xref: /freebsd/sys/contrib/openzfs/module/os/linux/spl/spl-kmem.c (revision 184c1b943937986c81e1996d999d21626ec7a4ff)
1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *
10  *  The SPL is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or (at your
13  *  option) any later version.
14  *
15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include <sys/debug.h>
25 #include <sys/sysmacros.h>
26 #include <sys/kmem.h>
27 #include <sys/vmem.h>
28 
29 /*
30  * As a general rule kmem_alloc() allocations should be small, preferably
31  * just a few pages since they must by physically contiguous.  Therefore, a
32  * rate limited warning will be printed to the console for any kmem_alloc()
33  * which exceeds a reasonable threshold.
34  *
35  * The default warning threshold is set to sixteen pages but capped at 64K to
36  * accommodate systems using large pages.  This value was selected to be small
37  * enough to ensure the largest allocations are quickly noticed and fixed.
38  * But large enough to avoid logging any warnings when a allocation size is
39  * larger than optimal but not a serious concern.  Since this value is tunable,
40  * developers are encouraged to set it lower when testing so any new largish
41  * allocations are quickly caught.  These warnings may be disabled by setting
42  * the threshold to zero.
43  */
44 /* BEGIN CSTYLED */
45 unsigned int spl_kmem_alloc_warn = MIN(16 * PAGE_SIZE, 64 * 1024);
46 module_param(spl_kmem_alloc_warn, uint, 0644);
47 MODULE_PARM_DESC(spl_kmem_alloc_warn,
48 	"Warning threshold in bytes for a kmem_alloc()");
49 EXPORT_SYMBOL(spl_kmem_alloc_warn);
50 
51 /*
52  * Large kmem_alloc() allocations will fail if they exceed KMALLOC_MAX_SIZE.
53  * Allocations which are marginally smaller than this limit may succeed but
54  * should still be avoided due to the expense of locating a contiguous range
55  * of free pages.  Therefore, a maximum kmem size with reasonable safely
56  * margin of 4x is set.  Kmem_alloc() allocations larger than this maximum
57  * will quickly fail.  Vmem_alloc() allocations less than or equal to this
58  * value will use kmalloc(), but shift to vmalloc() when exceeding this value.
59  */
60 unsigned int spl_kmem_alloc_max = (KMALLOC_MAX_SIZE >> 2);
61 module_param(spl_kmem_alloc_max, uint, 0644);
62 MODULE_PARM_DESC(spl_kmem_alloc_max,
63 	"Maximum size in bytes for a kmem_alloc()");
64 EXPORT_SYMBOL(spl_kmem_alloc_max);
65 /* END CSTYLED */
66 
67 int
68 kmem_debugging(void)
69 {
70 	return (0);
71 }
72 EXPORT_SYMBOL(kmem_debugging);
73 
74 char *
75 kmem_vasprintf(const char *fmt, va_list ap)
76 {
77 	va_list aq;
78 	char *ptr;
79 
80 	do {
81 		va_copy(aq, ap);
82 		ptr = kvasprintf(kmem_flags_convert(KM_SLEEP), fmt, aq);
83 		va_end(aq);
84 	} while (ptr == NULL);
85 
86 	return (ptr);
87 }
88 EXPORT_SYMBOL(kmem_vasprintf);
89 
90 char *
91 kmem_asprintf(const char *fmt, ...)
92 {
93 	va_list ap;
94 	char *ptr;
95 
96 	do {
97 		va_start(ap, fmt);
98 		ptr = kvasprintf(kmem_flags_convert(KM_SLEEP), fmt, ap);
99 		va_end(ap);
100 	} while (ptr == NULL);
101 
102 	return (ptr);
103 }
104 EXPORT_SYMBOL(kmem_asprintf);
105 
106 static char *
107 __strdup(const char *str, int flags)
108 {
109 	char *ptr;
110 	int n;
111 
112 	n = strlen(str);
113 	ptr = kmalloc(n + 1, kmem_flags_convert(flags));
114 	if (ptr)
115 		memcpy(ptr, str, n + 1);
116 
117 	return (ptr);
118 }
119 
120 char *
121 kmem_strdup(const char *str)
122 {
123 	return (__strdup(str, KM_SLEEP));
124 }
125 EXPORT_SYMBOL(kmem_strdup);
126 
127 void
128 kmem_strfree(char *str)
129 {
130 	kfree(str);
131 }
132 EXPORT_SYMBOL(kmem_strfree);
133 
134 void *
135 spl_kvmalloc(size_t size, gfp_t lflags)
136 {
137 #ifdef HAVE_KVMALLOC
138 	/*
139 	 * GFP_KERNEL allocations can safely use kvmalloc which may
140 	 * improve performance by avoiding a) high latency caused by
141 	 * vmalloc's on-access allocation, b) performance loss due to
142 	 * MMU memory address mapping and c) vmalloc locking overhead.
