1 /* 2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3 * Copyright (C) 2007 The Regents of the University of California. 4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6 * UCRL-CODE-235197 7 * 8 * This file is part of the SPL, Solaris Porting Layer. 9 * 10 * The SPL is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * The SPL is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include <linux/percpu_compat.h> 25 #include <sys/kmem.h> 26 #include <sys/kmem_cache.h> 27 #include <sys/taskq.h> 28 #include <sys/timer.h> 29 #include <sys/vmem.h> 30 #include <sys/wait.h> 31 #include <linux/slab.h> 32 #include <linux/swap.h> 33 #include <linux/prefetch.h> 34 35 /* 36 * Within the scope of spl-kmem.c file the kmem_cache_* definitions 37 * are removed to allow access to the real Linux slab allocator. 38 */ 39 #undef kmem_cache_destroy 40 #undef kmem_cache_create 41 #undef kmem_cache_alloc 42 #undef kmem_cache_free 43 44 45 /* 46 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() 47 * with smp_mb__{before,after}_atomic() because they were redundant. This is 48 * only used inside our SLAB allocator, so we implement an internal wrapper 49 * here to give us smp_mb__{before,after}_atomic() on older kernels. 50 */ 51 #ifndef smp_mb__before_atomic 52 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x) 53 #endif 54 55 #ifndef smp_mb__after_atomic 56 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x) 57 #endif 58 59 /* BEGIN CSTYLED */ 60 61 /* 62 * Cache magazines are an optimization designed to minimize the cost of 63 * allocating memory. They do this by keeping a per-cpu cache of recently 64 * freed objects, which can then be reallocated without taking a lock. This 65 * can improve performance on highly contended caches. However, because 66 * objects in magazines will prevent otherwise empty slabs from being 67 * immediately released this may not be ideal for low memory machines. 68 * 69 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum 70 * magazine size. When this value is set to 0 the magazine size will be 71 * automatically determined based on the object size. Otherwise magazines 72 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines 73 * may never be entirely disabled in this implementation. 74 */ 75 unsigned int spl_kmem_cache_magazine_size = 0; 76 module_param(spl_kmem_cache_magazine_size, uint, 0444); 77 MODULE_PARM_DESC(spl_kmem_cache_magazine_size, 78 "Default magazine size (2-256), set automatically (0)"); 79 80 /* 81 * The default behavior is to report the number of objects remaining in the 82 * cache. This allows the Linux VM to repeatedly reclaim objects from the 83 * cache when memory is low satisfy other memory allocations. Alternately, 84 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache 85 * is reclaimed. This may increase the likelihood of out of memory events. 86 */ 87 unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */; 88 module_param(spl_kmem_cache_reclaim, uint, 0644); 89 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)"); 90 91 unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB; 92 module_param(spl_kmem_cache_obj_per_slab, uint, 0644); 93 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab"); 94 95 unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE; 96 module_param(spl_kmem_cache_max_size, uint, 0644); 97 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB"); 98 99 /* 100 * For small objects the Linux slab allocator should be used to make the most 101 * efficient use of the memory. However, large objects are not supported by 102 * the Linux slab and therefore the SPL implementation is preferred. A cutoff 103 * of 16K was determined to be optimal for architectures using 4K pages. 104 */ 105 #if PAGE_SIZE == 4096 106 unsigned int spl_kmem_cache_slab_limit = 16384; 107 #else 108 unsigned int spl_kmem_cache_slab_limit = 0; 109 #endif 110 module_param(spl_kmem_cache_slab_limit, uint, 0644); 111 MODULE_PARM_DESC(spl_kmem_cache_slab_limit, 112 "Objects less than N bytes use the Linux slab"); 113 114 /* 115 * The number of threads available to allocate new slabs for caches. This 116 * should not need to be tuned but it is available for performance analysis. 117 */ 118 unsigned int spl_kmem_cache_kmem_threads = 4; 119 module_param(spl_kmem_cache_kmem_threads, uint, 0444); 120 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads, 121 "Number of spl_kmem_cache threads"); 122 /* END CSTYLED */ 123 124 /* 125 * Slab allocation interfaces 126 * 127 * While the Linux slab implementation was inspired by the Solaris 128 * implementation I cannot use it to emulate the Solaris APIs. I 129 * require two features which are not provided by the Linux slab. 130 * 131 * 1) Constructors AND destructors. Recent versions of the Linux 132 * kernel have removed support for destructors. This is a deal 133 * breaker for the SPL which contains particularly expensive 134 * initializers for mutex's, condition variables, etc. We also 135 * require a minimal level of cleanup for these data types unlike 136 * many Linux data types which do need to be explicitly destroyed. 137 * 138 * 2) Virtual address space backed slab. Callers of the Solaris slab 139 * expect it to work well for both small are very large allocations. 140 * Because of memory fragmentation the Linux slab which is backed 141 * by kmalloc'ed memory performs very badly when confronted with 142 * large numbers of large allocations. Basing the slab on the 143 * virtual address space removes the need for contiguous pages 144 * and greatly improve performance for large allocations. 