xref: /freebsd/sys/contrib/openzfs/module/os/linux/spl/spl-kmem-cache.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *
10  *  The SPL is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or (at your
13  *  option) any later version.
14  *
15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include <linux/percpu_compat.h>
25 #include <sys/kmem.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
29 #include <sys/vmem.h>
30 #include <sys/wait.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/prefetch.h>
34 
35 /*
36  * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37  * are removed to allow access to the real Linux slab allocator.
38  */
39 #undef kmem_cache_destroy
40 #undef kmem_cache_create
41 #undef kmem_cache_alloc
42 #undef kmem_cache_free
43 
44 
45 /*
46  * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
47  * with smp_mb__{before,after}_atomic() because they were redundant. This is
48  * only used inside our SLAB allocator, so we implement an internal wrapper
49  * here to give us smp_mb__{before,after}_atomic() on older kernels.
50  */
51 #ifndef smp_mb__before_atomic
52 #define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
53 #endif
54 
55 #ifndef smp_mb__after_atomic
56 #define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
57 #endif
58 
59 /* BEGIN CSTYLED */
60 
61 /*
62  * Cache magazines are an optimization designed to minimize the cost of
63  * allocating memory.  They do this by keeping a per-cpu cache of recently
64  * freed objects, which can then be reallocated without taking a lock. This
65  * can improve performance on highly contended caches.  However, because
66  * objects in magazines will prevent otherwise empty slabs from being
67  * immediately released this may not be ideal for low memory machines.
68  *
69  * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
70  * magazine size.  When this value is set to 0 the magazine size will be
71  * automatically determined based on the object size.  Otherwise magazines
72  * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
73  * may never be entirely disabled in this implementation.
74  */
75 unsigned int spl_kmem_cache_magazine_size = 0;
76 module_param(spl_kmem_cache_magazine_size, uint, 0444);
77 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
78 	"Default magazine size (2-256), set automatically (0)");
79 
80 /*
81  * The default behavior is to report the number of objects remaining in the
82  * cache.  This allows the Linux VM to repeatedly reclaim objects from the
83  * cache when memory is low satisfy other memory allocations.  Alternately,
84  * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
85  * is reclaimed.  This may increase the likelihood of out of memory events.
86  */
87 unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
88 module_param(spl_kmem_cache_reclaim, uint, 0644);
89 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
90 
91 unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
92 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
93 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
94 
95 unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
96 module_param(spl_kmem_cache_max_size, uint, 0644);
97 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
98 
99 /*
100  * For small objects the Linux slab allocator should be used to make the most
101  * efficient use of the memory.  However, large objects are not supported by
102  * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
103  * of 16K was determined to be optimal for architectures using 4K pages.
104  */
105 #if PAGE_SIZE == 4096
106 unsigned int spl_kmem_cache_slab_limit = 16384;
107 #else
108 unsigned int spl_kmem_cache_slab_limit = 0;
109 #endif
110 module_param(spl_kmem_cache_slab_limit, uint, 0644);
111 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
112 	"Objects less than N bytes use the Linux slab");
113 
114 /*
115  * The number of threads available to allocate new slabs for caches.  This
116  * should not need to be tuned but it is available for performance analysis.
117  */
118 unsigned int spl_kmem_cache_kmem_threads = 4;
119 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
120 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
121 	"Number of spl_kmem_cache threads");
122 /* END CSTYLED */
123 
124 /*
125  * Slab allocation interfaces
126  *
127  * While the Linux slab implementation was inspired by the Solaris
128  * implementation I cannot use it to emulate the Solaris APIs.  I
129  * require two features which are not provided by the Linux slab.
130  *
131  * 1) Constructors AND destructors.  Recent versions of the Linux
132  *    kernel have removed support for destructors.  This is a deal
133  *    breaker for the SPL which contains particularly expensive
134  *    initializers for mutex's, condition variables, etc.  We also
135  *    require a minimal level of cleanup for these data types unlike
136  *    many Linux data types which do need to be explicitly destroyed.
137  *
138  * 2) Virtual address space backed slab.  Callers of the Solaris slab
139  *    expect it to work well for both small are very large allocations.
140  *    Because of memory fragmentation the Linux slab which is backed
141  *    by kmalloc'ed memory performs very badly when confronted with
142  *    large numbers of large allocations.  Basing the slab on the
143  *    virtual address space removes the need for contiguous pages
144  *    and greatly improve performance for large allocations.
145  *
146  * For these reasons, the SPL has its own slab implementation with
147  * the needed features.  It is not as highly optimized as either the
148  * Solaris or Linux slabs, but it should get me most of what is
149  * needed until it can be optimized or obsoleted by another approach.
150  *
151  * One serious concern I do have about this method is the relatively
152  * small virtual address space on 32bit arches.  This will seriously
153  * constrain the size of the slab caches and their performance.
154  */
155 
156 struct list_head spl_kmem_cache_list;   /* List of caches */
157 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
158 taskq_t *spl_kmem_cache_taskq;		/* Task queue for aging / reclaim */
159 
160 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
161 
162 static void *
163 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
164 {
165 	gfp_t lflags = kmem_flags_convert(flags);
166 	void *ptr;
167 
168 	ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
169 
170 	/* Resulting allocated memory will be page aligned */
171 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
172 
173 	return (ptr);
174 }
175 
176 static void
177 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
178 {
179 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
180 
181 	/*
182 	 * The Linux direct reclaim path uses this out of band value to
183 	 * determine if forward progress is being made.  Normally this is
184 	 * incremented by kmem_freepages() which is part of the various
185 	 * Linux slab implementations.  However, since we are using none
186 	 * of that infrastructure we are responsible for incrementing it.
187 	 */
188 	if (current->reclaim_state)
189 		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
190 
191 	vfree(ptr);
192 }
193 
194 /*
195  * Required space for each aligned sks.
196  */
197 static inline uint32_t
198 spl_sks_size(spl_kmem_cache_t *skc)
199 {
200 	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
201 	    skc->skc_obj_align, uint32_t));
202 }
203 
204 /*
205  * Required space for each aligned object.
