1 /* 2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3 * Copyright (C) 2007 The Regents of the University of California. 4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6 * UCRL-CODE-235197 7 * 8 * This file is part of the SPL, Solaris Porting Layer. 9 * 10 * The SPL is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * The SPL is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include <linux/percpu_compat.h> 25 #include <sys/kmem.h> 26 #include <sys/kmem_cache.h> 27 #include <sys/taskq.h> 28 #include <sys/timer.h> 29 #include <sys/vmem.h> 30 #include <sys/wait.h> 31 #include <linux/slab.h> 32 #include <linux/swap.h> 33 #include <linux/prefetch.h> 34 35 /* 36 * Within the scope of spl-kmem.c file the kmem_cache_* definitions 37 * are removed to allow access to the real Linux slab allocator. 38 */ 39 #undef kmem_cache_destroy 40 #undef kmem_cache_create 41 #undef kmem_cache_alloc 42 #undef kmem_cache_free 43 44 45 /* 46 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() 47 * with smp_mb__{before,after}_atomic() because they were redundant. This is 48 * only used inside our SLAB allocator, so we implement an internal wrapper 49 * here to give us smp_mb__{before,after}_atomic() on older kernels. 50 */ 51 #ifndef smp_mb__before_atomic 52 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x) 53 #endif 54 55 #ifndef smp_mb__after_atomic 56 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x) 57 #endif 58 59 /* BEGIN CSTYLED */ 60 /* 61 * Cache magazines are an optimization designed to minimize the cost of 62 * allocating memory. They do this by keeping a per-cpu cache of recently 63 * freed objects, which can then be reallocated without taking a lock. This 64 * can improve performance on highly contended caches. However, because 65 * objects in magazines will prevent otherwise empty slabs from being 66 * immediately released this may not be ideal for low memory machines. 67 * 68 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum 69 * magazine size. When this value is set to 0 the magazine size will be 70 * automatically determined based on the object size. Otherwise magazines 71 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines 72 * may never be entirely disabled in this implementation. 73 */ 74 static unsigned int spl_kmem_cache_magazine_size = 0; 75 module_param(spl_kmem_cache_magazine_size, uint, 0444); 76 MODULE_PARM_DESC(spl_kmem_cache_magazine_size, 77 "Default magazine size (2-256), set automatically (0)"); 78 79 /* 80 * The default behavior is to report the number of objects remaining in the 81 * cache. This allows the Linux VM to repeatedly reclaim objects from the 82 * cache when memory is low satisfy other memory allocations. Alternately, 83 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache 84 * is reclaimed. This may increase the likelihood of out of memory events. 85 */ 86 static unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */; 87 module_param(spl_kmem_cache_reclaim, uint, 0644); 88 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)"); 89 90 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB; 91 module_param(spl_kmem_cache_obj_per_slab, uint, 0644); 92 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab"); 93 94 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE; 95 module_param(spl_kmem_cache_max_size, uint, 0644); 96 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB"); 97 98 /* 99 * For small objects the Linux slab allocator should be used to make the most 100 * efficient use of the memory. However, large objects are not supported by 101 * the Linux slab and therefore the SPL implementation is preferred. A cutoff 102 * of 16K was determined to be optimal for architectures using 4K pages and 103 * to also work well on architecutres using larger 64K page sizes. 