1 /* 2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3 * Copyright (C) 2007 The Regents of the University of California. 4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6 * UCRL-CODE-235197 7 * 8 * This file is part of the SPL, Solaris Porting Layer. 9 * For details, see <http://zfsonlinux.org/>. 10 * 11 * The SPL is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 * 16 * The SPL is distributed in the hope that it will be useful, but WITHOUT 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 19 * for more details. 20 * 21 * You should have received a copy of the GNU General Public License along 22 * with the SPL. If not, see <http://www.gnu.org/licenses/>. 23 */ 24 25 #include <linux/percpu_compat.h> 26 #include <sys/kmem.h> 27 #include <sys/kmem_cache.h> 28 #include <sys/taskq.h> 29 #include <sys/timer.h> 30 #include <sys/vmem.h> 31 #include <sys/wait.h> 32 #include <linux/slab.h> 33 #include <linux/swap.h> 34 #include <linux/prefetch.h> 35 36 /* 37 * Within the scope of spl-kmem.c file the kmem_cache_* definitions 38 * are removed to allow access to the real Linux slab allocator. 39 */ 40 #undef kmem_cache_destroy 41 #undef kmem_cache_create 42 #undef kmem_cache_alloc 43 #undef kmem_cache_free 44 45 46 /* 47 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() 48 * with smp_mb__{before,after}_atomic() because they were redundant. This is 49 * only used inside our SLAB allocator, so we implement an internal wrapper 50 * here to give us smp_mb__{before,after}_atomic() on older kernels. 51 */ 52 #ifndef smp_mb__before_atomic 53 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x) 54 #endif 55 56 #ifndef smp_mb__after_atomic 57 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x) 58 #endif 59 60 /* BEGIN CSTYLED */ 61 62 /* 63 * Cache magazines are an optimization designed to minimize the cost of 64 * allocating memory. They do this by keeping a per-cpu cache of recently 65 * freed objects, which can then be reallocated without taking a lock. This 66 * can improve performance on highly contended caches. However, because 67 * objects in magazines will prevent otherwise empty slabs from being 68 * immediately released this may not be ideal for low memory machines. 69 * 70 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum 71 * magazine size. When this value is set to 0 the magazine size will be 72 * automatically determined based on the object size. Otherwise magazines 73 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines 74 * may never be entirely disabled in this implementation. 75 */ 76 unsigned int spl_kmem_cache_magazine_size = 0; 77 module_param(spl_kmem_cache_magazine_size, uint, 0444); 78 MODULE_PARM_DESC(spl_kmem_cache_magazine_size, 79 "Default magazine size (2-256), set automatically (0)"); 80 81 /* 82 * The default behavior is to report the number of objects remaining in the 83 * cache. This allows the Linux VM to repeatedly reclaim objects from the 84 * cache when memory is low satisfy other memory allocations. Alternately, 85 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache 86 * is reclaimed. This may increase the likelihood of out of memory events. 87 */ 88 unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */; 89 module_param(spl_kmem_cache_reclaim, uint, 0644); 90 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)"); 91 92 unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB; 93 module_param(spl_kmem_cache_obj_per_slab, uint, 0644); 94 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab"); 95 96 unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE; 97 module_param(spl_kmem_cache_max_size, uint, 0644); 98 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB"); 99 100 /* 101 * For small objects the Linux slab allocator should be used to make the most 102 * efficient use of the memory. However, large objects are not supported by 103 * the Linux slab and therefore the SPL implementation is preferred. A cutoff 104 * of 16K was determined to be optimal for architectures using 4K pages. 105 */ 106 #if PAGE_SIZE == 4096 107 unsigned int spl_kmem_cache_slab_limit = 16384; 108 #else 109 unsigned int spl_kmem_cache_slab_limit = 0; 110 #endif 111 module_param(spl_kmem_cache_slab_limit, uint, 0644); 112 MODULE_PARM_DESC(spl_kmem_cache_slab_limit, 113 "Objects less than N bytes use the Linux slab"); 114 115 /* 116 * The number of threads available to allocate new slabs for caches. This 117 * should not need to be tuned but it is available for performance analysis. 118 */ 119 unsigned int spl_kmem_cache_kmem_threads = 4; 120 module_param(spl_kmem_cache_kmem_threads, uint, 0444); 121 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads, 122 "Number of spl_kmem_cache threads"); 123 /* END CSTYLED */ 124 125 /* 126 * Slab allocation interfaces 127 * 128 * While the Linux slab implementation was inspired by the Solaris 129 * implementation I cannot use it to emulate the Solaris APIs. I 130 * require two features which are not provided by the Linux slab. 131 * 132 * 1) Constructors AND destructors. Recent versions of the Linux 133 * kernel have removed support for destructors. This is a deal 134 * breaker for the SPL which contains particularly expensive 135 * initializers for mutex's, condition variables, etc. We also 136 * require a minimal level of cleanup for these data types unlike 137 * many Linux data types which do need to be explicitly destroyed. 138 * 139 * 2) Virtual address space backed slab. Callers of the Solaris slab 140 * expect it to work well for both small are very large allocations. 