206  */
207 static inline uint32_t
208 spl_obj_size(spl_kmem_cache_t *skc)
209 {
210 	uint32_t align = skc->skc_obj_align;
211 
212 	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
213 	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
214 }
215 
216 uint64_t
217 spl_kmem_cache_inuse(kmem_cache_t *cache)
218 {
219 	return (cache->skc_obj_total);
220 }
221 EXPORT_SYMBOL(spl_kmem_cache_inuse);
222 
223 uint64_t
224 spl_kmem_cache_entry_size(kmem_cache_t *cache)
225 {
226 	return (cache->skc_obj_size);
227 }
228 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
229 
230 /*
231  * Lookup the spl_kmem_object_t for an object given that object.
232  */
233 static inline spl_kmem_obj_t *
234 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
235 {
236 	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
237 	    skc->skc_obj_align, uint32_t));
238 }
239 
240 /*
241  * It's important that we pack the spl_kmem_obj_t structure and the
242  * actual objects in to one large address space to minimize the number
243  * of calls to the allocator.  It is far better to do a few large
244  * allocations and then subdivide it ourselves.  Now which allocator
245  * we use requires balancing a few trade offs.
246  *
247  * For small objects we use kmem_alloc() because as long as you are
248  * only requesting a small number of pages (ideally just one) its cheap.
249  * However, when you start requesting multiple pages with kmem_alloc()
250  * it gets increasingly expensive since it requires contiguous pages.
251  * For this reason we shift to vmem_alloc() for slabs of large objects
252  * which removes the need for contiguous pages.  We do not use
253  * vmem_alloc() in all cases because there is significant locking
254  * overhead in __get_vm_area_node().  This function takes a single
255  * global lock when acquiring an available virtual address range which
256  * serializes all vmem_alloc()'s for all slab caches.  Using slightly
257  * different allocation functions for small and large objects should
258  * give us the best of both worlds.
259  *
260  * +------------------------+
261  * | spl_kmem_slab_t --+-+  |
262  * | skc_obj_size    <-+ |  |
263  * | spl_kmem_obj_t      |  |
264  * | skc_obj_size    <---+  |
265  * | spl_kmem_obj_t      |  |
266  * | ...                 v  |
267  * +------------------------+
268  */
269 static spl_kmem_slab_t *
270 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
271 {
272 	spl_kmem_slab_t *sks;
273 	void *base;
274 	uint32_t obj_size;
275 
276 	base = kv_alloc(skc, skc->skc_slab_size, flags);
277 	if (base == NULL)
278 		return (NULL);
279 
280 	sks = (spl_kmem_slab_t *)base;
281 	sks->sks_magic = SKS_MAGIC;
282 	sks->sks_objs = skc->skc_slab_objs;
283 	sks->sks_age = jiffies;
284 	sks->sks_cache = skc;
285 	INIT_LIST_HEAD(&sks->sks_list);
286 	INIT_LIST_HEAD(&sks->sks_free_list);
287 	sks->sks_ref = 0;
288 	obj_size = spl_obj_size(skc);
289 
290 	for (int i = 0; i < sks->sks_objs; i++) {
291 		void *obj = base + spl_sks_size(skc) + (i * obj_size);
292 
293 		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
294 		spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
295 		sko->sko_addr = obj;
296 		sko->sko_magic = SKO_MAGIC;
297 		sko->sko_slab = sks;
298 		INIT_LIST_HEAD(&sko->sko_list);
299 		list_add_tail(&sko->sko_list, &sks->sks_free_list);
300 	}
301 
302 	return (sks);
303 }
304 
305 /*
306  * Remove a slab from complete or partial list, it must be called with
307  * the 'skc->skc_lock' held but the actual free must be performed
308  * outside the lock to prevent deadlocking on vmem addresses.
309  */
310 static void
311 spl_slab_free(spl_kmem_slab_t *sks,
312     struct list_head *sks_list, struct list_head *sko_list)
313 {
314 	spl_kmem_cache_t *skc;
315 
316 	ASSERT(sks->sks_magic == SKS_MAGIC);
317 	ASSERT(sks->sks_ref == 0);
318 
319 	skc = sks->sks_cache;
320 	ASSERT(skc->skc_magic == SKC_MAGIC);
321 
322 	/*
323 	 * Update slab/objects counters in the cache, then remove the
324 	 * slab from the skc->skc_partial_list.  Finally add the slab
325 	 * and all its objects in to the private work lists where the
326 	 * destructors will be called and the memory freed to the system.
327 	 */
328 	skc->skc_obj_total -= sks->sks_objs;
329 	skc->skc_slab_total--;
330 	list_del(&sks->sks_list);
331 	list_add(&sks->sks_list, sks_list);
332 	list_splice_init(&sks->sks_free_list, sko_list);
333 }
334 
335 /*
336  * Reclaim empty slabs at the end of the partial list.
337  */
338 static void
339 spl_slab_reclaim(spl_kmem_cache_t *skc)
340 {
341 	spl_kmem_slab_t *sks = NULL, *m = NULL;
342 	spl_kmem_obj_t *sko = NULL, *n = NULL;
343 	LIST_HEAD(sks_list);
344 	LIST_HEAD(sko_list);
345 
346 	/*
347 	 * Empty slabs and objects must be moved to a private list so they
348 	 * can be safely freed outside the spin lock.  All empty slabs are
349 	 * at the end of skc->skc_partial_list, therefore once a non-empty
350 	 * slab is found we can stop scanning.
351 	 */
352 	spin_lock(&skc->skc_lock);
353 	list_for_each_entry_safe_reverse(sks, m,
354 	    &skc->skc_partial_list, sks_list) {
355 
356 		if (sks->sks_ref > 0)
357 			break;
358 
359 		spl_slab_free(sks, &sks_list, &sko_list);
360 	}
361 	spin_unlock(&skc->skc_lock);
362 
363 	/*
364 	 * The following two loops ensure all the object destructors are run,
365 	 * and the slabs themselves are freed.  This is all done outside the
366 	 * skc->skc_lock since this allows the destructor to sleep, and
367 	 * allows us to perform a conditional reschedule when a freeing a
368 	 * large number of objects and slabs back to the system.
