xref: /freebsd/sys/contrib/openzfs/module/os/linux/spl/spl-kmem.c (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *
10  *  The SPL is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or (at your
13  *  option) any later version.
14  *
15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include <sys/debug.h>
25 #include <sys/sysmacros.h>
26 #include <sys/kmem.h>
27 #include <sys/vmem.h>
28 
29 /* BEGIN CSTYLED */
30 /*
31  * As a general rule kmem_alloc() allocations should be small, preferably
32  * just a few pages since they must by physically contiguous.  Therefore, a
33  * rate limited warning will be printed to the console for any kmem_alloc()
34  * which exceeds a reasonable threshold.
35  *
36  * The default warning threshold is set to sixteen pages but capped at 64K to
37  * accommodate systems using large pages.  This value was selected to be small
38  * enough to ensure the largest allocations are quickly noticed and fixed.
39  * But large enough to avoid logging any warnings when a allocation size is
40  * larger than optimal but not a serious concern.  Since this value is tunable,
41  * developers are encouraged to set it lower when testing so any new largish
42  * allocations are quickly caught.  These warnings may be disabled by setting
43  * the threshold to zero.
44  */
45 unsigned int spl_kmem_alloc_warn = MIN(16 * PAGE_SIZE, 64 * 1024);
46 module_param(spl_kmem_alloc_warn, uint, 0644);
47 MODULE_PARM_DESC(spl_kmem_alloc_warn,
48 	"Warning threshold in bytes for a kmem_alloc()");
49 EXPORT_SYMBOL(spl_kmem_alloc_warn);
50 
51 /*
52  * Large kmem_alloc() allocations will fail if they exceed KMALLOC_MAX_SIZE.
53  * Allocations which are marginally smaller than this limit may succeed but
54  * should still be avoided due to the expense of locating a contiguous range
55  * of free pages.  Therefore, a maximum kmem size with reasonable safely
56  * margin of 4x is set.  Kmem_alloc() allocations larger than this maximum
57  * will quickly fail.  Vmem_alloc() allocations less than or equal to this
58  * value will use kmalloc(), but shift to vmalloc() when exceeding this value.
59  */
60 unsigned int spl_kmem_alloc_max = (KMALLOC_MAX_SIZE >> 2);
61 module_param(spl_kmem_alloc_max, uint, 0644);
62 MODULE_PARM_DESC(spl_kmem_alloc_max,
63 	"Maximum size in bytes for a kmem_alloc()");
64 EXPORT_SYMBOL(spl_kmem_alloc_max);
65 /* END CSTYLED */
66 
67 int
68 kmem_debugging(void)
69 {
70 	return (0);
71 }
72 EXPORT_SYMBOL(kmem_debugging);
73 
74 char *
75 kmem_vasprintf(const char *fmt, va_list ap)
76 {
77 	va_list aq;
78 	char *ptr;
79 
80 	do {
81 		va_copy(aq, ap);
82 		ptr = kvasprintf(kmem_flags_convert(KM_SLEEP), fmt, aq);
83 		va_end(aq);
84 	} while (ptr == NULL);
85 
86 	return (ptr);
87 }
88 EXPORT_SYMBOL(kmem_vasprintf);
89 
90 char *
91 kmem_asprintf(const char *fmt, ...)
92 {
93 	va_list ap;
94 	char *ptr;
95 
96 	do {
97 		va_start(ap, fmt);
98 		ptr = kvasprintf(kmem_flags_convert(KM_SLEEP), fmt, ap);
99 		va_end(ap);
100 	} while (ptr == NULL);
101 
102 	return (ptr);
103 }
104 EXPORT_SYMBOL(kmem_asprintf);
105 
106 static char *
107 __strdup(const char *str, int flags)
108 {
109 	char *ptr;
110 	int n;
111 
112 	n = strlen(str);
113 	ptr = kmalloc(n + 1, kmem_flags_convert(flags));
114 	if (ptr)
115 		memcpy(ptr, str, n + 1);
116 
117 	return (ptr);
118 }
119 
120 char *
121 kmem_strdup(const char *str)
122 {
123 	return (__strdup(str, KM_SLEEP));
124 }
125 EXPORT_SYMBOL(kmem_strdup);
126 
127 void
128 kmem_strfree(char *str)
129 {
130 	kfree(str);
131 }
132 EXPORT_SYMBOL(kmem_strfree);
133 
134 void *
135 spl_kvmalloc(size_t size, gfp_t lflags)
136 {
137 #ifdef HAVE_KVMALLOC
138 	/*
139 	 * GFP_KERNEL allocations can safely use kvmalloc which may
140 	 * improve performance by avoiding a) high latency caused by
141 	 * vmalloc's on-access allocation, b) performance loss due to
142 	 * MMU memory address mapping and c) vmalloc locking overhead.