145 * 146 * For these reasons, the SPL has its own slab implementation with 147 * the needed features. It is not as highly optimized as either the 148 * Solaris or Linux slabs, but it should get me most of what is 149 * needed until it can be optimized or obsoleted by another approach. 150 * 151 * One serious concern I do have about this method is the relatively 152 * small virtual address space on 32bit arches. This will seriously 153 * constrain the size of the slab caches and their performance. 154 */ 155 156 struct list_head spl_kmem_cache_list; /* List of caches */ 157 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */ 158 taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */ 159 160 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj); 161 162 static void * 163 kv_alloc(spl_kmem_cache_t *skc, int size, int flags) 164 { 165 gfp_t lflags = kmem_flags_convert(flags); 166 void *ptr; 167 168 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM); 169 170 /* Resulting allocated memory will be page aligned */ 171 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 172 173 return (ptr); 174 } 175 176 static void 177 kv_free(spl_kmem_cache_t *skc, void *ptr, int size) 178 { 179 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 180 181 /* 182 * The Linux direct reclaim path uses this out of band value to 183 * determine if forward progress is being made. Normally this is 184 * incremented by kmem_freepages() which is part of the various 185 * Linux slab implementations. However, since we are using none 186 * of that infrastructure we are responsible for incrementing it. 187 */ 188 if (current->reclaim_state) 189 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT; 190 191 vfree(ptr); 192 } 193 194 /* 195 * Required space for each aligned sks. 196 */ 197 static inline uint32_t 198 spl_sks_size(spl_kmem_cache_t *skc) 199 { 200 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t), 201 skc->skc_obj_align, uint32_t)); 202 } 203 204 /* 205 * Required space for each aligned object. 206 */ 207 static inline uint32_t 208 spl_obj_size(spl_kmem_cache_t *skc) 209 { 210 uint32_t align = skc->skc_obj_align; 211 212 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) + 213 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t)); 214 } 215 216 uint64_t 217 spl_kmem_cache_inuse(kmem_cache_t *cache) 218 { 219 return (cache->skc_obj_total); 220 } 221 EXPORT_SYMBOL(spl_kmem_cache_inuse); 222 223 uint64_t 224 spl_kmem_cache_entry_size(kmem_cache_t *cache) 225 { 226 return (cache->skc_obj_size); 227 } 228 EXPORT_SYMBOL(spl_kmem_cache_entry_size); 229 230 /* 231 * Lookup the spl_kmem_object_t for an object given that object. 232 */ 233 static inline spl_kmem_obj_t * 234 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj) 235 { 236 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size, 237 skc->skc_obj_align, uint32_t)); 238 } 239 240 /* 241 * It's important that we pack the spl_kmem_obj_t structure and the 242 * actual objects in to one large address space to minimize the number 243 * of calls to the allocator. It is far better to do a few large 244 * allocations and then subdivide it ourselves. Now which allocator 245 * we use requires balancing a few trade offs. 246 * 247 * For small objects we use kmem_alloc() because as long as you are 248 * only requesting a small number of pages (ideally just one) its cheap. 249 * However, when you start requesting multiple pages with kmem_alloc() 250 * it gets increasingly expensive since it requires contiguous pages. 251 * For this reason we shift to vmem_alloc() for slabs of large objects 252 * which removes the need for contiguous pages. We do not use 253 * vmem_alloc() in all cases because there is significant locking 254 * overhead in __get_vm_area_node(). This function takes a single 255 * global lock when acquiring an available virtual address range which 256 * serializes all vmem_alloc()'s for all slab caches. Using slightly 257 * different allocation functions for small and large objects should 258 * give us the best of both worlds. 259 * 260 * +------------------------+ 261 * | spl_kmem_slab_t --+-+ | 262 * | skc_obj_size <-+ | | 263 * | spl_kmem_obj_t | | 264 * | skc_obj_size <---+ | 265 * | spl_kmem_obj_t | | 266 * | ... v | 267 * +------------------------+ 268 */ 269 static spl_kmem_slab_t * 270 spl_slab_alloc(spl_kmem_cache_t *skc, int flags) 271 { 272 spl_kmem_slab_t *sks; 273 void *base; 274 uint32_t obj_size; 275 276 base = kv_alloc(skc, skc->skc_slab_size, flags); 277 if (base == NULL) 278 return (NULL); 279 280 sks = (spl_kmem_slab_t *)base; 281 sks->sks_magic = SKS_MAGIC; 282 sks->sks_objs = skc->skc_slab_objs; 283 sks->sks_age = jiffies; 284 sks->sks_cache = skc; 285 INIT_LIST_HEAD(&sks->sks_list); 286 INIT_LIST_HEAD(&sks->sks_free_list); 287 sks->sks_ref = 0; 288 obj_size = spl_obj_size(skc); 289 290 for (int i = 0; i < sks->sks_objs; i++) { 291 void *obj = base + spl_sks_size(skc) + (i * obj_size); 292 293 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 294 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj); 295 sko->sko_addr = obj; 296 sko->sko_magic = SKO_MAGIC; 297 sko->sko_slab = sks; 298 INIT_LIST_HEAD(&sko->sko_list); 299 list_add_tail(&sko->sko_list, &sks->sks_free_list); 300 } 301 302 return (sks); 303 } 304 305 /* 306 * Remove a slab from complete or partial list, it must be called with 307 * the 'skc->skc_lock' held but the actual free must be performed 308 * outside the lock to prevent deadlocking on vmem addresses. 