369 	 */
370 
371 	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
372 		ASSERT(sko->sko_magic == SKO_MAGIC);
373 	}
374 
375 	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
376 		ASSERT(sks->sks_magic == SKS_MAGIC);
377 		kv_free(skc, sks, skc->skc_slab_size);
378 	}
379 }
380 
381 static spl_kmem_emergency_t *
382 spl_emergency_search(struct rb_root *root, void *obj)
383 {
384 	struct rb_node *node = root->rb_node;
385 	spl_kmem_emergency_t *ske;
386 	unsigned long address = (unsigned long)obj;
387 
388 	while (node) {
389 		ske = container_of(node, spl_kmem_emergency_t, ske_node);
390 
391 		if (address < ske->ske_obj)
392 			node = node->rb_left;
393 		else if (address > ske->ske_obj)
394 			node = node->rb_right;
395 		else
396 			return (ske);
397 	}
398 
399 	return (NULL);
400 }
401 
402 static int
403 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
404 {
405 	struct rb_node **new = &(root->rb_node), *parent = NULL;
406 	spl_kmem_emergency_t *ske_tmp;
407 	unsigned long address = ske->ske_obj;
408 
409 	while (*new) {
410 		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
411 
412 		parent = *new;
413 		if (address < ske_tmp->ske_obj)
414 			new = &((*new)->rb_left);
415 		else if (address > ske_tmp->ske_obj)
416 			new = &((*new)->rb_right);
417 		else
418 			return (0);
419 	}
420 
421 	rb_link_node(&ske->ske_node, parent, new);
422 	rb_insert_color(&ske->ske_node, root);
423 
424 	return (1);
425 }
426 
427 /*
428  * Allocate a single emergency object and track it in a red black tree.
429  */
430 static int
431 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
432 {
433 	gfp_t lflags = kmem_flags_convert(flags);
434 	spl_kmem_emergency_t *ske;
435 	int order = get_order(skc->skc_obj_size);
436 	int empty;
437 
438 	/* Last chance use a partial slab if one now exists */
439 	spin_lock(&skc->skc_lock);
440 	empty = list_empty(&skc->skc_partial_list);
441 	spin_unlock(&skc->skc_lock);
442 	if (!empty)
443 		return (-EEXIST);
444 
445 	ske = kmalloc(sizeof (*ske), lflags);
446 	if (ske == NULL)
447 		return (-ENOMEM);
448 
449 	ske->ske_obj = __get_free_pages(lflags, order);
450 	if (ske->ske_obj == 0) {
451 		kfree(ske);
452 		return (-ENOMEM);
453 	}
454 
455 	spin_lock(&skc->skc_lock);
456 	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
457 	if (likely(empty)) {
458 		skc->skc_obj_total++;
459 		skc->skc_obj_emergency++;
460 		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
461 			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
462 	}
463 	spin_unlock(&skc->skc_lock);
464 
465 	if (unlikely(!empty)) {
466 		free_pages(ske->ske_obj, order);
467 		kfree(ske);
468 		return (-EINVAL);
469 	}
470 
471 	*obj = (void *)ske->ske_obj;
472 
473 	return (0);
474 }
475 
476 /*
477  * Locate the passed object in the red black tree and free it.
478  */
479 static int
480 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
481 {
482 	spl_kmem_emergency_t *ske;
483 	int order = get_order(skc->skc_obj_size);
484 
485 	spin_lock(&skc->skc_lock);
486 	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
487 	if (ske) {
488 		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
489 		skc->skc_obj_emergency--;
490 		skc->skc_obj_total--;
491 	}
492 	spin_unlock(&skc->skc_lock);
493 
494 	if (ske == NULL)
495 		return (-ENOENT);
496 
497 	free_pages(ske->ske_obj, order);
498 	kfree(ske);
499 
500 	return (0);
501 }
502 
503 /*
504  * Release objects from the per-cpu magazine back to their slab.  The flush
505  * argument contains the max number of entries to remove from the magazine.
506  */
507 static void
508 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
509 {
510 	spin_lock(&skc->skc_lock);
511 
512 	ASSERT(skc->skc_magic == SKC_MAGIC);
513 	ASSERT(skm->skm_magic == SKM_MAGIC);
514 
515 	int count = MIN(flush, skm->skm_avail);
516 	for (int i = 0; i < count; i++)
517 		spl_cache_shrink(skc, skm->skm_objs[i]);
518 
519 	skm->skm_avail -= count;
520 	memmove(skm->skm_objs, &(skm->skm_objs[count]),
521 	    sizeof (void *) * skm->skm_avail);
522 
523 	spin_unlock(&skc->skc_lock);
524 }
525 
526 /*
527  * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
528  * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
529  * for very small objects we may end up with more than this so as not
530  * to waste space in the minimal allocation of a single page.  Also for
531  * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
532  * lower than this and we will fail.
533  */
534 static int
535 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
536 {
537 	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
538 
539 	sks_size = spl_sks_size(skc);
540 	obj_size = spl_obj_size(skc);
541 	max_size = (spl_kmem_cache_max_size * 1024 * 1024);
542 	tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
543 
544 	if (tgt_size <= max_size) {
545 		tgt_objs = (tgt_size - sks_size) / obj_size;
546 	} else {
547 		tgt_objs = (max_size - sks_size) / obj_size;
548 		tgt_size = (tgt_objs * obj_size) + sks_size;
549 	}
550 
551 	if (tgt_objs == 0)
552 		return (-ENOSPC);
553 
554 	*objs = tgt_objs;
555 	*size = tgt_size;
556 
557 	return (0);
558 }
559 
560 /*
561  * Make a guess at reasonable per-cpu magazine size based on the size of
562  * each object and the cost of caching N of them in each magazine.  Long
563  * term this should really adapt based on an observed usage heuristic.