104 */ 105 static unsigned int spl_kmem_cache_slab_limit = 16384; 106 module_param(spl_kmem_cache_slab_limit, uint, 0644); 107 MODULE_PARM_DESC(spl_kmem_cache_slab_limit, 108 "Objects less than N bytes use the Linux slab"); 109 110 /* 111 * The number of threads available to allocate new slabs for caches. This 112 * should not need to be tuned but it is available for performance analysis. 113 */ 114 static unsigned int spl_kmem_cache_kmem_threads = 4; 115 module_param(spl_kmem_cache_kmem_threads, uint, 0444); 116 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads, 117 "Number of spl_kmem_cache threads"); 118 /* END CSTYLED */ 119 120 /* 121 * Slab allocation interfaces 122 * 123 * While the Linux slab implementation was inspired by the Solaris 124 * implementation I cannot use it to emulate the Solaris APIs. I 125 * require two features which are not provided by the Linux slab. 126 * 127 * 1) Constructors AND destructors. Recent versions of the Linux 128 * kernel have removed support for destructors. This is a deal 129 * breaker for the SPL which contains particularly expensive 130 * initializers for mutex's, condition variables, etc. We also 131 * require a minimal level of cleanup for these data types unlike 132 * many Linux data types which do need to be explicitly destroyed. 133 * 134 * 2) Virtual address space backed slab. Callers of the Solaris slab 135 * expect it to work well for both small are very large allocations. 136 * Because of memory fragmentation the Linux slab which is backed 137 * by kmalloc'ed memory performs very badly when confronted with 138 * large numbers of large allocations. Basing the slab on the 139 * virtual address space removes the need for contiguous pages 140 * and greatly improve performance for large allocations. 141 * 142 * For these reasons, the SPL has its own slab implementation with 143 * the needed features. It is not as highly optimized as either the 144 * Solaris or Linux slabs, but it should get me most of what is 145 * needed until it can be optimized or obsoleted by another approach. 146 * 147 * One serious concern I do have about this method is the relatively 148 * small virtual address space on 32bit arches. This will seriously 149 * constrain the size of the slab caches and their performance. 150 */ 151 152 struct list_head spl_kmem_cache_list; /* List of caches */ 153 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */ 154 static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */ 155 156 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj); 157 158 static void * 159 kv_alloc(spl_kmem_cache_t *skc, int size, int flags) 160 { 161 gfp_t lflags = kmem_flags_convert(flags); 162 void *ptr; 163 164 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM); 165 166 /* Resulting allocated memory will be page aligned */ 167 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 168 169 return (ptr); 170 } 171 172 static void 173 kv_free(spl_kmem_cache_t *skc, void *ptr, int size) 174 { 175 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 176 177 /* 178 * The Linux direct reclaim path uses this out of band value to 179 * determine if forward progress is being made. Normally this is 180 * incremented by kmem_freepages() which is part of the various 181 * Linux slab implementations. However, since we are using none 182 * of that infrastructure we are responsible for incrementing it. 183 */ 184 if (current->reclaim_state) 185 #ifdef HAVE_RECLAIM_STATE_RECLAIMED 186 current->reclaim_state->reclaimed += size >> PAGE_SHIFT; 187 #else 188 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT; 189 #endif 190 vfree(ptr); 191 } 192 193 /* 194 * Required space for each aligned sks. 195 */ 196 static inline uint32_t 197 spl_sks_size(spl_kmem_cache_t *skc) 198 { 199 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t), 200 skc->skc_obj_align, uint32_t)); 201 } 202 203 /* 204 * Required space for each aligned object. 