141 * Because of memory fragmentation the Linux slab which is backed 142 * by kmalloc'ed memory performs very badly when confronted with 143 * large numbers of large allocations. Basing the slab on the 144 * virtual address space removes the need for contiguous pages 145 * and greatly improve performance for large allocations. 146 * 147 * For these reasons, the SPL has its own slab implementation with 148 * the needed features. It is not as highly optimized as either the 149 * Solaris or Linux slabs, but it should get me most of what is 150 * needed until it can be optimized or obsoleted by another approach. 151 * 152 * One serious concern I do have about this method is the relatively 153 * small virtual address space on 32bit arches. This will seriously 154 * constrain the size of the slab caches and their performance. 155 */ 156 157 struct list_head spl_kmem_cache_list; /* List of caches */ 158 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */ 159 taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */ 160 161 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj); 162 163 static void * 164 kv_alloc(spl_kmem_cache_t *skc, int size, int flags) 165 { 166 gfp_t lflags = kmem_flags_convert(flags); 167 void *ptr; 168 169 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM); 170 171 /* Resulting allocated memory will be page aligned */ 172 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 173 174 return (ptr); 175 } 176 177 static void 178 kv_free(spl_kmem_cache_t *skc, void *ptr, int size) 179 { 180 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 181 182 /* 183 * The Linux direct reclaim path uses this out of band value to 184 * determine if forward progress is being made. Normally this is 185 * incremented by kmem_freepages() which is part of the various 186 * Linux slab implementations. However, since we are using none 187 * of that infrastructure we are responsible for incrementing it. 188 */ 189 if (current->reclaim_state) 190 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT; 191 192 vfree(ptr); 193 } 194 195 /* 196 * Required space for each aligned sks. 197 */ 198 static inline uint32_t 199 spl_sks_size(spl_kmem_cache_t *skc) 200 { 201 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t), 202 skc->skc_obj_align, uint32_t)); 203 } 204 205 /* 206 * Required space for each aligned object. 207 */ 208 static inline uint32_t 209 spl_obj_size(spl_kmem_cache_t *skc) 210 { 211 uint32_t align = skc->skc_obj_align; 212 213 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) + 214 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t)); 215 } 216 217 uint64_t 218 spl_kmem_cache_inuse(kmem_cache_t *cache) 219 { 220 return (cache->skc_obj_total); 221 } 222 EXPORT_SYMBOL(spl_kmem_cache_inuse); 223 224 uint64_t 225 spl_kmem_cache_entry_size(kmem_cache_t *cache) 226 { 227 return (cache->skc_obj_size); 228 } 229 EXPORT_SYMBOL(spl_kmem_cache_entry_size); 230 231 /* 232 * Lookup the spl_kmem_object_t for an object given that object. 233 */ 234 static inline spl_kmem_obj_t * 235 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj) 236 { 237 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size, 238 skc->skc_obj_align, uint32_t)); 239 } 240 241 /* 242 * It's important that we pack the spl_kmem_obj_t structure and the 243 * actual objects in to one large address space to minimize the number 244 * of calls to the allocator. It is far better to do a few large 245 * allocations and then subdivide it ourselves. Now which allocator 246 * we use requires balancing a few trade offs. 247 * 248 * For small objects we use kmem_alloc() because as long as you are 249 * only requesting a small number of pages (ideally just one) its cheap. 250 * However, when you start requesting multiple pages with kmem_alloc() 251 * it gets increasingly expensive since it requires contiguous pages. 252 * For this reason we shift to vmem_alloc() for slabs of large objects 253 * which removes the need for contiguous pages. We do not use 254 * vmem_alloc() in all cases because there is significant locking 255 * overhead in __get_vm_area_node(). This function takes a single 256 * global lock when acquiring an available virtual address range which 257 * serializes all vmem_alloc()'s for all slab caches. Using slightly 258 * different allocation functions for small and large objects should 259 * give us the best of both worlds. 260 * 261 * +------------------------+ 262 * | spl_kmem_slab_t --+-+ | 263 * | skc_obj_size <-+ | | 264 * | spl_kmem_obj_t | | 265 * | skc_obj_size <---+ | 266 * | spl_kmem_obj_t | | 267 * | ... v | 268 * +------------------------+ 269 */ 270 static spl_kmem_slab_t * 271 spl_slab_alloc(spl_kmem_cache_t *skc, int flags) 272 { 273 spl_kmem_slab_t *sks; 274 void *base; 275 uint32_t obj_size; 276 277 base = kv_alloc(skc, skc->skc_slab_size, flags); 278 if (base == NULL) 279 return (NULL); 280 281 sks = (spl_kmem_slab_t *)base; 282 sks->sks_magic = SKS_MAGIC; 283 sks->sks_objs = skc->skc_slab_objs; 284 sks->sks_age = jiffies; 285 sks->sks_cache = skc; 286 INIT_LIST_HEAD(&sks->sks_list); 287 INIT_LIST_HEAD(&sks->sks_free_list); 288 sks->sks_ref = 0; 289 obj_size = spl_obj_size(skc); 290 291 for (int i = 0; i < sks->sks_objs; i++) { 292 void *obj = base + spl_sks_size(skc) + (i * obj_size); 293 294 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 295 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj); 296 sko->sko_addr = obj; 297 sko->sko_magic = SKO_MAGIC; 298 sko->sko_slab = sks; 299 INIT_LIST_HEAD(&sko->sko_list); 300 list_add_tail(&sko->sko_list, &sks->sks_free_list); 301 } 302 303 return (sks); 304 } 305 306 /* 307 * Remove a slab from complete or partial list, it must be called with 308 * the 'skc->skc_lock' held but the actual free must be performed 309 * outside the lock to prevent deadlocking on vmem addresses. 