564  */
565 static int
566 spl_magazine_size(spl_kmem_cache_t *skc)
567 {
568 	uint32_t obj_size = spl_obj_size(skc);
569 	int size;
570 
571 	if (spl_kmem_cache_magazine_size > 0)
572 		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
573 
574 	/* Per-magazine sizes below assume a 4Kib page size */
575 	if (obj_size > (PAGE_SIZE * 256))
576 		size = 4;  /* Minimum 4Mib per-magazine */
577 	else if (obj_size > (PAGE_SIZE * 32))
578 		size = 16; /* Minimum 2Mib per-magazine */
579 	else if (obj_size > (PAGE_SIZE))
580 		size = 64; /* Minimum 256Kib per-magazine */
581 	else if (obj_size > (PAGE_SIZE / 4))
582 		size = 128; /* Minimum 128Kib per-magazine */
583 	else
584 		size = 256;
585 
586 	return (size);
587 }
588 
589 /*
590  * Allocate a per-cpu magazine to associate with a specific core.
591  */
592 static spl_kmem_magazine_t *
593 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
594 {
595 	spl_kmem_magazine_t *skm;
596 	int size = sizeof (spl_kmem_magazine_t) +
597 	    sizeof (void *) * skc->skc_mag_size;
598 
599 	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
600 	if (skm) {
601 		skm->skm_magic = SKM_MAGIC;
602 		skm->skm_avail = 0;
603 		skm->skm_size = skc->skc_mag_size;
604 		skm->skm_refill = skc->skc_mag_refill;
605 		skm->skm_cache = skc;
606 		skm->skm_cpu = cpu;
607 	}
608 
609 	return (skm);
610 }
611 
612 /*
613  * Free a per-cpu magazine associated with a specific core.
614  */
615 static void
616 spl_magazine_free(spl_kmem_magazine_t *skm)
617 {
618 	ASSERT(skm->skm_magic == SKM_MAGIC);
619 	ASSERT(skm->skm_avail == 0);
620 	kfree(skm);
621 }
622 
623 /*
624  * Create all pre-cpu magazines of reasonable sizes.
625  */
626 static int
627 spl_magazine_create(spl_kmem_cache_t *skc)
628 {
629 	int i = 0;
630 
631 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
632 
633 	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
634 	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
635 	skc->skc_mag_size = spl_magazine_size(skc);
636 	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
637 
638 	for_each_possible_cpu(i) {
639 		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
640 		if (!skc->skc_mag[i]) {
641 			for (i--; i >= 0; i--)
642 				spl_magazine_free(skc->skc_mag[i]);
643 
644 			kfree(skc->skc_mag);
645 			return (-ENOMEM);
646 		}
647 	}
648 
649 	return (0);
650 }
651 
652 /*
653  * Destroy all pre-cpu magazines.
654  */
655 static void
656 spl_magazine_destroy(spl_kmem_cache_t *skc)
657 {
658 	spl_kmem_magazine_t *skm;
659 	int i = 0;
660 
661 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
662 
663 	for_each_possible_cpu(i) {
664 		skm = skc->skc_mag[i];
665 		spl_cache_flush(skc, skm, skm->skm_avail);
666 		spl_magazine_free(skm);
667 	}
668 
669 	kfree(skc->skc_mag);
670 }
671 
672 /*
673  * Create a object cache based on the following arguments:
674  * name		cache name
675  * size		cache object size
676  * align	cache object alignment
677  * ctor		cache object constructor
678  * dtor		cache object destructor
679  * reclaim	cache object reclaim
680  * priv		cache private data for ctor/dtor/reclaim
681  * vmp		unused must be NULL
682  * flags
683  *	KMC_KVMEM       Force kvmem backed SPL cache
684  *	KMC_SLAB        Force Linux slab backed cache
685  *	KMC_NODEBUG	Disable debugging (unsupported)
686  */
687 spl_kmem_cache_t *
688 spl_kmem_cache_create(char *name, size_t size, size_t align,
689     spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
690     void *priv, void *vmp, int flags)
691 {
692 	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
693 	spl_kmem_cache_t *skc;
694 	int rc;
695 
696 	/*
697 	 * Unsupported flags
698 	 */
699 	ASSERT(vmp == NULL);
700 	ASSERT(reclaim == NULL);
701 
702 	might_sleep();
703 
704 	skc = kzalloc(sizeof (*skc), lflags);
705 	if (skc == NULL)
706 		return (NULL);
707 
708 	skc->skc_magic = SKC_MAGIC;
709 	skc->skc_name_size = strlen(name) + 1;
710 	skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
711 	if (skc->skc_name == NULL) {
712 		kfree(skc);
713 		return (NULL);
714 	}
715 	strncpy(skc->skc_name, name, skc->skc_name_size);
716 
717 	skc->skc_ctor = ctor;
718 	skc->skc_dtor = dtor;
719 	skc->skc_private = priv;
720 	skc->skc_vmp = vmp;
721 	skc->skc_linux_cache = NULL;
722 	skc->skc_flags = flags;
723 	skc->skc_obj_size = size;
724 	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
725 	atomic_set(&skc->skc_ref, 0);
726 
727 	INIT_LIST_HEAD(&skc->skc_list);
728 	INIT_LIST_HEAD(&skc->skc_complete_list);
729 	INIT_LIST_HEAD(&skc->skc_partial_list);
730 	skc->skc_emergency_tree = RB_ROOT;
731 	spin_lock_init(&skc->skc_lock);
732 	init_waitqueue_head(&skc->skc_waitq);
733 	skc->skc_slab_fail = 0;
734 	skc->skc_slab_create = 0;
735 	skc->skc_slab_destroy = 0;
736 	skc->skc_slab_total = 0;
737 	skc->skc_slab_alloc = 0;
738 	skc->skc_slab_max = 0;
739 	skc->skc_obj_total = 0;
740 	skc->skc_obj_alloc = 0;
741 	skc->skc_obj_max = 0;
742 	skc->skc_obj_deadlock = 0;
743 	skc->skc_obj_emergency = 0;
744 	skc->skc_obj_emergency_max = 0;
745 
746 	rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
747 	    GFP_KERNEL);
748 	if (rc != 0) {
749 		kfree(skc);
750 		return (NULL);
751 	}
752 
753 	/*
754 	 * Verify the requested alignment restriction is sane.