143 	 * This has the side-effect that the slab statistics will
144 	 * incorrectly report this as a vmem allocation, but that is
145 	 * purely cosmetic.
146 	 */
147 	if ((lflags & GFP_KERNEL) == GFP_KERNEL)
148 		return (kvmalloc(size, lflags));
149 #endif
150 
151 	gfp_t kmalloc_lflags = lflags;
152 
153 	if (size > PAGE_SIZE) {
154 		/*
155 		 * We need to set __GFP_NOWARN here since spl_kvmalloc is not
156 		 * only called by spl_kmem_alloc_impl but can be called
157 		 * directly with custom lflags, too. In that case
158 		 * kmem_flags_convert does not get called, which would
159 		 * implicitly set __GFP_NOWARN.
160 		 */
161 		kmalloc_lflags |= __GFP_NOWARN;
162 
163 		/*
164 		 * N.B. __GFP_RETRY_MAYFAIL is supported only for large
165 		 * e (>32kB) allocations.
166 		 *
167 		 * We have to override __GFP_RETRY_MAYFAIL by __GFP_NORETRY
168 		 * for !costly requests because there is no other way to tell
169 		 * the allocator that we want to fail rather than retry
170 		 * endlessly.
171 		 */
172 		if (!(kmalloc_lflags & __GFP_RETRY_MAYFAIL) ||
173 		    (size <= PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
174 			kmalloc_lflags |= __GFP_NORETRY;
175 		}
176 	}
177 
178 	/*
179 	 * We first try kmalloc - even for big sizes - and fall back to
180 	 * spl_vmalloc if that fails.
181 	 *
182 	 * For non-__GFP-RECLAIM allocations we always stick to
183 	 * kmalloc_node, and fail when kmalloc is not successful (returns
184 	 * NULL).
185 	 * We cannot fall back to spl_vmalloc in this case because spl_vmalloc
186 	 * internally uses GPF_KERNEL allocations.
187 	 */
188 	void *ptr = kmalloc_node(size, kmalloc_lflags, NUMA_NO_NODE);
189 	if (ptr || size <= PAGE_SIZE ||
190 	    (lflags & __GFP_RECLAIM) != __GFP_RECLAIM) {
191 		return (ptr);
192 	}
193 
194 	return (spl_vmalloc(size, lflags | __GFP_HIGHMEM));
195 }
196 
197 /*
198  * General purpose unified implementation of kmem_alloc(). It is an
199  * amalgamation of Linux and Illumos allocator design. It should never be
200  * exported to ensure that code using kmem_alloc()/kmem_zalloc() remains
201  * relatively portable.  Consumers may only access this function through
202  * wrappers that enforce the common flags to ensure portability.
203  */
204 inline void *
205 spl_kmem_alloc_impl(size_t size, int flags, int node)
206 {
207 	gfp_t lflags = kmem_flags_convert(flags);
208 	void *ptr;
209 
210 	/*
211 	 * Log abnormally large allocations and rate limit the console output.
212 	 * Allocations larger than spl_kmem_alloc_warn should be performed
213 	 * through the vmem_alloc()/vmem_zalloc() interfaces.
214 	 */
215 	if ((spl_kmem_alloc_warn > 0) && (size > spl_kmem_alloc_warn) &&
216 	    !(flags & KM_VMEM)) {
217 		printk(KERN_WARNING
218 		    "Large kmem_alloc(%lu, 0x%x), please file an issue at:\n"
219 		    "https://github.com/openzfs/zfs/issues/new\n",
220 		    (unsigned long)size, flags);
221 		dump_stack();
222 	}
223 
224 	/*
225 	 * Use a loop because kmalloc_node() can fail when GFP_KERNEL is used
226 	 * unlike kmem_alloc() with KM_SLEEP on Illumos.
227 	 */
228 	do {
229 		/*
230 		 * Calling kmalloc_node() when the size >= spl_kmem_alloc_max
231 		 * is unsafe.  This must fail for all for kmem_alloc() and
232 		 * kmem_zalloc() callers.
233 		 *
234 		 * For vmem_alloc() and vmem_zalloc() callers it is permissible
235 		 * to use spl_vmalloc().  However, in general use of
236 		 * spl_vmalloc() is strongly discouraged because a global lock
237 		 * must be acquired.  Contention on this lock can significantly
238 		 * impact performance so frequently manipulating the virtual
239 		 * address space is strongly discouraged.