310 */ 311 static void 312 spl_slab_free(spl_kmem_slab_t *sks, 313 struct list_head *sks_list, struct list_head *sko_list) 314 { 315 spl_kmem_cache_t *skc; 316 317 ASSERT(sks->sks_magic == SKS_MAGIC); 318 ASSERT(sks->sks_ref == 0); 319 320 skc = sks->sks_cache; 321 ASSERT(skc->skc_magic == SKC_MAGIC); 322 323 /* 324 * Update slab/objects counters in the cache, then remove the 325 * slab from the skc->skc_partial_list. Finally add the slab 326 * and all its objects in to the private work lists where the 327 * destructors will be called and the memory freed to the system. 328 */ 329 skc->skc_obj_total -= sks->sks_objs; 330 skc->skc_slab_total--; 331 list_del(&sks->sks_list); 332 list_add(&sks->sks_list, sks_list); 333 list_splice_init(&sks->sks_free_list, sko_list); 334 } 335 336 /* 337 * Reclaim empty slabs at the end of the partial list. 338 */ 339 static void 340 spl_slab_reclaim(spl_kmem_cache_t *skc) 341 { 342 spl_kmem_slab_t *sks = NULL, *m = NULL; 343 spl_kmem_obj_t *sko = NULL, *n = NULL; 344 LIST_HEAD(sks_list); 345 LIST_HEAD(sko_list); 346 347 /* 348 * Empty slabs and objects must be moved to a private list so they 349 * can be safely freed outside the spin lock. All empty slabs are 350 * at the end of skc->skc_partial_list, therefore once a non-empty 351 * slab is found we can stop scanning. 352 */ 353 spin_lock(&skc->skc_lock); 354 list_for_each_entry_safe_reverse(sks, m, 355 &skc->skc_partial_list, sks_list) { 356 357 if (sks->sks_ref > 0) 358 break; 359 360 spl_slab_free(sks, &sks_list, &sko_list); 361 } 362 spin_unlock(&skc->skc_lock); 363 364 /* 365 * The following two loops ensure all the object destructors are run, 366 * and the slabs themselves are freed. This is all done outside the 367 * skc->skc_lock since this allows the destructor to sleep, and 368 * allows us to perform a conditional reschedule when a freeing a 369 * large number of objects and slabs back to the system. 370 */ 371 372 list_for_each_entry_safe(sko, n, &sko_list, sko_list) { 373 ASSERT(sko->sko_magic == SKO_MAGIC); 374 } 375 376 list_for_each_entry_safe(sks, m, &sks_list, sks_list) { 377 ASSERT(sks->sks_magic == SKS_MAGIC); 378 kv_free(skc, sks, skc->skc_slab_size); 379 } 380 } 381 382 static spl_kmem_emergency_t * 383 spl_emergency_search(struct rb_root *root, void *obj) 384 { 385 struct rb_node *node = root->rb_node; 386 spl_kmem_emergency_t *ske; 387 unsigned long address = (unsigned long)obj; 388 389 while (node) { 390 ske = container_of(node, spl_kmem_emergency_t, ske_node); 391 392 if (address < ske->ske_obj) 393 node = node->rb_left; 394 else if (address > ske->ske_obj) 395 node = node->rb_right; 396 else 397 return (ske); 398 } 399 400 return (NULL); 401 } 402 403 static int 404 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske) 405 { 406 struct rb_node **new = &(root->rb_node), *parent = NULL; 407 spl_kmem_emergency_t *ske_tmp; 408 unsigned long address = ske->ske_obj; 409 410 while (*new) { 411 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node); 412 413 parent = *new; 414 if (address < ske_tmp->ske_obj) 415 new = &((*new)->rb_left); 416 else if (address > ske_tmp->ske_obj) 417 new = &((*new)->rb_right); 418 else 419 return (0); 420 } 421 422 rb_link_node(&ske->ske_node, parent, new); 423 rb_insert_color(&ske->ske_node, root); 424 425 return (1); 426 } 427 428 /* 429 * Allocate a single emergency object and track it in a red black tree. 430 */ 431 static int 432 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj) 433 { 434 gfp_t lflags = kmem_flags_convert(flags); 435 spl_kmem_emergency_t *ske; 436 int order = get_order(skc->skc_obj_size); 437 int empty; 438 439 /* Last chance use a partial slab if one now exists */ 440 spin_lock(&skc->skc_lock); 441 empty = list_empty(&skc->skc_partial_list); 442 spin_unlock(&skc->skc_lock); 443 if (!empty) 444 return (-EEXIST); 445 446 ske = kmalloc(sizeof (*ske), lflags); 447 if (ske == NULL) 448 return (-ENOMEM); 449 450 ske->ske_obj = __get_free_pages(lflags, order); 451 if (ske->ske_obj == 0) { 452 kfree(ske); 453 return (-ENOMEM); 454 } 455 456 spin_lock(&skc->skc_lock); 457 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske); 458 if (likely(empty)) { 459 skc->skc_obj_total++; 460 skc->skc_obj_emergency++; 461 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max) 462 skc->skc_obj_emergency_max = skc->skc_obj_emergency; 463 } 464 spin_unlock(&skc->skc_lock); 465 466 if (unlikely(!empty)) { 467 free_pages(ske->ske_obj, order); 468 kfree(ske); 469 return (-EINVAL); 470 } 471 472 *obj = (void *)ske->ske_obj; 473 474 return (0); 475 } 476 477 /* 478 * Locate the passed object in the red black tree and free it. 479 */ 480 static int 481 spl_emergency_free(spl_kmem_cache_t *skc, void *obj) 482 { 483 spl_kmem_emergency_t *ske; 484 int order = get_order(skc->skc_obj_size); 485 486 spin_lock(&skc->skc_lock); 487 ske = spl_emergency_search(&skc->skc_emergency_tree, obj); 488 if (ske) { 489 rb_erase(&ske->ske_node, &skc->skc_emergency_tree); 490 skc->skc_obj_emergency--; 491 skc->skc_obj_total--; 492 } 493 spin_unlock(&skc->skc_lock); 494 495 if (ske == NULL) 496 return (-ENOENT); 497 498 free_pages(ske->ske_obj, order); 499 kfree(ske); 500 501 return (0); 502 } 503 504 /* 505 * Release objects from the per-cpu magazine back to their slab. The flush 506 * argument contains the max number of entries to remove from the magazine. 