143 	 * This has the side-effect that the slab statistics will
144 	 * incorrectly report this as a vmem allocation, but that is
145 	 * purely cosmetic.
146 	 */
147 	if ((lflags & GFP_KERNEL) == GFP_KERNEL)
148 		return (kvmalloc(size, lflags));
149 #endif
150 
151 	gfp_t kmalloc_lflags = lflags;
152 
153 	if (size > PAGE_SIZE) {
154 		/*
155 		 * We need to set __GFP_NOWARN here since spl_kvmalloc is not
156 		 * only called by spl_kmem_alloc_impl but can be called
157 		 * directly with custom lflags, too. In that case
158 		 * kmem_flags_convert does not get called, which would
159 		 * implicitly set __GFP_NOWARN.
160 		 */
161 		kmalloc_lflags |= __GFP_NOWARN;
162 
163 		/*
164 		 * N.B. __GFP_RETRY_MAYFAIL is supported only for large
165 		 * e (>32kB) allocations.
166 		 *
167 		 * We have to override __GFP_RETRY_MAYFAIL by __GFP_NORETRY
168 		 * for !costly requests because there is no other way to tell
169 		 * the allocator that we want to fail rather than retry
170 		 * endlessly.
171 		 */
172 		if (!(kmalloc_lflags & __GFP_RETRY_MAYFAIL) ||
173 		    (size <= PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
174 			kmalloc_lflags |= __GFP_NORETRY;
175 		}
176 	}
177 
178 	/*
179 	 * We first try kmalloc - even for big sizes - and fall back to
180 	 * spl_vmalloc if that fails.
181 	 *
182 	 * For non-__GFP-RECLAIM allocations we always stick to
183 	 * kmalloc_node, and fail when kmalloc is not successful (returns
184 	 * NULL).
185 	 * We cannot fall back to spl_vmalloc in this case because spl_vmalloc
186 	 * internally uses GPF_KERNEL allocations.
187 	 */
188 	void *ptr = kmalloc_node(size, kmalloc_lflags, NUMA_NO_NODE);
189 	if (ptr || size <= PAGE_SIZE ||
190 	    (lflags & __GFP_RECLAIM) != __GFP_RECLAIM) {
191 		return (ptr);
192 	}
193 
194 	return (spl_vmalloc(size, lflags | __GFP_HIGHMEM));
195 }
196 
197 /*
198  * General purpose unified implementation of kmem_alloc(). It is an
199  * amalgamation of Linux and Illumos allocator design. It should never be
200  * exported to ensure that code using kmem_alloc()/kmem_zalloc() remains
201  * relatively portable.  Consumers may only access this function through
202  * wrappers that enforce the common flags to ensure portability.
203  */
204 inline void *
205 spl_kmem_alloc_impl(size_t size, int flags, int node)
206 {
207 	gfp_t lflags = kmem_flags_convert(flags);
208 	void *ptr;
209 
210 	/*
211 	 * Log abnormally large allocations and rate limit the console output.
212 	 * Allocations larger than spl_kmem_alloc_warn should be performed
213 	 * through the vmem_alloc()/vmem_zalloc() interfaces.
214 	 */
215 	if ((spl_kmem_alloc_warn > 0) && (size > spl_kmem_alloc_warn) &&
216 	    !(flags & KM_VMEM)) {
217 		printk(KERN_WARNING
218 		    "Large kmem_alloc(%lu, 0x%x), please file an issue at:\n"
219 		    "https://github.com/openzfs/zfs/issues/new\n",
220 		    (unsigned long)size, flags);
221 		dump_stack();
222 	}
223 
224 	/*
225 	 * Use a loop because kmalloc_node() can fail when GFP_KERNEL is used
226 	 * unlike kmem_alloc() with KM_SLEEP on Illumos.
227 	 */
228 	do {
229 		/*
230 		 * Calling kmalloc_node() when the size >= spl_kmem_alloc_max
231 		 * is unsafe.  This must fail for all for kmem_alloc() and
232 		 * kmem_zalloc() callers.