309 */ 310 static void 311 spl_slab_free(spl_kmem_slab_t *sks, 312 struct list_head *sks_list, struct list_head *sko_list) 313 { 314 spl_kmem_cache_t *skc; 315 316 ASSERT(sks->sks_magic == SKS_MAGIC); 317 ASSERT(sks->sks_ref == 0); 318 319 skc = sks->sks_cache; 320 ASSERT(skc->skc_magic == SKC_MAGIC); 321 322 /* 323 * Update slab/objects counters in the cache, then remove the 324 * slab from the skc->skc_partial_list. Finally add the slab 325 * and all its objects in to the private work lists where the 326 * destructors will be called and the memory freed to the system. 327 */ 328 skc->skc_obj_total -= sks->sks_objs; 329 skc->skc_slab_total--; 330 list_del(&sks->sks_list); 331 list_add(&sks->sks_list, sks_list); 332 list_splice_init(&sks->sks_free_list, sko_list); 333 } 334 335 /* 336 * Reclaim empty slabs at the end of the partial list. 337 */ 338 static void 339 spl_slab_reclaim(spl_kmem_cache_t *skc) 340 { 341 spl_kmem_slab_t *sks = NULL, *m = NULL; 342 spl_kmem_obj_t *sko = NULL, *n = NULL; 343 LIST_HEAD(sks_list); 344 LIST_HEAD(sko_list); 345 346 /* 347 * Empty slabs and objects must be moved to a private list so they 348 * can be safely freed outside the spin lock. All empty slabs are 349 * at the end of skc->skc_partial_list, therefore once a non-empty 350 * slab is found we can stop scanning. 351 */ 352 spin_lock(&skc->skc_lock); 353 list_for_each_entry_safe_reverse(sks, m, 354 &skc->skc_partial_list, sks_list) { 355 356 if (sks->sks_ref > 0) 357 break; 358 359 spl_slab_free(sks, &sks_list, &sko_list); 360 } 361 spin_unlock(&skc->skc_lock); 362 363 /* 364 * The following two loops ensure all the object destructors are run, 365 * and the slabs themselves are freed. This is all done outside the 366 * skc->skc_lock since this allows the destructor to sleep, and 367 * allows us to perform a conditional reschedule when a freeing a 368 * large number of objects and slabs back to the system. 369 */ 370 371 list_for_each_entry_safe(sko, n, &sko_list, sko_list) { 372 ASSERT(sko->sko_magic == SKO_MAGIC); 373 } 374 375 list_for_each_entry_safe(sks, m, &sks_list, sks_list) { 376 ASSERT(sks->sks_magic == SKS_MAGIC); 377 kv_free(skc, sks, skc->skc_slab_size); 378 } 379 } 380 381 static spl_kmem_emergency_t * 382 spl_emergency_search(struct rb_root *root, void *obj) 383 { 384 struct rb_node *node = root->rb_node; 385 spl_kmem_emergency_t *ske; 386 unsigned long address = (unsigned long)obj; 387 388 while (node) { 389 ske = container_of(node, spl_kmem_emergency_t, ske_node); 390 391 if (address < ske->ske_obj) 392 node = node->rb_left; 393 else if (address > ske->ske_obj) 394 node = node->rb_right; 395 else 396 return (ske); 397 } 398 399 return (NULL); 400 } 401 402 static int 403 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske) 404 { 405 struct rb_node **new = &(root->rb_node), *parent = NULL; 406 spl_kmem_emergency_t *ske_tmp; 407 unsigned long address = ske->ske_obj; 408 409 while (*new) { 410 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node); 411 412 parent = *new; 413 if (address < ske_tmp->ske_obj) 414 new = &((*new)->rb_left); 415 else if (address > ske_tmp->ske_obj) 416 new = &((*new)->rb_right); 417 else 418 return (0); 419 } 420 421 rb_link_node(&ske->ske_node, parent, new); 422 rb_insert_color(&ske->ske_node, root); 423 424 return (1); 425 } 426 427 /* 428 * Allocate a single emergency object and track it in a red black tree. 429 */ 430 static int 431 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj) 432 { 433 gfp_t lflags = kmem_flags_convert(flags); 434 spl_kmem_emergency_t *ske; 435 int order = get_order(skc->skc_obj_size); 436 int empty; 437 438 /* Last chance use a partial slab if one now exists */ 439 spin_lock(&skc->skc_lock); 440 empty = list_empty(&skc->skc_partial_list); 441 spin_unlock(&skc->skc_lock); 442 if (!empty) 443 return (-EEXIST); 444 445 ske = kmalloc(sizeof (*ske), lflags); 446 if (ske == NULL) 447 return (-ENOMEM); 448 449 ske->ske_obj = __get_free_pages(lflags, order); 450 if (ske->ske_obj == 0) { 451 kfree(ske); 452 return (-ENOMEM); 453 } 454 455 spin_lock(&skc->skc_lock); 456 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske); 457 if (likely(empty)) { 458 skc->skc_obj_total++; 459 skc->skc_obj_emergency++; 460 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max) 461 skc->skc_obj_emergency_max = skc->skc_obj_emergency; 462 } 463 spin_unlock(&skc->skc_lock); 464 465 if (unlikely(!empty)) { 466 free_pages(ske->ske_obj, order); 467 kfree(ske); 468 return (-EINVAL); 469 } 470 471 *obj = (void *)ske->ske_obj; 472 473 return (0); 474 } 475 476 /* 477 * Locate the passed object in the red black tree and free it. 478 */ 479 static int 480 spl_emergency_free(spl_kmem_cache_t *skc, void *obj) 481 { 482 spl_kmem_emergency_t *ske; 483 int order = get_order(skc->skc_obj_size); 484 485 spin_lock(&skc->skc_lock); 486 ske = spl_emergency_search(&skc->skc_emergency_tree, obj); 487 if (ske) { 488 rb_erase(&ske->ske_node, &skc->skc_emergency_tree); 489 skc->skc_obj_emergency--; 490 skc->skc_obj_total--; 491 } 492 spin_unlock(&skc->skc_lock); 493 494 if (ske == NULL) 495 return (-ENOENT); 496 497 free_pages(ske->ske_obj, order); 498 kfree(ske); 499 500 return (0); 501 } 502 503 /* 504 * Release objects from the per-cpu magazine back to their slab. The flush 505 * argument contains the max number of entries to remove from the magazine. 