507 */ 508 static void 509 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush) 510 { 511 spin_lock(&skc->skc_lock); 512 513 ASSERT(skc->skc_magic == SKC_MAGIC); 514 ASSERT(skm->skm_magic == SKM_MAGIC); 515 516 int count = MIN(flush, skm->skm_avail); 517 for (int i = 0; i < count; i++) 518 spl_cache_shrink(skc, skm->skm_objs[i]); 519 520 skm->skm_avail -= count; 521 memmove(skm->skm_objs, &(skm->skm_objs[count]), 522 sizeof (void *) * skm->skm_avail); 523 524 spin_unlock(&skc->skc_lock); 525 } 526 527 /* 528 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t. 529 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However, 530 * for very small objects we may end up with more than this so as not 531 * to waste space in the minimal allocation of a single page. Also for 532 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min, 533 * lower than this and we will fail. 534 */ 535 static int 536 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size) 537 { 538 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs; 539 540 sks_size = spl_sks_size(skc); 541 obj_size = spl_obj_size(skc); 542 max_size = (spl_kmem_cache_max_size * 1024 * 1024); 543 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size); 544 545 if (tgt_size <= max_size) { 546 tgt_objs = (tgt_size - sks_size) / obj_size; 547 } else { 548 tgt_objs = (max_size - sks_size) / obj_size; 549 tgt_size = (tgt_objs * obj_size) + sks_size; 550 } 551 552 if (tgt_objs == 0) 553 return (-ENOSPC); 554 555 *objs = tgt_objs; 556 *size = tgt_size; 557 558 return (0); 559 } 560 561 /* 562 * Make a guess at reasonable per-cpu magazine size based on the size of 563 * each object and the cost of caching N of them in each magazine. Long 564 * term this should really adapt based on an observed usage heuristic. 565 */ 566 static int 567 spl_magazine_size(spl_kmem_cache_t *skc) 568 { 569 uint32_t obj_size = spl_obj_size(skc); 570 int size; 571 572 if (spl_kmem_cache_magazine_size > 0) 573 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2)); 574 575 /* Per-magazine sizes below assume a 4Kib page size */ 576 if (obj_size > (PAGE_SIZE * 256)) 577 size = 4; /* Minimum 4Mib per-magazine */ 578 else if (obj_size > (PAGE_SIZE * 32)) 579 size = 16; /* Minimum 2Mib per-magazine */ 580 else if (obj_size > (PAGE_SIZE)) 581 size = 64; /* Minimum 256Kib per-magazine */ 582 else if (obj_size > (PAGE_SIZE / 4)) 583 size = 128; /* Minimum 128Kib per-magazine */ 584 else 585 size = 256; 586 587 return (size); 588 } 589 590 /* 591 * Allocate a per-cpu magazine to associate with a specific core. 592 */ 593 static spl_kmem_magazine_t * 594 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu) 595 { 596 spl_kmem_magazine_t *skm; 597 int size = sizeof (spl_kmem_magazine_t) + 598 sizeof (void *) * skc->skc_mag_size; 599 600 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu)); 601 if (skm) { 602 skm->skm_magic = SKM_MAGIC; 603 skm->skm_avail = 0; 604 skm->skm_size = skc->skc_mag_size; 605 skm->skm_refill = skc->skc_mag_refill; 606 skm->skm_cache = skc; 607 skm->skm_cpu = cpu; 608 } 609 610 return (skm); 611 } 612 613 /* 614 * Free a per-cpu magazine associated with a specific core. 615 */ 616 static void 617 spl_magazine_free(spl_kmem_magazine_t *skm) 618 { 619 ASSERT(skm->skm_magic == SKM_MAGIC); 620 ASSERT(skm->skm_avail == 0); 621 kfree(skm); 622 } 623 624 /* 625 * Create all pre-cpu magazines of reasonable sizes. 626 */ 627 static int 628 spl_magazine_create(spl_kmem_cache_t *skc) 629 { 630 int i = 0; 631 632 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 633 634 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) * 635 num_possible_cpus(), kmem_flags_convert(KM_SLEEP)); 636 skc->skc_mag_size = spl_magazine_size(skc); 637 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2; 638 639 for_each_possible_cpu(i) { 640 skc->skc_mag[i] = spl_magazine_alloc(skc, i); 641 if (!skc->skc_mag[i]) { 642 for (i--; i >= 0; i--) 643 spl_magazine_free(skc->skc_mag[i]); 644 645 kfree(skc->skc_mag); 646 return (-ENOMEM); 647 } 648 } 649 650 return (0); 651 } 652 653 /* 654 * Destroy all pre-cpu magazines. 655 */ 656 static void 657 spl_magazine_destroy(spl_kmem_cache_t *skc) 658 { 659 spl_kmem_magazine_t *skm; 660 int i = 0; 661 662 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 663 664 for_each_possible_cpu(i) { 665 skm = skc->skc_mag[i]; 666 spl_cache_flush(skc, skm, skm->skm_avail); 667 spl_magazine_free(skm); 668 } 669 670 kfree(skc->skc_mag); 671 } 672 673 /* 674 * Create a object cache based on the following arguments: 675 * name cache name 676 * size cache object size 677 * align cache object alignment 678 * ctor cache object constructor 679 * dtor cache object destructor 680 * reclaim cache object reclaim 681 * priv cache private data for ctor/dtor/reclaim 682 * vmp unused must be NULL 683 * flags 684 * KMC_KVMEM Force kvmem backed SPL cache 685 * KMC_SLAB Force Linux slab backed cache 686 * KMC_NODEBUG Disable debugging (unsupported) 687 */ 688 spl_kmem_cache_t * 689 spl_kmem_cache_create(char *name, size_t size, size_t align, 690 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim, 691 void *priv, void *vmp, int flags) 692 { 693 gfp_t lflags = kmem_flags_convert(KM_SLEEP); 694 spl_kmem_cache_t *skc; 695 int rc; 696 697 /* 698 * Unsupported flags 699 */ 700 ASSERT(vmp == NULL); 701 ASSERT(reclaim == NULL); 702 703 might_sleep(); 704 705 skc = kzalloc(sizeof (*skc), lflags); 706 if (skc == NULL) 707 return (NULL); 708 709 skc->skc_magic = SKC_MAGIC; 710 skc->skc_name_size = strlen(name) + 1; 711 skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags); 712 if (skc->skc_name == NULL) { 713 kfree(skc); 714 return (NULL); 715 } 716 strncpy(skc->skc_name, name, skc->skc_name_size); 717 718 skc->skc_ctor = ctor; 719 skc->skc_dtor = dtor; 720 skc->skc_private = priv; 721 skc->skc_vmp = vmp; 722 skc->skc_linux_cache = NULL; 723 skc->skc_flags = flags; 724 skc->skc_obj_size = size; 725 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN; 726 atomic_set(&skc->skc_ref, 0); 727 728 INIT_LIST_HEAD(&skc->skc_list); 729 INIT_LIST_HEAD(&skc->skc_complete_list); 730 INIT_LIST_HEAD(&skc->skc_partial_list); 731 skc->skc_emergency_tree = RB_ROOT; 732 spin_lock_init(&skc->skc_lock); 733 init_waitqueue_head(&skc->skc_waitq); 734 skc->skc_slab_fail = 0; 735 skc->skc_slab_create = 0; 736 skc->skc_slab_destroy = 0; 737 skc->skc_slab_total = 0; 738 skc->skc_slab_alloc = 0; 739 skc->skc_slab_max = 0; 740 skc->skc_obj_total = 0; 741 skc->skc_obj_alloc = 0; 742 skc->skc_obj_max = 0; 743 skc->skc_obj_deadlock = 0; 744 skc->skc_obj_emergency = 0; 745 skc->skc_obj_emergency_max = 0; 746 747 rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0, 748 GFP_KERNEL); 749 if (rc != 0) { 750 kfree(skc); 751 return (NULL); 752 } 753 754 /* 755 * Verify the requested alignment restriction is sane. 756 */ 757 if (align) { 758 VERIFY(ISP2(align)); 759 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); 760 VERIFY3U(align, <=, PAGE_SIZE); 761 skc->skc_obj_align = align; 762 } 763 764 /* 765 * When no specific type of slab is requested (kmem, vmem, or 766 * linuxslab) then select a cache type based on the object size 767 * and default tunables. 768 */ 769 if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) { 770 if (spl_kmem_cache_slab_limit && 771 size <= (size_t)spl_kmem_cache_slab_limit) { 772 /* 773 * Objects smaller than spl_kmem_cache_slab_limit can 774 * use the Linux slab for better space-efficiency. 775 */ 776 skc->skc_flags |= KMC_SLAB; 777 } else { 778 /* 779 * All other objects are considered large and are 780 * placed on kvmem backed slabs. 781 */ 782 skc->skc_flags |= KMC_KVMEM; 783 } 784 } 785 786 /* 787 * Given the type of slab allocate the required resources. 788 */ 789 if (skc->skc_flags & KMC_KVMEM) { 790 rc = spl_slab_size(skc, 791 &skc->skc_slab_objs, &skc->skc_slab_size); 792 if (rc) 793 goto out; 794 795 rc = spl_magazine_create(skc); 796 if (rc) 797 goto out; 798 } else { 799 unsigned long slabflags = 0; 800 801 if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) { 802 rc = EINVAL; 803 goto out; 804 } 805 806 #if defined(SLAB_USERCOPY) 807 /* 808 * Required for PAX-enabled kernels if the slab is to be 809 * used for copying between user and kernel space. 810 */ 811 slabflags |= SLAB_USERCOPY; 812 #endif 813 814 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY) 815 /* 816 * Newer grsec patchset uses kmem_cache_create_usercopy() 817 * instead of SLAB_USERCOPY flag 818 */ 819 skc->skc_linux_cache = kmem_cache_create_usercopy( 820 skc->skc_name, size, align, slabflags, 0, size, NULL); 821 #else 822 skc->skc_linux_cache = kmem_cache_create( 823 skc->skc_name, size, align, slabflags, NULL); 824 #endif 825 if (skc->skc_linux_cache == NULL) { 826 rc = ENOMEM; 827 goto out; 828 } 829 } 830 831 down_write(&spl_kmem_cache_sem); 832 list_add_tail(&skc->skc_list, &spl_kmem_cache_list); 833 up_write(&spl_kmem_cache_sem); 834 835 return (skc); 836 out: 837 kfree(skc->skc_name); 838 percpu_counter_destroy(&skc->skc_linux_alloc); 839 kfree(skc); 840 return (NULL); 841 } 842 EXPORT_SYMBOL(spl_kmem_cache_create); 843 844 /* 845 * Register a move callback for cache defragmentation. 846 * XXX: Unimplemented but harmless to stub out for now. 847 */ 848 void 849 spl_kmem_cache_set_move(spl_kmem_cache_t *skc, 850 kmem_cbrc_t (move)(void *, void *, size_t, void *)) 851 { 852 ASSERT(move != NULL); 853 } 854 EXPORT_SYMBOL(spl_kmem_cache_set_move); 855 856 /* 857 * Destroy a cache and all objects associated with the cache. 858 */ 859 void 860 spl_kmem_cache_destroy(spl_kmem_cache_t *skc) 861 { 862 DECLARE_WAIT_QUEUE_HEAD(wq); 863 taskqid_t id; 864 865 ASSERT(skc->skc_magic == SKC_MAGIC); 866 ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB)); 867 868 down_write(&spl_kmem_cache_sem); 869 list_del_init(&skc->skc_list); 870 up_write(&spl_kmem_cache_sem); 871 872 /* Cancel any and wait for any pending delayed tasks */ 873 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 874 875 spin_lock(&skc->skc_lock); 876 id = skc->skc_taskqid; 877 spin_unlock(&skc->skc_lock); 878 879 taskq_cancel_id(spl_kmem_cache_taskq, id); 880 881 /* 882 * Wait until all current callers complete, this is mainly 883 * to catch the case where a low memory situation triggers a 884 * cache reaping action which races with this destroy. 885 */ 886 wait_event(wq, atomic_read(&skc->skc_ref) == 0); 887 888 if (skc->skc_flags & KMC_KVMEM) { 889 spl_magazine_destroy(skc); 890 spl_slab_reclaim(skc); 891 } else { 892 ASSERT(skc->skc_flags & KMC_SLAB); 893 kmem_cache_destroy(skc->skc_linux_cache); 894 } 895 896 spin_lock(&skc->skc_lock); 897 898 /* 899 * Validate there are no objects in use and free all the 900 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. 