205 */ 206 static inline uint32_t 207 spl_obj_size(spl_kmem_cache_t *skc) 208 { 209 uint32_t align = skc->skc_obj_align; 210 211 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) + 212 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t)); 213 } 214 215 uint64_t 216 spl_kmem_cache_inuse(kmem_cache_t *cache) 217 { 218 return (cache->skc_obj_total); 219 } 220 EXPORT_SYMBOL(spl_kmem_cache_inuse); 221 222 uint64_t 223 spl_kmem_cache_entry_size(kmem_cache_t *cache) 224 { 225 return (cache->skc_obj_size); 226 } 227 EXPORT_SYMBOL(spl_kmem_cache_entry_size); 228 229 /* 230 * Lookup the spl_kmem_object_t for an object given that object. 231 */ 232 static inline spl_kmem_obj_t * 233 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj) 234 { 235 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size, 236 skc->skc_obj_align, uint32_t)); 237 } 238 239 /* 240 * It's important that we pack the spl_kmem_obj_t structure and the 241 * actual objects in to one large address space to minimize the number 242 * of calls to the allocator. It is far better to do a few large 243 * allocations and then subdivide it ourselves. Now which allocator 244 * we use requires balancing a few trade offs. 245 * 246 * For small objects we use kmem_alloc() because as long as you are 247 * only requesting a small number of pages (ideally just one) its cheap. 248 * However, when you start requesting multiple pages with kmem_alloc() 249 * it gets increasingly expensive since it requires contiguous pages. 250 * For this reason we shift to vmem_alloc() for slabs of large objects 251 * which removes the need for contiguous pages. We do not use 252 * vmem_alloc() in all cases because there is significant locking 253 * overhead in __get_vm_area_node(). This function takes a single 254 * global lock when acquiring an available virtual address range which 255 * serializes all vmem_alloc()'s for all slab caches. Using slightly 256 * different allocation functions for small and large objects should 257 * give us the best of both worlds. 258 * 259 * +------------------------+ 260 * | spl_kmem_slab_t --+-+ | 261 * | skc_obj_size <-+ | | 262 * | spl_kmem_obj_t | | 263 * | skc_obj_size <---+ | 264 * | spl_kmem_obj_t | | 265 * | ... v | 266 * +------------------------+ 267 */ 268 static spl_kmem_slab_t * 269 spl_slab_alloc(spl_kmem_cache_t *skc, int flags) 270 { 271 spl_kmem_slab_t *sks; 272 void *base; 273 uint32_t obj_size; 274 275 base = kv_alloc(skc, skc->skc_slab_size, flags); 276 if (base == NULL) 277 return (NULL); 278 279 sks = (spl_kmem_slab_t *)base; 280 sks->sks_magic = SKS_MAGIC; 281 sks->sks_objs = skc->skc_slab_objs; 282 sks->sks_age = jiffies; 283 sks->sks_cache = skc; 284 INIT_LIST_HEAD(&sks->sks_list); 285 INIT_LIST_HEAD(&sks->sks_free_list); 286 sks->sks_ref = 0; 287 obj_size = spl_obj_size(skc); 288 289 for (int i = 0; i < sks->sks_objs; i++) { 290 void *obj = base + spl_sks_size(skc) + (i * obj_size); 291 292 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 293 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj); 294 sko->sko_addr = obj; 295 sko->sko_magic = SKO_MAGIC; 296 sko->sko_slab = sks; 297 INIT_LIST_HEAD(&sko->sko_list); 298 list_add_tail(&sko->sko_list, &sks->sks_free_list); 299 } 300 301 return (sks); 302 } 303 304 /* 305 * Remove a slab from complete or partial list, it must be called with 306 * the 'skc->skc_lock' held but the actual free must be performed 307 * outside the lock to prevent deadlocking on vmem addresses. 308 */ 309 static void 310 spl_slab_free(spl_kmem_slab_t *sks, 311 struct list_head *sks_list, struct list_head *sko_list) 312 { 313 spl_kmem_cache_t *skc; 314 315 ASSERT(sks->sks_magic == SKS_MAGIC); 316 ASSERT(sks->sks_ref == 0); 317 318 skc = sks->sks_cache; 319 ASSERT(skc->skc_magic == SKC_MAGIC); 320 321 /* 322 * Update slab/objects counters in the cache, then remove the 323 * slab from the skc->skc_partial_list. Finally add the slab 324 * and all its objects in to the private work lists where the 325 * destructors will be called and the memory freed to the system. 