0555,
640 		.child		= spl_kstat_table,
641 	},
642 #endif
643 	{},
644 };
645 
646 #ifdef HAVE_REGISTER_SYSCTL_TABLE
647 static struct ctl_table spl_dir[] = {
648 	{
649 		.procname	= "spl",
650 		.mode		= 0555,
651 		.child		= spl_table,
652 	},
653 	{}
654 };
655 
656 static struct ctl_table spl_root[] = {
657 	{
658 		.procname	= "kernel",
659 		.mode		= 0555,
660 		.child		= spl_dir,
661 	},
662 	{}
663 };
664 #endif
665 
666 static void spl_proc_cleanup(void)
667 {
668 	remove_proc_entry("kstat", proc_spl);
669 	remove_proc_entry("slab", proc_spl_kmem);
670 	remove_proc_entry("kmem", proc_spl);
671 	remove_proc_entry("taskq-all", proc_spl);
672 	remove_proc_entry("taskq", proc_spl);
673 	remove_proc_entry("spl", NULL);
674 
675 #ifndef HAVE_REGISTER_SYSCTL_TABLE
676 	if (spl_kstat) {
677 		unregister_sysctl_table(spl_kstat);
678 		spl_kstat = NULL;
679 	}
680 	if (spl_kmem) {
681 		unregister_sysctl_table(spl_kmem);
682 		spl_kmem = NULL;
683 	}
684 #endif
685 	if (spl_header) {
686 		unregister_sysctl_table(spl_header);
687 		spl_header = NULL;
688 	}
689 }
690 
691 int
692 spl_proc_init(void)
693 {
694 	int rc = 0;
695 
696 #ifdef HAVE_REGISTER_SYSCTL_TABLE
697 	spl_header = register_sysctl_table(spl_root);
698 	if (spl_header == NULL)
699 		return (-EUNATCH);
700 #else
701 	spl_header = register_sysctl("kernel/spl", spl_table);
702 	if (spl_header == NULL)
703 		return (-EUNATCH);
704 
705 	spl_kmem = register_sysctl("kernel/spl/kmem", spl_kmem_table);
706 	if (spl_kmem == NULL) {
707 		rc = -EUNATCH;
708 		goto out;
709 	}
710 	spl_kstat = register_sysctl("kernel/spl/kstat", spl_kstat_table);
711 	if (spl_kstat == NULL) {
712 		rc = -EUNATCH;
713 		goto out;
714 	}
715 #endif
716 
717 	proc_spl = proc_mkdir("spl", NULL);
718 	if (proc_spl == NULL) {
719 		rc = -EUNATCH;
720 		goto out;
721 	}
722 
723 	proc_spl_taskq_all = proc_create_data("taskq-all", 0444, proc_spl,
724 	    &proc_taskq_all_operations, NULL);
725 	if (proc_spl_taskq_all == NULL) {
726 		rc = -EUNATCH;
727 		goto out;
728 	}
729 
730 	proc_spl_taskq = proc_create_data("taskq", 0444, proc_spl,
731 	    &proc_taskq_operations, NULL);
732 	if (proc_spl_taskq == NULL) {
733 		rc = -EUNATCH;
734 		goto out;
735 	}
736 
737 	proc_spl_kmem = proc_mkdir("kmem", proc_spl);
738 	if (proc_spl_kmem == NULL) {
739 		rc = -EUNATCH;
740 		goto out;
741 	}
742 
743 	proc_spl_kmem_slab = proc_create_data("slab", 0444, proc_spl_kmem,
744 	    &proc_slab_operations, NULL);
745 	if (proc_spl_kmem_slab == NULL) {
746 		rc = -EUNATCH;
747 		goto out;
748 	}
749 
750 	proc_spl_kstat = proc_mkdir("kstat", proc_spl);
751 	if (proc_spl_kstat == NULL) {
752 		rc = -EUNATCH;
753 		goto out;
754 	}
755 out:
756 	if (rc)
757 		spl_proc_cleanup();
758 
759 	return (rc);
760 }
761 
762 void
763 spl_proc_fini(void)
764 {
765 	spl_proc_cleanup();
766 }
767