755 	 */
756 	if (align) {
757 		VERIFY(ISP2(align));
758 		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
759 		VERIFY3U(align, <=, PAGE_SIZE);
760 		skc->skc_obj_align = align;
761 	}
762 
763 	/*
764 	 * When no specific type of slab is requested (kmem, vmem, or
765 	 * linuxslab) then select a cache type based on the object size
766 	 * and default tunables.
767 	 */
768 	if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
769 		if (spl_kmem_cache_slab_limit &&
770 		    size <= (size_t)spl_kmem_cache_slab_limit) {
771 			/*
772 			 * Objects smaller than spl_kmem_cache_slab_limit can
773 			 * use the Linux slab for better space-efficiency.
774 			 */
775 			skc->skc_flags |= KMC_SLAB;
776 		} else {
777 			/*
778 			 * All other objects are considered large and are
779 			 * placed on kvmem backed slabs.
780 			 */
781 			skc->skc_flags |= KMC_KVMEM;
782 		}
783 	}
784 
785 	/*
786 	 * Given the type of slab allocate the required resources.
787 	 */
788 	if (skc->skc_flags & KMC_KVMEM) {
789 		rc = spl_slab_size(skc,
790 		    &skc->skc_slab_objs, &skc->skc_slab_size);
791 		if (rc)
792 			goto out;
793 
794 		rc = spl_magazine_create(skc);
795 		if (rc)
796 			goto out;
797 	} else {
798 		unsigned long slabflags = 0;
799 
800 		if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
801 			rc = EINVAL;
802 			goto out;
803 		}
804 
805 #if defined(SLAB_USERCOPY)
806 		/*
807 		 * Required for PAX-enabled kernels if the slab is to be
808 		 * used for copying between user and kernel space.
809 		 */
810 		slabflags |= SLAB_USERCOPY;
811 #endif
812 
813 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
814 		/*
815 		 * Newer grsec patchset uses kmem_cache_create_usercopy()
816 		 * instead of SLAB_USERCOPY flag
817 		 */
818 		skc->skc_linux_cache = kmem_cache_create_usercopy(
819 		    skc->skc_name, size, align, slabflags, 0, size, NULL);
820 #else
821 		skc->skc_linux_cache = kmem_cache_create(
822 		    skc->skc_name, size, align, slabflags, NULL);
823 #endif
824 		if (skc->skc_linux_cache == NULL) {
825 			rc = ENOMEM;
826 			goto out;
827 		}
828 	}
829 
830 	down_write(&spl_kmem_cache_sem);
831 	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
832 	up_write(&spl_kmem_cache_sem);
833 
834 	return (skc);
835 out:
836 	kfree(skc->skc_name);
837 	percpu_counter_destroy(&skc->skc_linux_alloc);
838 	kfree(skc);
839 	return (NULL);
840 }
841 EXPORT_SYMBOL(spl_kmem_cache_create);
842 
843 /*
844  * Register a move callback for cache defragmentation.
845  * XXX: Unimplemented but harmless to stub out for now.
846  */
847 void
848 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
849     kmem_cbrc_t (move)(void *, void *, size_t, void *))
850 {
851 	ASSERT(move != NULL);
852 }
853 EXPORT_SYMBOL(spl_kmem_cache_set_move);
854 
855 /*
856  * Destroy a cache and all objects associated with the cache.
857  */
858 void
859 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
860 {
861 	DECLARE_WAIT_QUEUE_HEAD(wq);
862 	taskqid_t id;
863 
864 	ASSERT(skc->skc_magic == SKC_MAGIC);
865 	ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
866 
867 	down_write(&spl_kmem_cache_sem);
868 	list_del_init(&skc->skc_list);
869 	up_write(&spl_kmem_cache_sem);
870 
871 	/* Cancel any and wait for any pending delayed tasks */
872 	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
873 
874 	spin_lock(&skc->skc_lock);
875 	id = skc->skc_taskqid;
876 	spin_unlock(&skc->skc_lock);
877 
878 	taskq_cancel_id(spl_kmem_cache_taskq, id);
879 
880 	/*
881 	 * Wait until all current callers complete, this is mainly
882 	 * to catch the case where a low memory situation triggers a
883 	 * cache reaping action which races with this destroy.
884 	 */
885 	wait_event(wq, atomic_read(&skc->skc_ref) == 0);
886 
887 	if (skc->skc_flags & KMC_KVMEM) {
888 		spl_magazine_destroy(skc);
889 		spl_slab_reclaim(skc);
890 	} else {
891 		ASSERT(skc->skc_flags & KMC_SLAB);
892 		kmem_cache_destroy(skc->skc_linux_cache);
893 	}
894 
895 	spin_lock(&skc->skc_lock);
896 
897 	/*
898 	 * Validate there are no objects in use and free all the
899 	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
900 	 */
901 	ASSERT3U(skc->skc_slab_alloc, ==, 0);
902 	ASSERT3U(skc->skc_obj_alloc, ==, 0);
903 	ASSERT3U(skc->skc_slab_total, ==, 0);
904 	ASSERT3U(skc->skc_obj_total, ==, 0);
905 	ASSERT3U(skc->skc_obj_emergency, ==, 0);
906 	ASSERT(list_empty(&skc->skc_complete_list));
907 
908 	ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
909 	percpu_counter_destroy(&skc->skc_linux_alloc);
910 
911 	spin_unlock(&skc->skc_lock);
912 
913 	kfree(skc->skc_name);
914 	kfree(skc);
915 }
916 EXPORT_SYMBOL(spl_kmem_cache_destroy);
917 
918 /*
919  * Allocate an object from a slab attached to the cache.  This is used to
920  * repopulate the per-cpu magazine caches in batches when they run low.