506 */ 507 static void 508 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush) 509 { 510 spin_lock(&skc->skc_lock); 511 512 ASSERT(skc->skc_magic == SKC_MAGIC); 513 ASSERT(skm->skm_magic == SKM_MAGIC); 514 515 int count = MIN(flush, skm->skm_avail); 516 for (int i = 0; i < count; i++) 517 spl_cache_shrink(skc, skm->skm_objs[i]); 518 519 skm->skm_avail -= count; 520 memmove(skm->skm_objs, &(skm->skm_objs[count]), 521 sizeof (void *) * skm->skm_avail); 522 523 spin_unlock(&skc->skc_lock); 524 } 525 526 /* 527 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t. 528 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However, 529 * for very small objects we may end up with more than this so as not 530 * to waste space in the minimal allocation of a single page. Also for 531 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min, 532 * lower than this and we will fail. 533 */ 534 static int 535 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size) 536 { 537 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs; 538 539 sks_size = spl_sks_size(skc); 540 obj_size = spl_obj_size(skc); 541 max_size = (spl_kmem_cache_max_size * 1024 * 1024); 542 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size); 543 544 if (tgt_size <= max_size) { 545 tgt_objs = (tgt_size - sks_size) / obj_size; 546 } else { 547 tgt_objs = (max_size - sks_size) / obj_size; 548 tgt_size = (tgt_objs * obj_size) + sks_size; 549 } 550 551 if (tgt_objs == 0) 552 return (-ENOSPC); 553 554 *objs = tgt_objs; 555 *size = tgt_size; 556 557 return (0); 558 } 559 560 /* 561 * Make a guess at reasonable per-cpu magazine size based on the size of 562 * each object and the cost of caching N of them in each magazine. Long 563 * term this should really adapt based on an observed usage heuristic. 564 */ 565 static int 566 spl_magazine_size(spl_kmem_cache_t *skc) 567 { 568 uint32_t obj_size = spl_obj_size(skc); 569 int size; 570 571 if (spl_kmem_cache_magazine_size > 0) 572 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2)); 573 574 /* Per-magazine sizes below assume a 4Kib page size */ 575 if (obj_size > (PAGE_SIZE * 256)) 576 size = 4; /* Minimum 4Mib per-magazine */ 577 else if (obj_size > (PAGE_SIZE * 32)) 578 size = 16; /* Minimum 2Mib per-magazine */ 579 else if (obj_size > (PAGE_SIZE)) 580 size = 64; /* Minimum 256Kib per-magazine */ 581 else if (obj_size > (PAGE_SIZE / 4)) 582 size = 128; /* Minimum 128Kib per-magazine */ 583 else 584 size = 256; 585 586 return (size); 587 } 588 589 /* 590 * Allocate a per-cpu magazine to associate with a specific core. 591 */ 592 static spl_kmem_magazine_t * 593 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu) 594 { 595 spl_kmem_magazine_t *skm; 596 int size = sizeof (spl_kmem_magazine_t) + 597 sizeof (void *) * skc->skc_mag_size; 598 599 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu)); 600 if (skm) { 601 skm->skm_magic = SKM_MAGIC; 602 skm->skm_avail = 0; 603 skm->skm_size = skc->skc_mag_size; 604 skm->skm_refill = skc->skc_mag_refill; 605 skm->skm_cache = skc; 606 skm->skm_cpu = cpu; 607 } 608 609 return (skm); 610 } 611 612 /* 613 * Free a per-cpu magazine associated with a specific core. 614 */ 615 static void 616 spl_magazine_free(spl_kmem_magazine_t *skm) 617 { 618 ASSERT(skm->skm_magic == SKM_MAGIC); 619 ASSERT(skm->skm_avail == 0); 620 kfree(skm); 621 } 622 623 /* 624 * Create all pre-cpu magazines of reasonable sizes. 625 */ 626 static int 627 spl_magazine_create(spl_kmem_cache_t *skc) 628 { 629 int i = 0; 630 631 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 632 633 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) * 634 num_possible_cpus(), kmem_flags_convert(KM_SLEEP)); 635 skc->skc_mag_size = spl_magazine_size(skc); 636 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2; 637 638 for_each_possible_cpu(i) { 639 skc->skc_mag[i] = spl_magazine_alloc(skc, i); 640 if (!skc->skc_mag[i]) { 641 for (i--; i >= 0; i--) 642 spl_magazine_free(skc->skc_mag[i]); 643 644 kfree(skc->skc_mag); 645 return (-ENOMEM); 646 } 647 } 648 649 return (0); 650 } 651 652 /* 653 * Destroy all pre-cpu magazines. 654 */ 655 static void 656 spl_magazine_destroy(spl_kmem_cache_t *skc) 657 { 658 spl_kmem_magazine_t *skm; 659 int i = 0; 660 661 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 662 663 for_each_possible_cpu(i) { 664 skm = skc->skc_mag[i]; 665 spl_cache_flush(skc, skm, skm->skm_avail); 666 spl_magazine_free(skm); 667 } 668 669 kfree(skc->skc_mag); 670 } 671 672 /* 673 * Create a object cache based on the following arguments: 674 * name cache name 675 * size cache object size 676 * align cache object alignment 677 * ctor cache object constructor 678 * dtor cache object destructor 679 * reclaim cache object reclaim 680 * priv cache private data for ctor/dtor/reclaim 681 * vmp unused must be NULL 682 * flags 683 * KMC_KVMEM Force kvmem backed SPL cache 684 * KMC_SLAB Force Linux slab backed cache 685 * KMC_NODEBUG Disable debugging (unsupported) 686 */ 687 spl_kmem_cache_t * 688 spl_kmem_cache_create(char *name, size_t size, size_t align, 689 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim, 690 void *priv, void *vmp, int flags) 691 { 692 gfp_t lflags = kmem_flags_convert(KM_SLEEP); 693 spl_kmem_cache_t *skc; 694 int rc; 695 696 /* 697 * Unsupported flags 698 */ 699 ASSERT(vmp == NULL); 700 ASSERT(reclaim == NULL); 701 702 might_sleep(); 703 704 skc = kzalloc(sizeof (*skc), lflags); 705 if (skc == NULL) 706 return (NULL); 707 708 skc->skc_magic = SKC_MAGIC; 709 skc->skc_name_size = strlen(name) + 1; 710 skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags); 711 if (skc->skc_name == NULL) { 712 kfree(skc); 713 return (NULL); 714 } 715 strncpy(skc->skc_name, name, skc->skc_name_size); 