901 */ 902 ASSERT3U(skc->skc_slab_alloc, ==, 0); 903 ASSERT3U(skc->skc_obj_alloc, ==, 0); 904 ASSERT3U(skc->skc_slab_total, ==, 0); 905 ASSERT3U(skc->skc_obj_total, ==, 0); 906 ASSERT3U(skc->skc_obj_emergency, ==, 0); 907 ASSERT(list_empty(&skc->skc_complete_list)); 908 909 ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0); 910 percpu_counter_destroy(&skc->skc_linux_alloc); 911 912 spin_unlock(&skc->skc_lock); 913 914 kfree(skc->skc_name); 915 kfree(skc); 916 } 917 EXPORT_SYMBOL(spl_kmem_cache_destroy); 918 919 /* 920 * Allocate an object from a slab attached to the cache. This is used to 921 * repopulate the per-cpu magazine caches in batches when they run low. 922 */ 923 static void * 924 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks) 925 { 926 spl_kmem_obj_t *sko; 927 928 ASSERT(skc->skc_magic == SKC_MAGIC); 929 ASSERT(sks->sks_magic == SKS_MAGIC); 930 931 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list); 932 ASSERT(sko->sko_magic == SKO_MAGIC); 933 ASSERT(sko->sko_addr != NULL); 934 935 /* Remove from sks_free_list */ 936 list_del_init(&sko->sko_list); 937 938 sks->sks_age = jiffies; 939 sks->sks_ref++; 940 skc->skc_obj_alloc++; 941 942 /* Track max obj usage statistics */ 943 if (skc->skc_obj_alloc > skc->skc_obj_max) 944 skc->skc_obj_max = skc->skc_obj_alloc; 945 946 /* Track max slab usage statistics */ 947 if (sks->sks_ref == 1) { 948 skc->skc_slab_alloc++; 949 950 if (skc->skc_slab_alloc > skc->skc_slab_max) 951 skc->skc_slab_max = skc->skc_slab_alloc; 952 } 953 954 return (sko->sko_addr); 955 } 956 957 /* 958 * Generic slab allocation function to run by the global work queues. 959 * It is responsible for allocating a new slab, linking it in to the list 960 * of partial slabs, and then waking any waiters. 961 */ 962 static int 963 __spl_cache_grow(spl_kmem_cache_t *skc, int flags) 964 { 965 spl_kmem_slab_t *sks; 966 967 fstrans_cookie_t cookie = spl_fstrans_mark(); 968 sks = spl_slab_alloc(skc, flags); 969 spl_fstrans_unmark(cookie); 970 971 spin_lock(&skc->skc_lock); 972 if (sks) { 973 skc->skc_slab_total++; 974 skc->skc_obj_total += sks->sks_objs; 975 list_add_tail(&sks->sks_list, &skc->skc_partial_list); 976 977 smp_mb__before_atomic(); 978 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 979 smp_mb__after_atomic(); 980 } 981 spin_unlock(&skc->skc_lock); 982 983 return (sks == NULL ? -ENOMEM : 0); 984 } 985 986 static void 987 spl_cache_grow_work(void *data) 988 { 989 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data; 990 spl_kmem_cache_t *skc = ska->ska_cache; 991 992 int error = __spl_cache_grow(skc, ska->ska_flags); 993 994 atomic_dec(&skc->skc_ref); 995 smp_mb__before_atomic(); 996 clear_bit(KMC_BIT_GROWING, &skc->skc_flags); 997 smp_mb__after_atomic(); 998 if (error == 0) 999 wake_up_all(&skc->skc_waitq); 1000 1001 kfree(ska); 1002 } 1003 1004 /* 1005 * Returns non-zero when a new slab should be available. 1006 */ 1007 static int 1008 spl_cache_grow_wait(spl_kmem_cache_t *skc) 1009 { 1010 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags)); 1011 } 1012 1013 /* 1014 * No available objects on any slabs, create a new slab. Note that this 1015 * functionality is disabled for KMC_SLAB caches which are backed by the 1016 * Linux slab. 1017 */ 1018 static int 1019 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj) 1020 { 1021 int remaining, rc = 0; 1022 1023 ASSERT0(flags & ~KM_PUBLIC_MASK); 1024 ASSERT(skc->skc_magic == SKC_MAGIC); 1025 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 1026 might_sleep(); 1027 *obj = NULL; 1028 1029 /* 1030 * Before allocating a new slab wait for any reaping to complete and 1031 * then return so the local magazine can be rechecked for new objects. 1032 */ 1033 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) { 1034 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING, 1035 TASK_UNINTERRUPTIBLE); 1036 return (rc ? rc : -EAGAIN); 1037 } 1038 1039 /* 1040 * Note: It would be nice to reduce the overhead of context switch 1041 * and improve NUMA locality, by trying to allocate a new slab in the 1042 * current process context with KM_NOSLEEP flag. 1043 * 1044 * However, this can't be applied to vmem/kvmem due to a bug that 1045 * spl_vmalloc() doesn't honor gfp flags in page table allocation. 1046 */ 1047 1048 /* 1049 * This is handled by dispatching a work request to the global work 1050 * queue. This allows us to asynchronously allocate a new slab while 1051 * retaining the ability to safely fall back to a smaller synchronous 1052 * allocations to ensure forward progress is always maintained. 1053 */ 1054 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) { 1055 spl_kmem_alloc_t *ska; 1056 1057 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags)); 1058 if (ska == NULL) { 1059 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags); 1060 smp_mb__after_atomic(); 1061 wake_up_all(&skc->skc_waitq); 1062 return (-ENOMEM); 1063 } 1064 1065 atomic_inc(&skc->skc_ref); 1066 ska->ska_cache = skc; 1067 ska->ska_flags = flags; 1068 taskq_init_ent(&ska->ska_tqe); 1069 taskq_dispatch_ent(spl_kmem_cache_taskq, 1070 spl_cache_grow_work, ska, 0, &ska->ska_tqe); 1071 } 1072 1073 /* 1074 * The goal here is to only detect the rare case where a virtual slab 1075 * allocation has deadlocked. We must be careful to minimize the use 1076 * of emergency objects which are more expensive to track. Therefore, 1077 * we set a very long timeout for the asynchronous allocation and if 1078 * the timeout is reached the cache is flagged as deadlocked. From 1079 * this point only new emergency objects will be allocated until the 1080 * asynchronous allocation completes and clears the deadlocked flag. 1081 */ 1082 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) { 1083 rc = spl_emergency_alloc(skc, flags, obj); 1084 } else { 1085 remaining = wait_event_timeout(skc->skc_waitq, 1086 spl_cache_grow_wait(skc), HZ / 10); 1087 1088 if (!remaining) { 1089 spin_lock(&skc->skc_lock); 1090 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) { 1091 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 1092 skc->skc_obj_deadlock++; 1093 } 1094 spin_unlock(&skc->skc_lock); 1095 } 1096 1097 rc = -ENOMEM; 1098 } 1099 1100 return (rc); 1101 } 1102 1103 /* 1104 * Refill a per-cpu magazine with objects from the slabs for this cache. 