233 		 *
234 		 * For vmem_alloc() and vmem_zalloc() callers it is permissible
235 		 * to use spl_vmalloc().  However, in general use of
236 		 * spl_vmalloc() is strongly discouraged because a global lock
237 		 * must be acquired.  Contention on this lock can significantly
238 		 * impact performance so frequently manipulating the virtual
239 		 * address space is strongly discouraged.
240 		 */
241 		if (size > spl_kmem_alloc_max) {
242 			if (flags & KM_VMEM) {
243 				ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
244 			} else {
245 				return (NULL);
246 			}
247 		} else {
248 			if (flags & KM_VMEM) {
249 				ptr = spl_kvmalloc(size, lflags);
250 			} else {
251 				ptr = kmalloc_node(size, lflags, node);
252 			}
253 		}
254 
255 		if (likely(ptr) || (flags & KM_NOSLEEP))
256 			return (ptr);
257 
258 		/*
259 		 * Try hard to satisfy the allocation. However, when progress
260 		 * cannot be made, the allocation is allowed to fail.
261 		 */
262 		if ((lflags & GFP_KERNEL) == GFP_KERNEL)
263 			lflags |= __GFP_RETRY_MAYFAIL;
264 
265 		/*
266 		 * Use cond_resched() instead of congestion_wait() to avoid
267 		 * deadlocking systems where there are no block devices.
268 		 */
269 		cond_resched();
270 	} while (1);
271 
272 	return (NULL);
273 }
274 
275 inline void
276 spl_kmem_free_impl(const void *buf, size_t size)
277 {
278 	if (is_vmalloc_addr(buf))
279 		vfree(buf);
280 	else
281 		kfree(buf);
282 }
283 
284 /*
285  * Memory allocation and accounting for kmem_* * style allocations.  When
286  * DEBUG_KMEM is enabled the total memory allocated will be tracked and
287  * any memory leaked will be reported during module unload.
288  *
289  * ./configure --enable-debug-kmem
290  */
291 #ifdef DEBUG_KMEM
292 
293 /* Shim layer memory accounting */
294 #ifdef HAVE_ATOMIC64_T
295 atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
296 unsigned long long kmem_alloc_max = 0;
297 #else  /* HAVE_ATOMIC64_T */
298 atomic_t kmem_alloc_used = ATOMIC_INIT(0);
299 unsigned long long kmem_alloc_max = 0;
300 #endif /* HAVE_ATOMIC64_T */
301 
302 EXPORT_SYMBOL(kmem_alloc_used);
303 EXPORT_SYMBOL(kmem_alloc_max);
304 
305 inline void *
306 spl_kmem_alloc_debug(size_t size, int flags, int node)
307 {
308 	void *ptr;
309 
310 	ptr = spl_kmem_alloc_impl(size, flags, node);
311 	if (ptr) {
312 		kmem_alloc_used_add(size);
313 		if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
314 			kmem_alloc_max = kmem_alloc_used_read();
315 	}
316 
317 	return (ptr);
318 }
319 
320 inline void
321 spl_kmem_free_debug(const void *ptr, size_t size)
322 {
323 	kmem_alloc_used_sub(size);
324 	spl_kmem_free_impl(ptr, size);
325 }
326 
327 /*
328  * When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
329  * but also the location of every alloc and free.  When the SPL module is
330  * unloaded a list of all leaked addresses and where they were allocated
331  * will be dumped to the console.  Enabling this feature has a significant
332  * impact on performance but it makes finding memory leaks straight forward.
333  *
334  * Not surprisingly with debugging enabled the xmem_locks are very highly
335  * contended particularly on xfree().  If we want to run with this detailed
336  * debugging enabled for anything other than debugging  we need to minimize
337  * the contention by moving to a lock per xmem_table entry model.