326 */ 327 skc->skc_obj_total -= sks->sks_objs; 328 skc->skc_slab_total--; 329 list_del(&sks->sks_list); 330 list_add(&sks->sks_list, sks_list); 331 list_splice_init(&sks->sks_free_list, sko_list); 332 } 333 334 /* 335 * Reclaim empty slabs at the end of the partial list. 336 */ 337 static void 338 spl_slab_reclaim(spl_kmem_cache_t *skc) 339 { 340 spl_kmem_slab_t *sks = NULL, *m = NULL; 341 spl_kmem_obj_t *sko = NULL, *n = NULL; 342 LIST_HEAD(sks_list); 343 LIST_HEAD(sko_list); 344 345 /* 346 * Empty slabs and objects must be moved to a private list so they 347 * can be safely freed outside the spin lock. All empty slabs are 348 * at the end of skc->skc_partial_list, therefore once a non-empty 349 * slab is found we can stop scanning. 350 */ 351 spin_lock(&skc->skc_lock); 352 list_for_each_entry_safe_reverse(sks, m, 353 &skc->skc_partial_list, sks_list) { 354 355 if (sks->sks_ref > 0) 356 break; 357 358 spl_slab_free(sks, &sks_list, &sko_list); 359 } 360 spin_unlock(&skc->skc_lock); 361 362 /* 363 * The following two loops ensure all the object destructors are run, 364 * and the slabs themselves are freed. This is all done outside the 365 * skc->skc_lock since this allows the destructor to sleep, and 366 * allows us to perform a conditional reschedule when a freeing a 367 * large number of objects and slabs back to the system. 368 */ 369 370 list_for_each_entry_safe(sko, n, &sko_list, sko_list) { 371 ASSERT(sko->sko_magic == SKO_MAGIC); 372 } 373 374 list_for_each_entry_safe(sks, m, &sks_list, sks_list) { 375 ASSERT(sks->sks_magic == SKS_MAGIC); 376 kv_free(skc, sks, skc->skc_slab_size); 377 } 378 } 379 380 static spl_kmem_emergency_t * 381 spl_emergency_search(struct rb_root *root, void *obj) 382 { 383 struct rb_node *node = root->rb_node; 384 spl_kmem_emergency_t *ske; 385 unsigned long address = (unsigned long)obj; 386 387 while (node) { 388 ske = container_of(node, spl_kmem_emergency_t, ske_node); 389 390 if (address < ske->ske_obj) 391 node = node->rb_left; 392 else if (address > ske->ske_obj) 393 node = node->rb_right; 394 else 395 return (ske); 396 } 397 398 return (NULL); 399 } 400 401 static int 402 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske) 403 { 404 struct rb_node **new = &(root->rb_node), *parent = NULL; 405 spl_kmem_emergency_t *ske_tmp; 406 unsigned long address = ske->ske_obj; 407 408 while (*new) { 409 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node); 410 411 parent = *new; 412 if (address < ske_tmp->ske_obj) 413 new = &((*new)->rb_left); 414 else if (address > ske_tmp->ske_obj) 415 new = &((*new)->rb_right); 416 else 417 return (0); 418 } 419 420 rb_link_node(&ske->ske_node, parent, new); 421 rb_insert_color(&ske->ske_node, root); 422 423 return (1); 424 } 425 426 /* 427 * Allocate a single emergency object and track it in a red black tree. 428 */ 429 static int 430 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj) 431 { 432 gfp_t lflags = kmem_flags_convert(flags); 433 spl_kmem_emergency_t *ske; 434 int order = get_order(skc->skc_obj_size); 435 int empty; 436 437 /* Last chance use a partial slab if one now exists */ 438 spin_lock(&skc->skc_lock); 439 empty = list_empty(&skc->skc_partial_list); 440 spin_unlock(&skc->skc_lock); 441 if (!empty) 442 return (-EEXIST); 443 444 ske = kmalloc(sizeof (*ske), lflags); 445 if (ske == NULL) 446 return (-ENOMEM); 447 448 ske->ske_obj = __get_free_pages(lflags, order); 449 if (ske->ske_obj == 0) { 450 kfree(ske); 451 return (-ENOMEM); 452 } 453 454 spin_lock(&skc->skc_lock); 455 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske); 456 if (likely(empty)) { 457 skc->skc_obj_total++; 458 