1105 * Ideally the magazine can be repopulated using existing objects which have 1106 * been released, however if we are unable to locate enough free objects new 1107 * slabs of objects will be created. On success NULL is returned, otherwise 1108 * the address of a single emergency object is returned for use by the caller. 1109 */ 1110 static void * 1111 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags) 1112 { 1113 spl_kmem_slab_t *sks; 1114 int count = 0, rc, refill; 1115 void *obj = NULL; 1116 1117 ASSERT(skc->skc_magic == SKC_MAGIC); 1118 ASSERT(skm->skm_magic == SKM_MAGIC); 1119 1120 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail); 1121 spin_lock(&skc->skc_lock); 1122 1123 while (refill > 0) { 1124 /* No slabs available we may need to grow the cache */ 1125 if (list_empty(&skc->skc_partial_list)) { 1126 spin_unlock(&skc->skc_lock); 1127 1128 local_irq_enable(); 1129 rc = spl_cache_grow(skc, flags, &obj); 1130 local_irq_disable(); 1131 1132 /* Emergency object for immediate use by caller */ 1133 if (rc == 0 && obj != NULL) 1134 return (obj); 1135 1136 if (rc) 1137 goto out; 1138 1139 /* Rescheduled to different CPU skm is not local */ 1140 if (skm != skc->skc_mag[smp_processor_id()]) 1141 goto out; 1142 1143 /* 1144 * Potentially rescheduled to the same CPU but 1145 * allocations may have occurred from this CPU while 1146 * we were sleeping so recalculate max refill. 1147 */ 1148 refill = MIN(refill, skm->skm_size - skm->skm_avail); 1149 1150 spin_lock(&skc->skc_lock); 1151 continue; 1152 } 1153 1154 /* Grab the next available slab */ 1155 sks = list_entry((&skc->skc_partial_list)->next, 1156 spl_kmem_slab_t, sks_list); 1157 ASSERT(sks->sks_magic == SKS_MAGIC); 1158 ASSERT(sks->sks_ref < sks->sks_objs); 1159 ASSERT(!list_empty(&sks->sks_free_list)); 1160 1161 /* 1162 * Consume as many objects as needed to refill the requested 1163 * cache. We must also be careful not to overfill it. 1164 */ 1165 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && 1166 ++count) { 1167 ASSERT(skm->skm_avail < skm->skm_size); 1168 ASSERT(count < skm->skm_size); 1169 skm->skm_objs[skm->skm_avail++] = 1170 spl_cache_obj(skc, sks); 1171 } 1172 1173 /* Move slab to skc_complete_list when full */ 1174 if (sks->sks_ref == sks->sks_objs) { 1175 list_del(&sks->sks_list); 1176 list_add(&sks->sks_list, &skc->skc_complete_list); 1177 } 1178 } 1179 1180 spin_unlock(&skc->skc_lock); 1181 out: 1182 return (NULL); 1183 } 1184 1185 /* 1186 * Release an object back to the slab from which it came. 1187 */ 1188 static void 1189 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj) 1190 { 1191 spl_kmem_slab_t *sks = NULL; 1192 spl_kmem_obj_t *sko = NULL; 1193 1194 ASSERT(skc->skc_magic == SKC_MAGIC); 1195 1196 sko = spl_sko_from_obj(skc, obj); 1197 ASSERT(sko->sko_magic == SKO_MAGIC); 1198 sks = sko->sko_slab; 1199 ASSERT(sks->sks_magic == SKS_MAGIC); 1200 ASSERT(sks->sks_cache == skc); 1201 list_add(&sko->sko_list, &sks->sks_free_list); 1202 1203 sks->sks_age = jiffies; 1204 sks->sks_ref--; 1205 skc->skc_obj_alloc--; 1206 1207 /* 1208 * Move slab to skc_partial_list when no longer full. Slabs 1209 * are added to the head to keep the partial list is quasi-full 1210 * sorted order. Fuller at the head, emptier at the tail. 1211 */ 1212 if (sks->sks_ref == (sks->sks_objs - 1)) { 1213 list_del(&sks->sks_list); 1214 list_add(&sks->sks_list, &skc->skc_partial_list); 1215 } 1216 1217 /* 1218 * Move empty slabs to the end of the partial list so 1219 * they can be easily found and freed during reclamation. 1220 */ 1221 if (sks->sks_ref == 0) { 1222 list_del(&sks->sks_list); 1223 list_add_tail(&sks->sks_list, &skc->skc_partial_list); 1224 skc->skc_slab_alloc--; 1225 } 1226 } 1227 1228 /* 1229 * Allocate an object from the per-cpu magazine, or if the magazine 1230 * is empty directly allocate from a slab and repopulate the magazine. 1231 */ 1232 void * 1233 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags) 1234 { 1235 spl_kmem_magazine_t *skm; 1236 void *obj = NULL; 1237 1238 ASSERT0(flags & ~KM_PUBLIC_MASK); 1239 ASSERT(skc->skc_magic == SKC_MAGIC); 1240 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1241 1242 /* 1243 * Allocate directly from a Linux slab. All optimizations are left 1244 * to the underlying cache we only need to guarantee that KM_SLEEP 1245 * callers will never fail. 1246 */ 1247 if (skc->skc_flags & KMC_SLAB) { 1248 struct kmem_cache *slc = skc->skc_linux_cache; 1249 do { 1250 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags)); 1251 } while ((obj == NULL) && !(flags & KM_NOSLEEP)); 1252 1253 if (obj != NULL) { 1254 /* 1255 * Even though we leave everything up to the 1256 * underlying cache we still keep track of 1257 * how many objects we've allocated in it for 1258 * better debuggability. 1259 */ 1260 percpu_counter_inc(&skc->skc_linux_alloc); 1261 } 1262 goto ret; 1263 } 1264 1265 local_irq_disable(); 1266 1267 restart: 1268 /* 1269 * Safe to update per-cpu structure without lock, but 1270 * in the restart case we must be careful to reacquire 1271 * the local magazine since this may have changed 1272 * when we need to grow the cache. 