338  *
339  * ./configure --enable-debug-kmem-tracking
340  */
341 #ifdef DEBUG_KMEM_TRACKING
342 
343 #include <linux/hash.h>
344 #include <linux/ctype.h>
345 
346 #define	KMEM_HASH_BITS		10
347 #define	KMEM_TABLE_SIZE		(1 << KMEM_HASH_BITS)
348 
349 typedef struct kmem_debug {
350 	struct hlist_node kd_hlist;	/* Hash node linkage */
351 	struct list_head kd_list;	/* List of all allocations */
352 	void *kd_addr;			/* Allocation pointer */
353 	size_t kd_size;			/* Allocation size */
354 	const char *kd_func;		/* Allocation function */
355 	int kd_line;			/* Allocation line */
356 } kmem_debug_t;
357 
358 static spinlock_t kmem_lock;
359 static struct hlist_head kmem_table[KMEM_TABLE_SIZE];
360 static struct list_head kmem_list;
361 
362 static kmem_debug_t *
363 kmem_del_init(spinlock_t *lock, struct hlist_head *table,
364     int bits, const void *addr)
365 {
366 	struct hlist_head *head;
367 	struct hlist_node *node = NULL;
368 	struct kmem_debug *p;
369 	unsigned long flags;
370 
371 	spin_lock_irqsave(lock, flags);
372 
373 	head = &table[hash_ptr((void *)addr, bits)];
374 	hlist_for_each(node, head) {
375 		p = list_entry(node, struct kmem_debug, kd_hlist);
376 		if (p->kd_addr == addr) {
377 			hlist_del_init(&p->kd_hlist);
378 			list_del_init(&p->kd_list);
379 			spin_unlock_irqrestore(lock, flags);
380 			return (p);
381 		}
382 	}
383 
384 	spin_unlock_irqrestore(lock, flags);
385 
386 	return (NULL);
387 }
388 
389 inline void *
390 spl_kmem_alloc_track(size_t size, int flags,
391     const char *func, int line, int node)
392 {
393 	void *ptr = NULL;
394 	kmem_debug_t *dptr;
395 	unsigned long irq_flags;
396 
397 	dptr = kmalloc(sizeof (kmem_debug_t), kmem_flags_convert(flags));
398 	if (dptr == NULL)
399 		return (NULL);
400 
401 	dptr->kd_func = __strdup(func, flags);
402 	if (dptr->kd_func == NULL) {
403 		kfree(dptr);
404 		return (NULL);
405 	}
406 
407 	ptr = spl_kmem_alloc_debug(size, flags, node);
408 	if (ptr == NULL) {
409 		kfree(dptr->kd_func);
410 		kfree(dptr);
411 		return (NULL);
412 	}
413 
414 	INIT_HLIST_NODE(&dptr->kd_hlist);
415 	INIT_LIST_HEAD(&dptr->kd_list);
416 
417 	dptr->kd_addr = ptr;
418 	dptr->kd_size = size;
419 	dptr->kd_line = line;
420 
421 	spin_lock_irqsave(&kmem_lock, irq_flags);
422 	hlist_add_head(&dptr->kd_hlist,
423 	    &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
424 	list_add_tail(&dptr->kd_list, &kmem_list);
425 	spin_unlock_irqrestore(&kmem_lock, irq_flags);
426 
427 	return (ptr);
428 }
429 
430 inline void
431 spl_kmem_free_track(const void *ptr, size_t size)
432 {
433 	kmem_debug_t *dptr;
434 
435 	/* Ignore NULL pointer since we haven't tracked it at all */
436 	if (ptr == NULL)
437 		return;
438 
439 	/* Must exist in hash due to kmem_alloc() */
440 	dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
441 	ASSERT3P(dptr, !=, NULL);
442 	ASSERT3S(dptr->kd_size, ==, size);
443 
444 	kfree(dptr->kd_func);
445 	kfree(dptr);
446 
447 	spl_kmem_free_debug(ptr, size);
448 }
449 #endif /* DEBUG_KMEM_TRACKING */
450 #endif /* DEBUG_KMEM */
451 
452 /*
453  * Public kmem_alloc(), kmem_zalloc() and kmem_free() interfaces.