skc->skc_obj_emergency++; 459 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max) 460 skc->skc_obj_emergency_max = skc->skc_obj_emergency; 461 } 462 spin_unlock(&skc->skc_lock); 463 464 if (unlikely(!empty)) { 465 free_pages(ske->ske_obj, order); 466 kfree(ske); 467 return (-EINVAL); 468 } 469 470 *obj = (void *)ske->ske_obj; 471 472 return (0); 473 } 474 475 /* 476 * Locate the passed object in the red black tree and free it. 477 */ 478 static int 479 spl_emergency_free(spl_kmem_cache_t *skc, void *obj) 480 { 481 spl_kmem_emergency_t *ske; 482 int order = get_order(skc->skc_obj_size); 483 484 spin_lock(&skc->skc_lock); 485 ske = spl_emergency_search(&skc->skc_emergency_tree, obj); 486 if (ske) { 487 rb_erase(&ske->ske_node, &skc->skc_emergency_tree); 488 skc->skc_obj_emergency--; 489 skc->skc_obj_total--; 490 } 491 spin_unlock(&skc->skc_lock); 492 493 if (ske == NULL) 494 return (-ENOENT); 495 496 free_pages(ske->ske_obj, order); 497 kfree(ske); 498 499 return (0); 500 } 501 502 /* 503 * Release objects from the per-cpu magazine back to their slab. The flush 504 * argument contains the max number of entries to remove from the magazine. 505 */ 506 static void 507 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush) 508 { 509 spin_lock(&skc->skc_lock); 510 511 ASSERT(skc->skc_magic == SKC_MAGIC); 512 ASSERT(skm->skm_magic == SKM_MAGIC); 513 514 int count = MIN(flush, skm->skm_avail); 515 for (int i = 0; i < count; i++) 516 spl_cache_shrink(skc, skm->skm_objs[i]); 517 518 skm->skm_avail -= count; 519 memmove(skm->skm_objs, &(skm->skm_objs[count]), 520 sizeof (void *) * skm->skm_avail); 521 522 spin_unlock(&skc->skc_lock); 523 } 524 525 /* 526 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t. 527 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However, 528 * for very small objects we may end up with more than this so as not 529 * to waste space in the minimal allocation of a single page. 530 */ 531 static int 532 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size) 533 { 534 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs; 535 536 sks_size = spl_sks_size(skc); 537 obj_size = spl_obj_size(skc); 538 max_size = (spl_kmem_cache_max_size * 1024 * 1024); 539 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size); 540 541 if (tgt_size <= max_size) { 542 tgt_objs = (tgt_size - sks_size) / obj_size; 543 } else { 544 tgt_objs = (max_size - sks_size) / obj_size; 545 tgt_size = (tgt_objs * obj_size) + sks_size; 546 } 547 548 if (tgt_objs == 0) 549 return (-ENOSPC); 550 551 *objs = tgt_objs; 552 *size = tgt_size; 553 554 return (0); 555 } 556 557 /* 558 * Make a guess at reasonable per-cpu magazine size based on the size of 559 * each object and the cost of caching N of them in each magazine. Long 560 * term this should really adapt based on an observed usage heuristic. 561 */ 562 static int 563 spl_magazine_size(spl_kmem_cache_t *skc) 564 { 565 uint32_t obj_size = spl_obj_size(skc); 566 int size; 567 568 if (spl_kmem_cache_magazine_size > 0) 569 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2)); 570 571 /* Per-magazine sizes below assume a 4Kib page size */ 572 if (obj_size > (PAGE_SIZE * 256)) 573 size = 4; /* Minimum 4Mib per-magazine */ 574 else if (obj_size > (PAGE_SIZE * 32)) 575 size = 16; /* Minimum 2Mib per-magazine */ 576 else if (obj_size > (PAGE_SIZE)) 577 size = 64; /* Minimum 256Kib per-magazine */ 578 else if (obj_size > (PAGE_SIZE / 4)) 579 size = 128; /* Minimum 128Kib per-magazine */ 580 else 581 size = 256; 582 583 return (size); 584 } 585 586 /* 587 * Allocate a per-cpu magazine to associate with a specific core. 588 */ 589 static spl_kmem_magazine_t * 590 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu) 591 { 592 spl_kmem_magazine_t *skm; 593 int size = sizeof (spl_kmem_magazine_t) + 594 sizeof (void *) * skc->skc_mag_size; 595 596 