240 		 */
241 		if (size > spl_kmem_alloc_max) {
242 			if (flags & KM_VMEM) {
243 				ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
244 			} else {
245 				return (NULL);
246 			}
247 		} else {
248 			/*
249 			 * We use kmalloc when doing kmem_alloc(KM_NOSLEEP),
250 			 * because kvmalloc/vmalloc may sleep.  We also use
251 			 * kmalloc on systems with limited kernel VA space (e.g.
252 			 * 32-bit), which have HIGHMEM.  Otherwise we use
253 			 * kvmalloc, which tries to get contiguous physical
254 			 * memory (fast, like kmalloc) and falls back on using
255 			 * virtual memory to stitch together pages (slow, like
256 			 * vmalloc).
257 			 */
258 #ifdef CONFIG_HIGHMEM
259 			if (flags & KM_VMEM) {
260 #else
261 			if ((flags & KM_VMEM) || !(flags & KM_NOSLEEP)) {
262 #endif
263 				ptr = spl_kvmalloc(size, lflags);
264 			} else {
265 				ptr = kmalloc_node(size, lflags, node);
266 			}
267 		}
268 
269 		if (likely(ptr) || (flags & KM_NOSLEEP))
270 			return (ptr);
271 
272 		/*
273 		 * Try hard to satisfy the allocation. However, when progress
274 		 * cannot be made, the allocation is allowed to fail.
275 		 */
276 		if ((lflags & GFP_KERNEL) == GFP_KERNEL)
277 			lflags |= __GFP_RETRY_MAYFAIL;
278 
279 		/*
280 		 * Use cond_resched() instead of congestion_wait() to avoid
281 		 * deadlocking systems where there are no block devices.
282 		 */
283 		cond_resched();
284 	} while (1);
285 
286 	return (NULL);
287 }
288 
289 inline void
290 spl_kmem_free_impl(const void *buf, size_t size)
291 {
292 	if (is_vmalloc_addr(buf))
293 		vfree(buf);
294 	else
295 		kfree(buf);
296 }
297 
298 /*
299  * Memory allocation and accounting for kmem_* * style allocations.  When
300  * DEBUG_KMEM is enabled the total memory allocated will be tracked and
301  * any memory leaked will be reported during module unload.
302  *
303  * ./configure --enable-debug-kmem
304  */
305 #ifdef DEBUG_KMEM
306 
307 /* Shim layer memory accounting */
308 #ifdef HAVE_ATOMIC64_T
309 atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
310 unsigned long long kmem_alloc_max = 0;
311 #else  /* HAVE_ATOMIC64_T */
312 atomic_t kmem_alloc_used = ATOMIC_INIT(0);
313 unsigned long long kmem_alloc_max = 0;
314 #endif /* HAVE_ATOMIC64_T */
315 
316 EXPORT_SYMBOL(kmem_alloc_used);
317 EXPORT_SYMBOL(kmem_alloc_max);
318 
319 inline void *
320 spl_kmem_alloc_debug(size_t size, int flags, int node)
321 {
322 	void *ptr;
323 
324 	ptr = spl_kmem_alloc_impl(size, flags, node);
325 	if (ptr) {
326 		kmem_alloc_used_add(size);
327 		if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
328 			kmem_alloc_max = kmem_alloc_used_read();
329 	}
330 
331 	return (ptr);
332 }
333 
334 inline void
335 spl_kmem_free_debug(const void *ptr, size_t size)
336 {
337 	kmem_alloc_used_sub(size);
338 	spl_kmem_free_impl(ptr, size);
339 }
340 
341 /*
342  * When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
343  * but also the location of every alloc and free.  When the SPL module is
344  * unloaded a list of all leaked addresses and where they were allocated
345  * will be dumped to the console.  Enabling this feature has a significant
346  * impact on performance but it makes finding memory leaks straight forward.
347  *
348  * Not surprisingly with debugging enabled the xmem_locks are very highly
349  * contended particularly on xfree().  If we want to run with this detailed
350  * debugging enabled for anything other than debugging  we need to minimize
351  * the contention by moving to a lock per xmem_table entry model.