454  */
455 void *
456 spl_kmem_alloc(size_t size, int flags, const char *func, int line)
457 {
458 	ASSERT0(flags & ~KM_PUBLIC_MASK);
459 
460 #if !defined(DEBUG_KMEM)
461 	return (spl_kmem_alloc_impl(size, flags, NUMA_NO_NODE));
462 #elif !defined(DEBUG_KMEM_TRACKING)
463 	return (spl_kmem_alloc_debug(size, flags, NUMA_NO_NODE));
464 #else
465 	return (spl_kmem_alloc_track(size, flags, func, line, NUMA_NO_NODE));
466 #endif
467 }
468 EXPORT_SYMBOL(spl_kmem_alloc);
469 
470 void *
471 spl_kmem_zalloc(size_t size, int flags, const char *func, int line)
472 {
473 	ASSERT0(flags & ~KM_PUBLIC_MASK);
474 
475 	flags |= KM_ZERO;
476 
477 #if !defined(DEBUG_KMEM)
478 	return (spl_kmem_alloc_impl(size, flags, NUMA_NO_NODE));
479 #elif !defined(DEBUG_KMEM_TRACKING)
480 	return (spl_kmem_alloc_debug(size, flags, NUMA_NO_NODE));
481 #else
482 	return (spl_kmem_alloc_track(size, flags, func, line, NUMA_NO_NODE));
483 #endif
484 }
485 EXPORT_SYMBOL(spl_kmem_zalloc);
486 
487 void
488 spl_kmem_free(const void *buf, size_t size)
489 {
490 #if !defined(DEBUG_KMEM)
491 	return (spl_kmem_free_impl(buf, size));
492 #elif !defined(DEBUG_KMEM_TRACKING)
493 	return (spl_kmem_free_debug(buf, size));
494 #else
495 	return (spl_kmem_free_track(buf, size));
496 #endif
497 }
498 EXPORT_SYMBOL(spl_kmem_free);
499 
500 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
501 static char *
502 spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
503 {
504 	int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
505 	int i, flag = 1;
506 
507 	ASSERT(str != NULL && len >= 17);
508 	memset(str, 0, len);
509 
510 	/*
511 	 * Check for a fully printable string, and while we are at
512 	 * it place the printable characters in the passed buffer.
513 	 */
514 	for (i = 0; i < size; i++) {
515 		str[i] = ((char *)(kd->kd_addr))[i];
516 		if (isprint(str[i])) {
517 			continue;
518 		} else {
519 			/*
520 			 * Minimum number of printable characters found
521 			 * to make it worthwhile to print this as ascii.
522 			 */
523 			if (i > min)
524 				break;
525 
526 			flag = 0;
527 			break;
528 		}
529 	}
530 
531 	if (!flag) {
532 		sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
533 		    *((uint8_t *)kd->kd_addr),
534 		    *((uint8_t *)kd->kd_addr + 2),
535 		    *((uint8_t *)kd->kd_addr + 4),
536 		    *((uint8_t *)kd->kd_addr + 6),
537 		    *((uint8_t *)kd->kd_addr + 8),
538 		    *((uint8_t *)kd->kd_addr + 10),
539 		    *((uint8_t *)kd->kd_addr + 12),
540 		    *((uint8_t *)kd->kd_addr + 14));
541 	}
542 
543 	return (str);
544 }
545 
546 static int
547 spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
548 {
549 	int i;
550 
551 	spin_lock_init(lock);
552 	INIT_LIST_HEAD(list);
553 
554 	for (i = 0; i < size; i++)
555 		INIT_HLIST_HEAD(&kmem_table[i]);
556 
557 	return (0);
558 }
559 
560 static void
561 spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
562 {
563 	unsigned long flags;
564 	kmem_debug_t *kd = NULL;
565 	char str[17];
566 
567 	spin_lock_irqsave(lock, flags);
568 	if (!list_empty(list))
569 		printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
570 		    "size", "data", "func", "line");
571 
572 	list_for_each_entry(kd, list, kd_list) {
573 		printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
574 		    (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
575 		    kd->kd_func, kd->kd_line);
576 	}
577 
578 	spin_unlock_irqrestore(lock, flags);
579 }
580 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
581 
582 int
583 spl_kmem_init(void)
584 {
585 
586 #ifdef DEBUG_KMEM
587 	kmem_alloc_used_set(0);
588 
589 
590 
591 #ifdef DEBUG_KMEM_TRACKING
592 	spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
593 #endif /* DEBUG_KMEM_TRACKING */
594 #endif /* DEBUG_KMEM */
595 
596 	return (0);
597 }
598 
599 void
600 spl_kmem_fini(void)
601 {
602 #ifdef DEBUG_KMEM
603 	/*
604 	 * Display all unreclaimed memory addresses, including the
605 	 * allocation size and the first few bytes of what's located
606 	 * at that address to aid in debugging.  Performance is not
607 	 * a serious concern here since it is module unload time.
608 	 */
609 	if (kmem_alloc_used_read() != 0)
610 		printk(KERN_WARNING "kmem leaked %ld/%llu bytes\n",
611 		    (unsigned long)kmem_alloc_used_read(), kmem_alloc_max);
612 
613 #ifdef DEBUG_KMEM_TRACKING
614 	spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
615 #endif /* DEBUG_KMEM_TRACKING */
616 #endif /* DEBUG_KMEM */
617 }
618