921  */
922 static void *
923 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
924 {
925 	spl_kmem_obj_t *sko;
926 
927 	ASSERT(skc->skc_magic == SKC_MAGIC);
928 	ASSERT(sks->sks_magic == SKS_MAGIC);
929 
930 	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
931 	ASSERT(sko->sko_magic == SKO_MAGIC);
932 	ASSERT(sko->sko_addr != NULL);
933 
934 	/* Remove from sks_free_list */
935 	list_del_init(&sko->sko_list);
936 
937 	sks->sks_age = jiffies;
938 	sks->sks_ref++;
939 	skc->skc_obj_alloc++;
940 
941 	/* Track max obj usage statistics */
942 	if (skc->skc_obj_alloc > skc->skc_obj_max)
943 		skc->skc_obj_max = skc->skc_obj_alloc;
944 
945 	/* Track max slab usage statistics */
946 	if (sks->sks_ref == 1) {
947 		skc->skc_slab_alloc++;
948 
949 		if (skc->skc_slab_alloc > skc->skc_slab_max)
950 			skc->skc_slab_max = skc->skc_slab_alloc;
951 	}
952 
953 	return (sko->sko_addr);
954 }
955 
956 /*
957  * Generic slab allocation function to run by the global work queues.
958  * It is responsible for allocating a new slab, linking it in to the list
959  * of partial slabs, and then waking any waiters.
960  */
961 static int
962 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
963 {
964 	spl_kmem_slab_t *sks;
965 
966 	fstrans_cookie_t cookie = spl_fstrans_mark();
967 	sks = spl_slab_alloc(skc, flags);
968 	spl_fstrans_unmark(cookie);
969 
970 	spin_lock(&skc->skc_lock);
971 	if (sks) {
972 		skc->skc_slab_total++;
973 		skc->skc_obj_total += sks->sks_objs;
974 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
975 
976 		smp_mb__before_atomic();
977 		clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
978 		smp_mb__after_atomic();
979 	}
980 	spin_unlock(&skc->skc_lock);
981 
982 	return (sks == NULL ? -ENOMEM : 0);
983 }
984 
985 static void
986 spl_cache_grow_work(void *data)
987 {
988 	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
989 	spl_kmem_cache_t *skc = ska->ska_cache;
990 
991 	int error = __spl_cache_grow(skc, ska->ska_flags);
992 
993 	atomic_dec(&skc->skc_ref);
994 	smp_mb__before_atomic();
995 	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
996 	smp_mb__after_atomic();
997 	if (error == 0)
998 		wake_up_all(&skc->skc_waitq);
999 
1000 	kfree(ska);
1001 }
1002 
1003 /*
1004  * Returns non-zero when a new slab should be available.
1005  */
1006 static int
1007 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1008 {
1009 	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1010 }
1011 
1012 /*
1013  * No available objects on any slabs, create a new slab.  Note that this
1014  * functionality is disabled for KMC_SLAB caches which are backed by the
1015  * Linux slab.
1016  */
1017 static int
1018 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1019 {
1020 	int remaining, rc = 0;
1021 
1022 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1023 	ASSERT(skc->skc_magic == SKC_MAGIC);
1024 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1025 	might_sleep();
1026 	*obj = NULL;
1027 
1028 	/*
1029 	 * Before allocating a new slab wait for any reaping to complete and
1030 	 * then return so the local magazine can be rechecked for new objects.
1031 	 */
1032 	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1033 		rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1034 		    TASK_UNINTERRUPTIBLE);
1035 		return (rc ? rc : -EAGAIN);
1036 	}
1037 
1038 	/*
1039 	 * Note: It would be nice to reduce the overhead of context switch
1040 	 * and improve NUMA locality, by trying to allocate a new slab in the
1041 	 * current process context with KM_NOSLEEP flag.
1042 	 *
1043 	 * However, this can't be applied to vmem/kvmem due to a bug that
1044 	 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1045 	 */
1046 
1047 	/*
1048 	 * This is handled by dispatching a work request to the global work
1049 	 * queue.  This allows us to asynchronously allocate a new slab while
1050 	 * retaining the ability to safely fall back to a smaller synchronous
1051 	 * allocations to ensure forward progress is always maintained.
1052 	 */
1053 	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1054 		spl_kmem_alloc_t *ska;
1055 
1056 		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1057 		if (ska == NULL) {
1058 			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1059 			smp_mb__after_atomic();
1060 			wake_up_all(&skc->skc_waitq);
1061 			return (-ENOMEM);
1062 		}
1063 
1064 		atomic_inc(&skc->skc_ref);
1065 		ska->ska_cache = skc;
1066 		ska->ska_flags = flags;
1067 		taskq_init_ent(&ska->ska_tqe);
1068 		taskq_dispatch_ent(spl_kmem_cache_taskq,
1069 		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1070 	}
1071 
1072 	/*
1073 	 * The goal here is to only detect the rare case where a virtual slab
1074 	 * allocation has deadlocked.  We must be careful to minimize the use
1075 	 * of emergency objects which are more expensive to track.  Therefore,
1076 	 * we set a very long timeout for the asynchronous allocation and if
1077 	 * the timeout is reached the cache is flagged as deadlocked.  From
1078 	 * this point only new emergency objects will be allocated until the
1079 	 * asynchronous allocation completes and clears the deadlocked flag.
1080 	 */
1081 	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1082 		rc = spl_emergency_alloc(skc, flags, obj);
1083 	} else {
1084 		remaining = wait_event_timeout(skc->skc_waitq,
1085 		    spl_cache_grow_wait(skc), HZ / 10);
1086 
1087 		if (!remaining) {
1088 			spin_lock(&skc->skc_lock);
1089 			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1090 				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1091 				skc->skc_obj_deadlock++;
1092 			}
1093 			spin_unlock(&skc->skc_lock);
1094 		}
1095 
1096 		rc = -ENOMEM;
1097 	}
1098 
1099 	return (rc);
1100 }
1101 
1102 /*
1103  * Refill a per-cpu magazine with objects from the slabs for this cache.
1104  * Ideally the magazine can be repopulated using existing objects which have
1105  * been released, however if we are unable to locate enough free objects new
1106  * slabs of objects will be created.  On success NULL is returned, otherwise
1107  * the address of a single emergency object is returned for use by the caller.