352  *
353  * ./configure --enable-debug-kmem-tracking
354  */
355 #ifdef DEBUG_KMEM_TRACKING
356 
357 #include <linux/hash.h>
358 #include <linux/ctype.h>
359 
360 #define	KMEM_HASH_BITS		10
361 #define	KMEM_TABLE_SIZE		(1 << KMEM_HASH_BITS)
362 
363 typedef struct kmem_debug {
364 	struct hlist_node kd_hlist;	/* Hash node linkage */
365 	struct list_head kd_list;	/* List of all allocations */
366 	void *kd_addr;			/* Allocation pointer */
367 	size_t kd_size;			/* Allocation size */
368 	const char *kd_func;		/* Allocation function */
369 	int kd_line;			/* Allocation line */
370 } kmem_debug_t;
371 
372 static spinlock_t kmem_lock;
373 static struct hlist_head kmem_table[KMEM_TABLE_SIZE];
374 static struct list_head kmem_list;
375 
376 static kmem_debug_t *
377 kmem_del_init(spinlock_t *lock, struct hlist_head *table,
378     int bits, const void *addr)
379 {
380 	struct hlist_head *head;
381 	struct hlist_node *node = NULL;
382 	struct kmem_debug *p;
383 	unsigned long flags;
384 
385 	spin_lock_irqsave(lock, flags);
386 
387 	head = &table[hash_ptr((void *)addr, bits)];
388 	hlist_for_each(node, head) {
389 		p = list_entry(node, struct kmem_debug, kd_hlist);
390 		if (p->kd_addr == addr) {
391 			hlist_del_init(&p->kd_hlist);
392 			list_del_init(&p->kd_list);
393 			spin_unlock_irqrestore(lock, flags);
394 			return (p);
395 		}
396 	}
397 
398 	spin_unlock_irqrestore(lock, flags);
399 
400 	return (NULL);
401 }
402 
403 inline void *
404 spl_kmem_alloc_track(size_t size, int flags,
405     const char *func, int line, int node)
406 {
407 	void *ptr = NULL;
408 	kmem_debug_t *dptr;
409 	unsigned long irq_flags;
410 
411 	dptr = kmalloc(sizeof (kmem_debug_t), kmem_flags_convert(flags));
412 	if (dptr == NULL)
413 		return (NULL);
414 
415 	dptr->kd_func = __strdup(func, flags);
416 	if (dptr->kd_func == NULL) {
417 		kfree(dptr);
418 		return (NULL);
419 	}
420 
421 	ptr = spl_kmem_alloc_debug(size, flags, node);
422 	if (ptr == NULL) {
423 		kfree(dptr->kd_func);
424 		kfree(dptr);
425 		return (NULL);
426 	}
427 
428 	INIT_HLIST_NODE(&dptr->kd_hlist);
429 	INIT_LIST_HEAD(&dptr->kd_list);
430 
431 	dptr->kd_addr = ptr;
432 	dptr->kd_size = size;
433 	dptr->kd_line = line;
434 
435 	spin_lock_irqsave(&kmem_lock, irq_flags);
436 	hlist_add_head(&dptr->kd_hlist,
437 	    &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
438 	list_add_tail(&dptr->kd_list, &kmem_list);
439 	spin_unlock_irqrestore(&kmem_lock, irq_flags);
440 
441 	return (ptr);
442 }
443 
444 inline void
445 spl_kmem_free_track(const void *ptr, size_t size)
446 {
447 	kmem_debug_t *dptr;
448 
449 	/* Ignore NULL pointer since we haven't tracked it at all */
450 	if (ptr == NULL)
451 		return;
452 
453 	/* Must exist in hash due to kmem_alloc() */
454 	dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
455 	ASSERT3P(dptr, !=, NULL);
456 	ASSERT3S(dptr->kd_size, ==, size);
457 
458 	kfree(dptr->kd_func);
459 	kfree(dptr);
460 
461 	spl_kmem_free_debug(ptr, size);
462 }
463 #endif /* DEBUG_KMEM_TRACKING */
464 #endif /* DEBUG_KMEM */
465 
466 /*
467  * Public kmem_alloc(), kmem_zalloc() and kmem_free() interfaces.