716 717 skc->skc_ctor = ctor; 718 skc->skc_dtor = dtor; 719 skc->skc_private = priv; 720 skc->skc_vmp = vmp; 721 skc->skc_linux_cache = NULL; 722 skc->skc_flags = flags; 723 skc->skc_obj_size = size; 724 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN; 725 atomic_set(&skc->skc_ref, 0); 726 727 INIT_LIST_HEAD(&skc->skc_list); 728 INIT_LIST_HEAD(&skc->skc_complete_list); 729 INIT_LIST_HEAD(&skc->skc_partial_list); 730 skc->skc_emergency_tree = RB_ROOT; 731 spin_lock_init(&skc->skc_lock); 732 init_waitqueue_head(&skc->skc_waitq); 733 skc->skc_slab_fail = 0; 734 skc->skc_slab_create = 0; 735 skc->skc_slab_destroy = 0; 736 skc->skc_slab_total = 0; 737 skc->skc_slab_alloc = 0; 738 skc->skc_slab_max = 0; 739 skc->skc_obj_total = 0; 740 skc->skc_obj_alloc = 0; 741 skc->skc_obj_max = 0; 742 skc->skc_obj_deadlock = 0; 743 skc->skc_obj_emergency = 0; 744 skc->skc_obj_emergency_max = 0; 745 746 rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0, 747 GFP_KERNEL); 748 if (rc != 0) { 749 kfree(skc); 750 return (NULL); 751 } 752 753 /* 754 * Verify the requested alignment restriction is sane. 755 */ 756 if (align) { 757 VERIFY(ISP2(align)); 758 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); 759 VERIFY3U(align, <=, PAGE_SIZE); 760 skc->skc_obj_align = align; 761 } 762 763 /* 764 * When no specific type of slab is requested (kmem, vmem, or 765 * linuxslab) then select a cache type based on the object size 766 * and default tunables. 767 */ 768 if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) { 769 if (spl_kmem_cache_slab_limit && 770 size <= (size_t)spl_kmem_cache_slab_limit) { 771 /* 772 * Objects smaller than spl_kmem_cache_slab_limit can 773 * use the Linux slab for better space-efficiency. 774 */ 775 skc->skc_flags |= KMC_SLAB; 776 } else { 777 /* 778 * All other objects are considered large and are 779 * placed on kvmem backed slabs. 780 */ 781 skc->skc_flags |= KMC_KVMEM; 782 } 783 } 784 785 /* 786 * Given the type of slab allocate the required resources. 787 */ 788 if (skc->skc_flags & KMC_KVMEM) { 789 rc = spl_slab_size(skc, 790 &skc->skc_slab_objs, &skc->skc_slab_size); 791 if (rc) 792 goto out; 793 794 rc = spl_magazine_create(skc); 795 if (rc) 796 goto out; 797 } else { 798 unsigned long slabflags = 0; 799 800 if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) { 801 rc = EINVAL; 802 goto out; 803 } 804 805 #if defined(SLAB_USERCOPY) 806 /* 807 * Required for PAX-enabled kernels if the slab is to be 808 * used for copying between user and kernel space. 809 */ 810 slabflags |= SLAB_USERCOPY; 811 #endif 812 813 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY) 814 /* 815 * Newer grsec patchset uses kmem_cache_create_usercopy() 816 * instead of SLAB_USERCOPY flag 817 */ 818 skc->skc_linux_cache = kmem_cache_create_usercopy( 819 skc->skc_name, size, align, slabflags, 0, size, NULL); 820 #else 821 skc->skc_linux_cache = kmem_cache_create( 822 skc->skc_name, size, align, slabflags, NULL); 823 #endif 824 if (skc->skc_linux_cache == NULL) { 825 rc = ENOMEM; 826 goto out; 827 } 828 } 829 830 down_write(&spl_kmem_cache_sem); 831 list_add_tail(&skc->skc_list, &spl_kmem_cache_list); 832 up_write(&spl_kmem_cache_sem); 833 834 return (skc); 835 out: 836 kfree(skc->skc_name); 837 percpu_counter_destroy(&skc->skc_linux_alloc); 838 kfree(skc); 839 return (NULL); 840 } 841 EXPORT_SYMBOL(spl_kmem_cache_create); 842 843 /* 844 * Register a move callback for cache defragmentation. 845 * XXX: Unimplemented but harmless to stub out for now. 846 */ 847 void 848 spl_kmem_cache_set_move(spl_kmem_cache_t *skc, 849 kmem_cbrc_t (move)(void *, void *, size_t, void *)) 850 { 851 ASSERT(move != NULL); 852 } 853 EXPORT_SYMBOL(spl_kmem_cache_set_move); 854 855 /* 856 * Destroy a cache and all objects associated with the cache. 857 */ 858 void 859 spl_kmem_cache_destroy(spl_kmem_cache_t *skc) 860 { 861 DECLARE_WAIT_QUEUE_HEAD(wq); 862 taskqid_t id; 863 864 ASSERT(skc->skc_magic == SKC_MAGIC); 865 ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB)); 866 867 down_write(&spl_kmem_cache_sem); 868 list_del_init(&skc->skc_list); 869 up_write(&spl_kmem_cache_sem); 870 871 /* Cancel any and wait for any pending delayed tasks */ 872 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 873 874 spin_lock(&skc->skc_lock); 875 id = skc->skc_taskqid; 876 spin_unlock(&skc->skc_lock); 877 878 taskq_cancel_id(spl_kmem_cache_taskq, id); 879 880 /* 881 * Wait until all current callers complete, this is mainly 882 * to catch the case where a low memory situation triggers a 883 * cache reaping action which races with this destroy. 884 */ 885 wait_event(wq, atomic_read(&skc->skc_ref) == 0); 886 887 if (skc->skc_flags & KMC_KVMEM) { 888 spl_magazine_destroy(skc); 889 spl_slab_reclaim(skc); 890 } else { 891 ASSERT(skc->skc_flags & KMC_SLAB); 892 kmem_cache_destroy(skc->skc_linux_cache); 893 } 894 895 spin_lock(&skc->skc_lock); 896 897 /* 898 * Validate there are no objects in use and free all the 899 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. 