1108  */
1109 static void *
1110 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1111 {
1112 	spl_kmem_slab_t *sks;
1113 	int count = 0, rc, refill;
1114 	void *obj = NULL;
1115 
1116 	ASSERT(skc->skc_magic == SKC_MAGIC);
1117 	ASSERT(skm->skm_magic == SKM_MAGIC);
1118 
1119 	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1120 	spin_lock(&skc->skc_lock);
1121 
1122 	while (refill > 0) {
1123 		/* No slabs available we may need to grow the cache */
1124 		if (list_empty(&skc->skc_partial_list)) {
1125 			spin_unlock(&skc->skc_lock);
1126 
1127 			local_irq_enable();
1128 			rc = spl_cache_grow(skc, flags, &obj);
1129 			local_irq_disable();
1130 
1131 			/* Emergency object for immediate use by caller */
1132 			if (rc == 0 && obj != NULL)
1133 				return (obj);
1134 
1135 			if (rc)
1136 				goto out;
1137 
1138 			/* Rescheduled to different CPU skm is not local */
1139 			if (skm != skc->skc_mag[smp_processor_id()])
1140 				goto out;
1141 
1142 			/*
1143 			 * Potentially rescheduled to the same CPU but
1144 			 * allocations may have occurred from this CPU while
1145 			 * we were sleeping so recalculate max refill.
1146 			 */
1147 			refill = MIN(refill, skm->skm_size - skm->skm_avail);
1148 
1149 			spin_lock(&skc->skc_lock);
1150 			continue;
1151 		}
1152 
1153 		/* Grab the next available slab */
1154 		sks = list_entry((&skc->skc_partial_list)->next,
1155 		    spl_kmem_slab_t, sks_list);
1156 		ASSERT(sks->sks_magic == SKS_MAGIC);
1157 		ASSERT(sks->sks_ref < sks->sks_objs);
1158 		ASSERT(!list_empty(&sks->sks_free_list));
1159 
1160 		/*
1161 		 * Consume as many objects as needed to refill the requested
1162 		 * cache.  We must also be careful not to overfill it.
1163 		 */
1164 		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1165 		    ++count) {
1166 			ASSERT(skm->skm_avail < skm->skm_size);
1167 			ASSERT(count < skm->skm_size);
1168 			skm->skm_objs[skm->skm_avail++] =
1169 			    spl_cache_obj(skc, sks);
1170 		}
1171 
1172 		/* Move slab to skc_complete_list when full */
1173 		if (sks->sks_ref == sks->sks_objs) {
1174 			list_del(&sks->sks_list);
1175 			list_add(&sks->sks_list, &skc->skc_complete_list);
1176 		}
1177 	}
1178 
1179 	spin_unlock(&skc->skc_lock);
1180 out:
1181 	return (NULL);
1182 }
1183 
1184 /*
1185  * Release an object back to the slab from which it came.
1186  */
1187 static void
1188 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1189 {
1190 	spl_kmem_slab_t *sks = NULL;
1191 	spl_kmem_obj_t *sko = NULL;
1192 
1193 	ASSERT(skc->skc_magic == SKC_MAGIC);
1194 
1195 	sko = spl_sko_from_obj(skc, obj);
1196 	ASSERT(sko->sko_magic == SKO_MAGIC);
1197 	sks = sko->sko_slab;
1198 	ASSERT(sks->sks_magic == SKS_MAGIC);
1199 	ASSERT(sks->sks_cache == skc);
1200 	list_add(&sko->sko_list, &sks->sks_free_list);
1201 
1202 	sks->sks_age = jiffies;
1203 	sks->sks_ref--;
1204 	skc->skc_obj_alloc--;
1205 
1206 	/*
1207 	 * Move slab to skc_partial_list when no longer full.  Slabs
1208 	 * are added to the head to keep the partial list is quasi-full
1209 	 * sorted order.  Fuller at the head, emptier at the tail.
1210 	 */
1211 	if (sks->sks_ref == (sks->sks_objs - 1)) {
1212 		list_del(&sks->sks_list);
1213 		list_add(&sks->sks_list, &skc->skc_partial_list);
1214 	}
1215 
1216 	/*
1217 	 * Move empty slabs to the end of the partial list so
1218 	 * they can be easily found and freed during reclamation.
1219 	 */
1220 	if (sks->sks_ref == 0) {
1221 		list_del(&sks->sks_list);
1222 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1223 		skc->skc_slab_alloc--;
1224 	}
1225 }
1226 
1227 /*
1228  * Allocate an object from the per-cpu magazine, or if the magazine
1229  * is empty directly allocate from a slab and repopulate the magazine.
1230  */
1231 void *
1232 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1233 {
1234 	spl_kmem_magazine_t *skm;
1235 	void *obj = NULL;
1236 
1237 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1238 	ASSERT(skc->skc_magic == SKC_MAGIC);
1239 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1240 
1241 	/*
1242 	 * Allocate directly from a Linux slab.  All optimizations are left
1243 	 * to the underlying cache we only need to guarantee that KM_SLEEP
1244 	 * callers will never fail.
1245 	 */
1246 	if (skc->skc_flags & KMC_SLAB) {
1247 		struct kmem_cache *slc = skc->skc_linux_cache;
1248 		do {
1249 			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1250 		} while ((obj == NULL) && !(flags & KM_NOSLEEP));
1251 
1252 		if (obj != NULL) {
1253 			/*
1254 			 * Even though we leave everything up to the
1255 			 * underlying cache we still keep track of
1256 			 * how many objects we've allocated in it for
1257 			 * better debuggability.
1258 			 */
1259 			percpu_counter_inc(&skc->skc_linux_alloc);
1260 		}
1261 		goto ret;
1262 	}
1263 
1264 	local_irq_disable();
1265 
1266 restart:
1267 	/*
1268 	 * Safe to update per-cpu structure without lock, but
1269 	 * in the restart case we must be careful to reacquire
1270 	 * the local magazine since this may have changed
1271 	 * when we need to grow the cache.