468  */
469 void *
470 spl_kmem_alloc(size_t size, int flags, const char *func, int line)
471 {
472 	ASSERT0(flags & ~KM_PUBLIC_MASK);
473 
474 #if !defined(DEBUG_KMEM)
475 	return (spl_kmem_alloc_impl(size, flags, NUMA_NO_NODE));
476 #elif !defined(DEBUG_KMEM_TRACKING)
477 	return (spl_kmem_alloc_debug(size, flags, NUMA_NO_NODE));
478 #else
479 	return (spl_kmem_alloc_track(size, flags, func, line, NUMA_NO_NODE));
480 #endif
481 }
482 EXPORT_SYMBOL(spl_kmem_alloc);
483 
484 void *
485 spl_kmem_zalloc(size_t size, int flags, const char *func, int line)
486 {
487 	ASSERT0(flags & ~KM_PUBLIC_MASK);
488 
489 	flags |= KM_ZERO;
490 
491 #if !defined(DEBUG_KMEM)
492 	return (spl_kmem_alloc_impl(size, flags, NUMA_NO_NODE));
493 #elif !defined(DEBUG_KMEM_TRACKING)
494 	return (spl_kmem_alloc_debug(size, flags, NUMA_NO_NODE));
495 #else
496 	return (spl_kmem_alloc_track(size, flags, func, line, NUMA_NO_NODE));
497 #endif
498 }
499 EXPORT_SYMBOL(spl_kmem_zalloc);
500 
501 void
502 spl_kmem_free(const void *buf, size_t size)
503 {
504 #if !defined(DEBUG_KMEM)
505 	return (spl_kmem_free_impl(buf, size));
506 #elif !defined(DEBUG_KMEM_TRACKING)
507 	return (spl_kmem_free_debug(buf, size));
508 #else
509 	return (spl_kmem_free_track(buf, size));
510 #endif
511 }
512 EXPORT_SYMBOL(spl_kmem_free);
513 
514 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
515 static char *
516 spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
517 {
518 	int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
519 	int i, flag = 1;
520 
521 	ASSERT(str != NULL && len >= 17);
522 	memset(str, 0, len);
523 
524 	/*
525 	 * Check for a fully printable string, and while we are at
526 	 * it place the printable characters in the passed buffer.
527 	 */
528 	for (i = 0; i < size; i++) {
529 		str[i] = ((char *)(kd->kd_addr))[i];
530 		if (isprint(str[i])) {
531 			continue;
532 		} else {
533 			/*
534 			 * Minimum number of printable characters found
535 			 * to make it worthwhile to print this as ascii.
536 			 */
537 			if (i > min)
538 				break;
539 
540 			flag = 0;
541 			break;
542 		}
543 	}
544 
545 	if (!flag) {
546 		sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
547 		    *((uint8_t *)kd->kd_addr),
548 		    *((uint8_t *)kd->kd_addr + 2),
549 		    *((uint8_t *)kd->kd_addr + 4),
550 		    *((uint8_t *)kd->kd_addr + 6),
551 		    *((uint8_t *)kd->kd_addr + 8),
552 		    *((uint8_t *)kd->kd_addr + 10),
553 		    *((uint8_t *)kd->kd_addr + 12),
554 		    *((uint8_t *)kd->kd_addr + 14));
555 	}
556 
557 	return (str);
558 }
559 
560 static int
561 spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
562 {
563 	int i;
564 
565 	spin_lock_init(lock);
566 	INIT_LIST_HEAD(list);
567 
568 	for (i = 0; i < size; i++)
569 		INIT_HLIST_HEAD(&kmem_table[i]);
570 
571 	return (0);
572 }
573 
574 static void
575 spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
576 {
577 	unsigned long flags;
578 	kmem_debug_t *kd = NULL;
579 	char str[17];
580 
581 	spin_lock_irqsave(lock, flags);
582 	if (!list_empty(list))
583 		printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
584 		    "size", "data", "func", "line");
585 
586 	list_for_each_entry(kd, list, kd_list) {
587 		printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
588 		    (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
589 		    kd->kd_func, kd->kd_line);
590 	}
591 
592 	spin_unlock_irqrestore(lock, flags);
593 }
594 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
595 
596 int
597 spl_kmem_init(void)
598 {
599 
600 #ifdef DEBUG_KMEM
601 	kmem_alloc_used_set(0);
602 
603 
604 
605 #ifdef DEBUG_KMEM_TRACKING
606 	spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
607 #endif /* DEBUG_KMEM_TRACKING */
608 #endif /* DEBUG_KMEM */
609 
610 	return (0);
611 }
612 
613 void
614 spl_kmem_fini(void)
615 {
616 #ifdef DEBUG_KMEM
617 	/*
618 	 * Display all unreclaimed memory addresses, including the
619 	 * allocation size and the first few bytes of what's located
620 	 * at that address to aid in debugging.  Performance is not
621 	 * a serious concern here since it is module unload time.
622 	 */
623 	if (kmem_alloc_used_read() != 0)
624 		printk(KERN_WARNING "kmem leaked %ld/%llu bytes\n",
625 		    (unsigned long)kmem_alloc_used_read(), kmem_alloc_max);
626 
627 #ifdef DEBUG_KMEM_TRACKING
628 	spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
629 #endif /* DEBUG_KMEM_TRACKING */
630 #endif /* DEBUG_KMEM */
631 }
632