900 */ 901 ASSERT3U(skc->skc_slab_alloc, ==, 0); 902 ASSERT3U(skc->skc_obj_alloc, ==, 0); 903 ASSERT3U(skc->skc_slab_total, ==, 0); 904 ASSERT3U(skc->skc_obj_total, ==, 0); 905 ASSERT3U(skc->skc_obj_emergency, ==, 0); 906 ASSERT(list_empty(&skc->skc_complete_list)); 907 908 ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0); 909 percpu_counter_destroy(&skc->skc_linux_alloc); 910 911 spin_unlock(&skc->skc_lock); 912 913 kfree(skc->skc_name); 914 kfree(skc); 915 } 916 EXPORT_SYMBOL(spl_kmem_cache_destroy); 917 918 /* 919 * Allocate an object from a slab attached to the cache. This is used to 920 * repopulate the per-cpu magazine caches in batches when they run low. 921 */ 922 static void * 923 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks) 924 { 925 spl_kmem_obj_t *sko; 926 927 ASSERT(skc->skc_magic == SKC_MAGIC); 928 ASSERT(sks->sks_magic == SKS_MAGIC); 929 930 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list); 931 ASSERT(sko->sko_magic == SKO_MAGIC); 932 ASSERT(sko->sko_addr != NULL); 933 934 /* Remove from sks_free_list */ 935 list_del_init(&sko->sko_list); 936 937 sks->sks_age = jiffies; 938 sks->sks_ref++; 939 skc->skc_obj_alloc++; 940 941 /* Track max obj usage statistics */ 942 if (skc->skc_obj_alloc > skc->skc_obj_max) 943 skc->skc_obj_max = skc->skc_obj_alloc; 944 945 /* Track max slab usage statistics */ 946 if (sks->sks_ref == 1) { 947 skc->skc_slab_alloc++; 948 949 if (skc->skc_slab_alloc > skc->skc_slab_max) 950 skc->skc_slab_max = skc->skc_slab_alloc; 951 } 952 953 return (sko->sko_addr); 954 } 955 956 /* 957 * Generic slab allocation function to run by the global work queues. 958 * It is responsible for allocating a new slab, linking it in to the list 959 * of partial slabs, and then waking any waiters. 960 */ 961 static int 962 __spl_cache_grow(spl_kmem_cache_t *skc, int flags) 963 { 964 spl_kmem_slab_t *sks; 965 966 fstrans_cookie_t cookie = spl_fstrans_mark(); 967 sks = spl_slab_alloc(skc, flags); 968 spl_fstrans_unmark(cookie); 969 970 spin_lock(&skc->skc_lock); 971 if (sks) { 972 skc->skc_slab_total++; 973 skc->skc_obj_total += sks->sks_objs; 974 list_add_tail(&sks->sks_list, &skc->skc_partial_list); 975 976 smp_mb__before_atomic(); 977 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 978 smp_mb__after_atomic(); 979 } 980 spin_unlock(&skc->skc_lock); 981 982 return (sks == NULL ? -ENOMEM : 0); 983 } 984 985 static void 986 spl_cache_grow_work(void *data) 987 { 988 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data; 989 spl_kmem_cache_t *skc = ska->ska_cache; 990 991 int error = __spl_cache_grow(skc, ska->ska_flags); 992 993 atomic_dec(&skc->skc_ref); 994 smp_mb__before_atomic(); 995 clear_bit(KMC_BIT_GROWING, &skc->skc_flags); 996 smp_mb__after_atomic(); 997 if (error == 0) 998 wake_up_all(&skc->skc_waitq); 999 1000 kfree(ska); 1001 } 1002 1003 /* 1004 * Returns non-zero when a new slab should be available. 1005 */ 1006 static int 1007 spl_cache_grow_wait(spl_kmem_cache_t *skc) 1008 { 1009 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags)); 1010 } 1011 1012 /* 1013 * No available objects on any slabs, create a new slab. Note that this 1014 * functionality is disabled for KMC_SLAB caches which are backed by the 1015 * Linux slab. 1016 */ 1017 static int 1018 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj) 1019 { 1020 int remaining, rc = 0; 1021 1022 ASSERT0(flags & ~KM_PUBLIC_MASK); 1023 ASSERT(skc->skc_magic == SKC_MAGIC); 1024 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 1025 might_sleep(); 1026 *obj = NULL; 1027 1028 /* 1029 * Before allocating a new slab wait for any reaping to complete and 1030 * then return so the local magazine can be rechecked for new objects. 1031 */ 1032 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) { 1033 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING, 1034 TASK_UNINTERRUPTIBLE); 1035 return (rc ? rc : -EAGAIN); 1036 } 1037 1038 /* 1039 * Note: It would be nice to reduce the overhead of context switch 1040 * and improve NUMA locality, by trying to allocate a new slab in the 1041 * current process context with KM_NOSLEEP flag. 1042 * 1043 * However, this can't be applied to vmem/kvmem due to a bug that 1044 * spl_vmalloc() doesn't honor gfp flags in page table allocation. 1045 */ 1046 1047 /* 1048 * This is handled by dispatching a work request to the global work 1049 * queue. This allows us to asynchronously allocate a new slab while 1050 * retaining the ability to safely fall back to a smaller synchronous 1051 * allocations to ensure forward progress is always maintained. 1052 */ 1053 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) { 1054 spl_kmem_alloc_t *ska; 1055 1056 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags)); 1057 if (ska == NULL) { 1058 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags); 1059 smp_mb__after_atomic(); 1060 wake_up_all(&skc->skc_waitq); 1061 return (-ENOMEM); 1062 } 1063 1064 atomic_inc(&skc->skc_ref); 1065 ska->ska_cache = skc; 1066 ska->ska_flags = flags; 1067 taskq_init_ent(&ska->ska_tqe); 1068 taskq_dispatch_ent(spl_kmem_cache_taskq, 1069 spl_cache_grow_work, ska, 0, &ska->ska_tqe); 1070 } 1071 1072 /* 1073 * The goal here is to only detect the rare case where a virtual slab 1074 * allocation has deadlocked. We must be careful to minimize the use 1075 * of emergency objects which are more expensive to track. Therefore, 1076 * we set a very long timeout for the asynchronous allocation and if 1077 * the timeout is reached the cache is flagged as deadlocked. From 1078 * this point only new emergency objects will be allocated until the 1079 * asynchronous allocation completes and clears the deadlocked flag. 1080 */ 1081 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) { 1082 rc = spl_emergency_alloc(skc, flags, obj); 1083 } else { 1084 remaining = wait_event_timeout(skc->skc_waitq, 1085 spl_cache_grow_wait(skc), HZ / 10); 1086 1087 if (!remaining) { 1088 spin_lock(&skc->skc_lock); 1089 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) { 1090 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 1091 skc->skc_obj_deadlock++; 1092 } 1093 spin_unlock(&skc->skc_lock); 1094 } 1095 1096 rc = -ENOMEM; 1097 } 1098 1099 return (rc); 1100 } 1101 1102 /* 1103 * Refill a per-cpu magazine with objects from the slabs for this cache. 