1273 */ 1274 skm = skc->skc_mag[smp_processor_id()]; 1275 ASSERT(skm->skm_magic == SKM_MAGIC); 1276 1277 if (likely(skm->skm_avail)) { 1278 /* Object available in CPU cache, use it */ 1279 obj = skm->skm_objs[--skm->skm_avail]; 1280 } else { 1281 obj = spl_cache_refill(skc, skm, flags); 1282 if ((obj == NULL) && !(flags & KM_NOSLEEP)) 1283 goto restart; 1284 1285 local_irq_enable(); 1286 goto ret; 1287 } 1288 1289 local_irq_enable(); 1290 ASSERT(obj); 1291 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 1292 1293 ret: 1294 /* Pre-emptively migrate object to CPU L1 cache */ 1295 if (obj) { 1296 if (obj && skc->skc_ctor) 1297 skc->skc_ctor(obj, skc->skc_private, flags); 1298 else 1299 prefetchw(obj); 1300 } 1301 1302 return (obj); 1303 } 1304 EXPORT_SYMBOL(spl_kmem_cache_alloc); 1305 1306 /* 1307 * Free an object back to the local per-cpu magazine, there is no 1308 * guarantee that this is the same magazine the object was originally 1309 * allocated from. We may need to flush entire from the magazine 1310 * back to the slabs to make space. 1311 */ 1312 void 1313 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj) 1314 { 1315 spl_kmem_magazine_t *skm; 1316 unsigned long flags; 1317 int do_reclaim = 0; 1318 int do_emergency = 0; 1319 1320 ASSERT(skc->skc_magic == SKC_MAGIC); 1321 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1322 1323 /* 1324 * Run the destructor 1325 */ 1326 if (skc->skc_dtor) 1327 skc->skc_dtor(obj, skc->skc_private); 1328 1329 /* 1330 * Free the object from the Linux underlying Linux slab. 1331 */ 1332 if (skc->skc_flags & KMC_SLAB) { 1333 kmem_cache_free(skc->skc_linux_cache, obj); 1334 percpu_counter_dec(&skc->skc_linux_alloc); 1335 return; 1336 } 1337 1338 /* 1339 * While a cache has outstanding emergency objects all freed objects 1340 * must be checked. However, since emergency objects will never use 1341 * a virtual address these objects can be safely excluded as an 1342 * optimization. 1343 */ 1344 if (!is_vmalloc_addr(obj)) { 1345 spin_lock(&skc->skc_lock); 1346 do_emergency = (skc->skc_obj_emergency > 0); 1347 spin_unlock(&skc->skc_lock); 1348 1349 if (do_emergency && (spl_emergency_free(skc, obj) == 0)) 1350 return; 1351 } 1352 1353 local_irq_save(flags); 1354 1355 /* 1356 * Safe to update per-cpu structure without lock, but 1357 * no remote memory allocation tracking is being performed 1358 * it is entirely possible to allocate an object from one 1359 * CPU cache and return it to another. 1360 */ 1361 skm = skc->skc_mag[smp_processor_id()]; 1362 ASSERT(skm->skm_magic == SKM_MAGIC); 1363 1364 /* 1365 * Per-CPU cache full, flush it to make space for this object, 1366 * this may result in an empty slab which can be reclaimed once 1367 * interrupts are re-enabled. 1368 */ 1369 if (unlikely(skm->skm_avail >= skm->skm_size)) { 1370 spl_cache_flush(skc, skm, skm->skm_refill); 1371 do_reclaim = 1; 1372 } 1373 1374 /* Available space in cache, use it */ 1375 skm->skm_objs[skm->skm_avail++] = obj; 1376 1377 local_irq_restore(flags); 1378 1379 if (do_reclaim) 1380 spl_slab_reclaim(skc); 1381 } 1382 EXPORT_SYMBOL(spl_kmem_cache_free); 1383 1384 /* 1385 * Depending on how many and which objects are released it may simply 1386 * repopulate the local magazine which will then need to age-out. Objects 1387 * which cannot fit in the magazine will be released back to their slabs 1388 * which will also need to age out before being released. This is all just 1389 * best effort and we do not want to thrash creating and destroying slabs. 1390 */ 1391 void 1392 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc) 1393 { 1394 ASSERT(skc->skc_magic == SKC_MAGIC); 1395 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1396 1397 if (skc->skc_flags & KMC_SLAB) 1398 return; 1399 1400 atomic_inc(&skc->skc_ref); 1401 1402 /* 1403 * Prevent concurrent cache reaping when contended. 1404 */ 1405 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) 1406 goto out; 1407 1408 /* Reclaim from the magazine and free all now empty slabs. */ 1409 unsigned long irq_flags; 1410 local_irq_save(irq_flags); 1411 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()]; 1412 spl_cache_flush(skc, skm, skm->skm_avail); 1413 local_irq_restore(irq_flags); 1414 1415 spl_slab_reclaim(skc); 1416 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags); 1417 smp_mb__after_atomic(); 1418 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING); 1419 out: 1420 atomic_dec(&skc->skc_ref); 1421 } 1422 EXPORT_SYMBOL(spl_kmem_cache_reap_now); 1423 1424 /* 1425 * This is stubbed out for code consistency with other platforms. There 1426 * is existing logic to prevent concurrent reaping so while this is ugly 1427 * it should do no harm. 1428 */ 1429 int 1430 spl_kmem_cache_reap_active() 1431 { 1432 return (0); 1433 } 1434 EXPORT_SYMBOL(spl_kmem_cache_reap_active); 1435 1436 /* 1437 * Reap all free slabs from all registered caches. 1438 */ 1439 void 1440 spl_kmem_reap(void) 1441 { 1442 spl_kmem_cache_t *skc = NULL; 1443 1444 down_read(&spl_kmem_cache_sem); 1445 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { 1446 spl_kmem_cache_reap_now(skc); 1447 } 1448 up_read(&spl_kmem_cache_sem); 1449 } 1450 EXPORT_SYMBOL(spl_kmem_reap); 1451 1452 int 1453 spl_kmem_cache_init(void) 1454 { 1455 init_rwsem(&spl_kmem_cache_sem); 1456 INIT_LIST_HEAD(&spl_kmem_cache_list); 1457 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache", 1458 spl_kmem_cache_kmem_threads, maxclsyspri, 1459 spl_kmem_cache_kmem_threads * 8, INT_MAX, 1460 TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1461 1462 return (0); 1463 } 1464 1465 void 1466 spl_kmem_cache_fini(void) 1467 { 1468 taskq_destroy(spl_kmem_cache_taskq); 1469 } 1470