1272 	 */
1273 	skm = skc->skc_mag[smp_processor_id()];
1274 	ASSERT(skm->skm_magic == SKM_MAGIC);
1275 
1276 	if (likely(skm->skm_avail)) {
1277 		/* Object available in CPU cache, use it */
1278 		obj = skm->skm_objs[--skm->skm_avail];
1279 	} else {
1280 		obj = spl_cache_refill(skc, skm, flags);
1281 		if ((obj == NULL) && !(flags & KM_NOSLEEP))
1282 			goto restart;
1283 
1284 		local_irq_enable();
1285 		goto ret;
1286 	}
1287 
1288 	local_irq_enable();
1289 	ASSERT(obj);
1290 	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1291 
1292 ret:
1293 	/* Pre-emptively migrate object to CPU L1 cache */
1294 	if (obj) {
1295 		if (obj && skc->skc_ctor)
1296 			skc->skc_ctor(obj, skc->skc_private, flags);
1297 		else
1298 			prefetchw(obj);
1299 	}
1300 
1301 	return (obj);
1302 }
1303 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1304 
1305 /*
1306  * Free an object back to the local per-cpu magazine, there is no
1307  * guarantee that this is the same magazine the object was originally
1308  * allocated from.  We may need to flush entire from the magazine
1309  * back to the slabs to make space.
1310  */
1311 void
1312 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1313 {
1314 	spl_kmem_magazine_t *skm;
1315 	unsigned long flags;
1316 	int do_reclaim = 0;
1317 	int do_emergency = 0;
1318 
1319 	ASSERT(skc->skc_magic == SKC_MAGIC);
1320 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1321 
1322 	/*
1323 	 * Run the destructor
1324 	 */
1325 	if (skc->skc_dtor)
1326 		skc->skc_dtor(obj, skc->skc_private);
1327 
1328 	/*
1329 	 * Free the object from the Linux underlying Linux slab.
1330 	 */
1331 	if (skc->skc_flags & KMC_SLAB) {
1332 		kmem_cache_free(skc->skc_linux_cache, obj);
1333 		percpu_counter_dec(&skc->skc_linux_alloc);
1334 		return;
1335 	}
1336 
1337 	/*
1338 	 * While a cache has outstanding emergency objects all freed objects
1339 	 * must be checked.  However, since emergency objects will never use
1340 	 * a virtual address these objects can be safely excluded as an
1341 	 * optimization.
1342 	 */
1343 	if (!is_vmalloc_addr(obj)) {
1344 		spin_lock(&skc->skc_lock);
1345 		do_emergency = (skc->skc_obj_emergency > 0);
1346 		spin_unlock(&skc->skc_lock);
1347 
1348 		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1349 			return;
1350 	}
1351 
1352 	local_irq_save(flags);
1353 
1354 	/*
1355 	 * Safe to update per-cpu structure without lock, but
1356 	 * no remote memory allocation tracking is being performed
1357 	 * it is entirely possible to allocate an object from one
1358 	 * CPU cache and return it to another.
1359 	 */
1360 	skm = skc->skc_mag[smp_processor_id()];
1361 	ASSERT(skm->skm_magic == SKM_MAGIC);
1362 
1363 	/*
1364 	 * Per-CPU cache full, flush it to make space for this object,
1365 	 * this may result in an empty slab which can be reclaimed once
1366 	 * interrupts are re-enabled.
1367 	 */
1368 	if (unlikely(skm->skm_avail >= skm->skm_size)) {
1369 		spl_cache_flush(skc, skm, skm->skm_refill);
1370 		do_reclaim = 1;
1371 	}
1372 
1373 	/* Available space in cache, use it */
1374 	skm->skm_objs[skm->skm_avail++] = obj;
1375 
1376 	local_irq_restore(flags);
1377 
1378 	if (do_reclaim)
1379 		spl_slab_reclaim(skc);
1380 }
1381 EXPORT_SYMBOL(spl_kmem_cache_free);
1382 
1383 /*
1384  * Depending on how many and which objects are released it may simply
1385  * repopulate the local magazine which will then need to age-out.  Objects
1386  * which cannot fit in the magazine will be released back to their slabs
1387  * which will also need to age out before being released.  This is all just
1388  * best effort and we do not want to thrash creating and destroying slabs.
1389  */
1390 void
1391 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1392 {
1393 	ASSERT(skc->skc_magic == SKC_MAGIC);
1394 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1395 
1396 	if (skc->skc_flags & KMC_SLAB)
1397 		return;
1398 
1399 	atomic_inc(&skc->skc_ref);
1400 
1401 	/*
1402 	 * Prevent concurrent cache reaping when contended.
1403 	 */
1404 	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1405 		goto out;
1406 
1407 	/* Reclaim from the magazine and free all now empty slabs. */
1408 	unsigned long irq_flags;
1409 	local_irq_save(irq_flags);
1410 	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1411 	spl_cache_flush(skc, skm, skm->skm_avail);
1412 	local_irq_restore(irq_flags);
1413 
1414 	spl_slab_reclaim(skc);
1415 	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1416 	smp_mb__after_atomic();
1417 	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1418 out:
1419 	atomic_dec(&skc->skc_ref);
1420 }
1421 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1422 
1423 /*
1424  * This is stubbed out for code consistency with other platforms.  There
1425  * is existing logic to prevent concurrent reaping so while this is ugly
1426  * it should do no harm.
1427  */
1428 int
1429 spl_kmem_cache_reap_active()
1430 {
1431 	return (0);
1432 }
1433 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1434 
1435 /*
1436  * Reap all free slabs from all registered caches.
1437  */
1438 void
1439 spl_kmem_reap(void)
1440 {
1441 	spl_kmem_cache_t *skc = NULL;
1442 
1443 	down_read(&spl_kmem_cache_sem);
1444 	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1445 		spl_kmem_cache_reap_now(skc);
1446 	}
1447 	up_read(&spl_kmem_cache_sem);
1448 }
1449 EXPORT_SYMBOL(spl_kmem_reap);
1450 
1451 int
1452 spl_kmem_cache_init(void)
1453 {
1454 	init_rwsem(&spl_kmem_cache_sem);
1455 	INIT_LIST_HEAD(&spl_kmem_cache_list);
1456 	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1457 	    spl_kmem_cache_kmem_threads, maxclsyspri,
1458 	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
1459 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1460 
1461 	return (0);
1462 }
1463 
1464 void
1465 spl_kmem_cache_fini(void)
1466 {
1467 	taskq_destroy(spl_kmem_cache_taskq);
1468 }
1469