1104 * Ideally the magazine can be repopulated using existing objects which have 1105 * been released, however if we are unable to locate enough free objects new 1106 * slabs of objects will be created. On success NULL is returned, otherwise 1107 * the address of a single emergency object is returned for use by the caller. 1108 */ 1109 static void * 1110 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags) 1111 { 1112 spl_kmem_slab_t *sks; 1113 int count = 0, rc, refill; 1114 void *obj = NULL; 1115 1116 ASSERT(skc->skc_magic == SKC_MAGIC); 1117 ASSERT(skm->skm_magic == SKM_MAGIC); 1118 1119 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail); 1120 spin_lock(&skc->skc_lock); 1121 1122 while (refill > 0) { 1123 /* No slabs available we may need to grow the cache */ 1124 if (list_empty(&skc->skc_partial_list)) { 1125 spin_unlock(&skc->skc_lock); 1126 1127 local_irq_enable(); 1128 rc = spl_cache_grow(skc, flags, &obj); 1129 local_irq_disable(); 1130 1131 /* Emergency object for immediate use by caller */ 1132 if (rc == 0 && obj != NULL) 1133 return (obj); 1134 1135 if (rc) 1136 goto out; 1137 1138 /* Rescheduled to different CPU skm is not local */ 1139 if (skm != skc->skc_mag[smp_processor_id()]) 1140 goto out; 1141 1142 /* 1143 * Potentially rescheduled to the same CPU but 1144 * allocations may have occurred from this CPU while 1145 * we were sleeping so recalculate max refill. 1146 */ 1147 refill = MIN(refill, skm->skm_size - skm->skm_avail); 1148 1149 spin_lock(&skc->skc_lock); 1150 continue; 1151 } 1152 1153 /* Grab the next available slab */ 1154 sks = list_entry((&skc->skc_partial_list)->next, 1155 spl_kmem_slab_t, sks_list); 1156 ASSERT(sks->sks_magic == SKS_MAGIC); 1157 ASSERT(sks->sks_ref < sks->sks_objs); 1158 ASSERT(!list_empty(&sks->sks_free_list)); 1159 1160 /* 1161 * Consume as many objects as needed to refill the requested 1162 * cache. We must also be careful not to overfill it. 1163 */ 1164 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && 1165 ++count) { 1166 ASSERT(skm->skm_avail < skm->skm_size); 1167 ASSERT(count < skm->skm_size); 1168 skm->skm_objs[skm->skm_avail++] = 1169 spl_cache_obj(skc, sks); 1170 } 1171 1172 /* Move slab to skc_complete_list when full */ 1173 if (sks->sks_ref == sks->sks_objs) { 1174 list_del(&sks->sks_list); 1175 list_add(&sks->sks_list, &skc->skc_complete_list); 1176 } 1177 } 1178 1179 spin_unlock(&skc->skc_lock); 1180 out: 1181 return (NULL); 1182 } 1183 1184 /* 1185 * Release an object back to the slab from which it came. 1186 */ 1187 static void 1188 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj) 1189 { 1190 spl_kmem_slab_t *sks = NULL; 1191 spl_kmem_obj_t *sko = NULL; 1192 1193 ASSERT(skc->skc_magic == SKC_MAGIC); 1194 1195 sko = spl_sko_from_obj(skc, obj); 1196 ASSERT(sko->sko_magic == SKO_MAGIC); 1197 sks = sko->sko_slab; 1198 ASSERT(sks->sks_magic == SKS_MAGIC); 1199 ASSERT(sks->sks_cache == skc); 1200 list_add(&sko->sko_list, &sks->sks_free_list); 1201 1202 sks->sks_age = jiffies; 1203 sks->sks_ref--; 1204 skc->skc_obj_alloc--; 1205 1206 /* 1207 * Move slab to skc_partial_list when no longer full. Slabs 1208 * are added to the head to keep the partial list is quasi-full 1209 * sorted order. Fuller at the head, emptier at the tail. 1210 */ 1211 if (sks->sks_ref == (sks->sks_objs - 1)) { 1212 list_del(&sks->sks_list); 1213 list_add(&sks->sks_list, &skc->skc_partial_list); 1214 } 1215 1216 /* 1217 * Move empty slabs to the end of the partial list so 1218 * they can be easily found and freed during reclamation. 1219 */ 1220 if (sks->sks_ref == 0) { 1221 list_del(&sks->sks_list); 1222 list_add_tail(&sks->sks_list, &skc->skc_partial_list); 1223 skc->skc_slab_alloc--; 1224 } 1225 } 1226 1227 /* 1228 * Allocate an object from the per-cpu magazine, or if the magazine 1229 * is empty directly allocate from a slab and repopulate the magazine. 1230 */ 1231 void * 1232 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags) 1233 { 1234 spl_kmem_magazine_t *skm; 1235 void *obj = NULL; 1236 1237 ASSERT0(flags & ~KM_PUBLIC_MASK); 1238 ASSERT(skc->skc_magic == SKC_MAGIC); 1239 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1240 1241 /* 1242 * Allocate directly from a Linux slab. All optimizations are left 1243 * to the underlying cache we only need to guarantee that KM_SLEEP 1244 * callers will never fail. 1245 */ 1246 if (skc->skc_flags & KMC_SLAB) { 1247 struct kmem_cache *slc = skc->skc_linux_cache; 1248 do { 1249 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags)); 1250 } while ((obj == NULL) && !(flags & KM_NOSLEEP)); 1251 1252 if (obj != NULL) { 1253 /* 1254 * Even though we leave everything up to the 1255 * underlying cache we still keep track of 1256 * how many objects we've allocated in it for 1257 * better debuggability. 1258 */ 1259 percpu_counter_inc(&skc->skc_linux_alloc); 1260 } 1261 goto ret; 1262 } 1263 1264 local_irq_disable(); 1265 1266 restart: 1267 /* 1268 * Safe to update per-cpu structure without lock, but 1269 * in the restart case we must be careful to reacquire 1270 * the local magazine since this may have changed 1271 * when we need to grow the cache. 1272 */ 1273 skm = skc->skc_mag[smp_processor_id()]; 1274 ASSERT(skm->skm_magic == SKM_MAGIC); 1275 1276 if (likely(skm->skm_avail)) { 1277 /* Object available in CPU cache, use it */ 1278 obj = skm->skm_objs[--skm->skm_avail]; 1279 } else { 1280 obj = spl_cache_refill(skc, skm, flags); 1281 if ((obj == NULL) && !(flags & KM_NOSLEEP)) 1282 goto restart; 1283 1284 local_irq_enable(); 1285 goto ret; 1286 } 1287 1288 local_irq_enable(); 1289 ASSERT(obj); 1290 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 1291 1292 ret: 1293 /* Pre-emptively migrate object to CPU L1 cache */ 1294 if (obj) { 1295 if (obj && skc->skc_ctor) 1296 skc->skc_ctor(obj, skc->skc_private, flags); 1297 else 1298 prefetchw(obj); 1299 } 1300 1301 return (obj); 1302 } 1303 EXPORT_SYMBOL(spl_kmem_cache_alloc); 1304 1305 /* 1306 * Free an object back to the local per-cpu magazine, there is no 1307 * guarantee that this is the same magazine the object was originally 1308 * allocated from. We may need to flush entire from the magazine 1309 * back to the slabs to make space. 1310 */ 1311 void 1312 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj) 1313 { 1314 spl_kmem_magazine_t *skm; 1315 unsigned long flags; 1316 int do_reclaim = 0; 1317 int do_emergency = 0; 1318 1319 ASSERT(skc->skc_magic == SKC_MAGIC); 1320 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1321 1322 /* 1323 * Run the destructor 1324 */ 1325 if (skc->skc_dtor) 1326 skc->skc_dtor(obj, skc->skc_private); 1327 1328 /* 1329 * Free the object from the Linux underlying Linux slab. 1330 */ 1331 if (skc->skc_flags & KMC_SLAB) { 1332 kmem_cache_free(skc->skc_linux_cache, obj); 1333 percpu_counter_dec(&skc->skc_linux_alloc); 1334 return; 1335 } 1336 1337 /* 1338 * While a cache has outstanding emergency objects all freed objects 1339 * must be checked. However, since emergency objects will never use 1340 * a virtual address these objects can be safely excluded as an 1341 * optimization. 1342 */ 1343 if (!is_vmalloc_addr(obj)) { 1344 spin_lock(&skc->skc_lock); 1345 do_emergency = (skc->skc_obj_emergency > 0); 1346 spin_unlock(&skc->skc_lock); 1347 1348 if (do_emergency && (spl_emergency_free(skc, obj) == 0)) 1349 return; 1350 } 1351 1352 local_irq_save(flags); 1353 1354 /* 1355 * Safe to update per-cpu structure without lock, but 1356 * no remote memory allocation tracking is being performed 1357 * it is entirely possible to allocate an object from one 1358 * CPU cache and return it to another. 1359 */ 1360 skm = skc->skc_mag[smp_processor_id()]; 1361 ASSERT(skm->skm_magic == SKM_MAGIC); 1362 1363 /* 1364 * Per-CPU cache full, flush it to make space for this object, 1365 * this may result in an empty slab which can be reclaimed once 1366 * interrupts are re-enabled. 1367 */ 1368 if (unlikely(skm->skm_avail >= skm->skm_size)) { 1369 spl_cache_flush(skc, skm, skm->skm_refill); 1370 do_reclaim = 1; 1371 } 1372 1373 /* Available space in cache, use it */ 1374 skm->skm_objs[skm->skm_avail++] = obj; 1375 1376 local_irq_restore(flags); 1377 1378 if (do_reclaim) 1379 spl_slab_reclaim(skc); 1380 } 1381 EXPORT_SYMBOL(spl_kmem_cache_free); 1382 1383 /* 1384 * Depending on how many and which objects are released it may simply 1385 * repopulate the local magazine which will then need to age-out. Objects 1386 * which cannot fit in the magazine will be released back to their slabs 1387 * which will also need to age out before being released. This is all just 1388 * best effort and we do not want to thrash creating and destroying slabs. 1389 */ 1390 void 1391 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc) 1392 { 1393 ASSERT(skc->skc_magic == SKC_MAGIC); 1394 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1395 1396 if (skc->skc_flags & KMC_SLAB) 1397 return; 1398 1399 atomic_inc(&skc->skc_ref); 1400 1401 /* 1402 * Prevent concurrent cache reaping when contended. 1403 */ 1404 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) 1405 goto out; 1406 1407 /* Reclaim from the magazine and free all now empty slabs. */ 1408 unsigned long irq_flags; 1409 local_irq_save(irq_flags); 1410 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()]; 1411 spl_cache_flush(skc, skm, skm->skm_avail); 1412 local_irq_restore(irq_flags); 1413 1414 spl_slab_reclaim(skc); 1415 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags); 1416 smp_mb__after_atomic(); 1417 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING); 1418 out: 1419 atomic_dec(&skc->skc_ref); 1420 } 1421 EXPORT_SYMBOL(spl_kmem_cache_reap_now); 1422 1423 /* 1424 * This is stubbed out for code consistency with other platforms. There 1425 * is existing logic to prevent concurrent reaping so while this is ugly 1426 * it should do no harm. 1427 */ 1428 int 1429 spl_kmem_cache_reap_active() 1430 { 1431 return (0); 1432 } 1433 EXPORT_SYMBOL(spl_kmem_cache_reap_active); 1434 1435 /* 1436 * Reap all free slabs from all registered caches. 1437 */ 1438 void 1439 spl_kmem_reap(void) 1440 { 1441 spl_kmem_cache_t *skc = NULL; 1442 1443 down_read(&spl_kmem_cache_sem); 1444 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { 1445 spl_kmem_cache_reap_now(skc); 1446 } 1447 up_read(&spl_kmem_cache_sem); 1448 } 1449 EXPORT_SYMBOL(spl_kmem_reap); 1450 1451 int 1452 spl_kmem_cache_init(void) 1453 { 1454 init_rwsem(&spl_kmem_cache_sem); 1455 INIT_LIST_HEAD(&spl_kmem_cache_list); 1456 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache", 1457 spl_kmem_cache_kmem_threads, maxclsyspri, 1458 spl_kmem_cache_kmem_threads * 8, INT_MAX, 1459 TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1460 1461 return (0); 1462 } 1463 1464 void 1465 spl_kmem_cache_fini(void) 1466 { 1467 taskq_destroy(spl_kmem_cache_taskq); 1468 } 1469