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu)); 597 if (skm) { 598 skm->skm_magic = SKM_MAGIC; 599 skm->skm_avail = 0; 600 skm->skm_size = skc->skc_mag_size; 601 skm->skm_refill = skc->skc_mag_refill; 602 skm->skm_cache = skc; 603 skm->skm_cpu = cpu; 604 } 605 606 return (skm); 607 } 608 609 /* 610 * Free a per-cpu magazine associated with a specific core. 611 */ 612 static void 613 spl_magazine_free(spl_kmem_magazine_t *skm) 614 { 615 ASSERT(skm->skm_magic == SKM_MAGIC); 616 ASSERT(skm->skm_avail == 0); 617 kfree(skm); 618 } 619 620 /* 621 * Create all pre-cpu magazines of reasonable sizes. 622 */ 623 static int 624 spl_magazine_create(spl_kmem_cache_t *skc) 625 { 626 int i = 0; 627 628 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 629 630 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) * 631 num_possible_cpus(), kmem_flags_convert(KM_SLEEP)); 632 skc->skc_mag_size = spl_magazine_size(skc); 633 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2; 634 635 for_each_possible_cpu(i) { 636 skc->skc_mag[i] = spl_magazine_alloc(skc, i); 637 if (!skc->skc_mag[i]) { 638 for (i--; i >= 0; i--) 639 spl_magazine_free(skc->skc_mag[i]); 640 641 kfree(skc->skc_mag); 642 return (-ENOMEM); 643 } 644 } 645 646 return (0); 647 } 648 649 /* 650 * Destroy all pre-cpu magazines. 651 */ 652 static void 653 spl_magazine_destroy(spl_kmem_cache_t *skc) 654 { 655 spl_kmem_magazine_t *skm; 656 int i = 0; 657 658 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 659 660 for_each_possible_cpu(i) { 661 skm = skc->skc_mag[i]; 662 spl_cache_flush(skc, skm, skm->skm_avail); 663 spl_magazine_free(skm); 664 } 665 666 kfree(skc->skc_mag); 667 } 668 669 /* 670 * Create a object cache based on the following arguments: 671 * name cache name 672 * size cache object size 673 * align cache object alignment 674 * ctor cache object constructor 675 * dtor cache object destructor 676 * reclaim cache object reclaim 677 * priv cache private data for ctor/dtor/reclaim 678 * vmp unused must be NULL 679 * flags 680 * KMC_KVMEM Force kvmem backed SPL cache 681 * KMC_SLAB Force Linux slab backed cache 682 * KMC_NODEBUG Disable debugging (unsupported) 683 */ 684 spl_kmem_cache_t * 685 spl_kmem_cache_create(const char *name, size_t size, size_t align, 686 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim, 687 void *priv, void *vmp, int flags) 688 { 689 gfp_t lflags = kmem_flags_convert(KM_SLEEP); 690 spl_kmem_cache_t *skc; 691 int rc; 692 693 /* 694 * Unsupported flags 695 */ 696 ASSERT(vmp == NULL); 697 ASSERT(reclaim == NULL); 698 699 might_sleep(); 700 701 skc = kzalloc(sizeof (*skc), lflags); 702 if (skc == NULL) 703 return (NULL); 704 705 skc->skc_magic = SKC_MAGIC; 706 skc->skc_name_size = strlen(name) + 1; 707 skc->skc_name = kmalloc(skc->skc_name_size, lflags); 708 if (skc->skc_name == NULL) { 709 kfree(skc); 710 return (NULL); 711 } 712 strlcpy(skc->skc_name, name, skc->skc_name_size); 713 714 skc->skc_ctor = ctor; 715 skc->skc_dtor = dtor; 716 skc->skc_private = priv; 717 skc->skc_vmp = vmp; 718 skc->skc_linux_cache = NULL; 719 skc->skc_flags = flags; 720 skc->skc_obj_size = size; 721 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN; 722 atomic_set(&skc->skc_ref, 0); 723 724 INIT_LIST_HEAD(&skc->skc_list); 725 INIT_LIST_HEAD(&skc->skc_complete_list); 726 INIT_LIST_HEAD(&skc->skc_partial_list); 727 skc->skc_emergency_tree = RB_ROOT; 728 spin_lock_init(&skc->skc_lock); 729 init_waitqueue_head(&skc->skc_waitq); 730 skc->skc_slab_fail = 0; 731 skc->skc_slab_create = 0; 732 skc->skc_slab_destroy = 0; 733 skc->skc_slab_total = 0; 734 skc->skc_slab_alloc = 0; 735 skc->skc_slab_max = 0; 736 skc->skc_obj_total = 0; 737 skc->skc_obj_alloc = 0; 738 skc->skc_obj_max = 0; 739 skc->skc_obj_deadlock = 0; 740 skc->skc_obj_emergency = 0; 741 skc->skc_obj_emergency_max = 0; 742 743 rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0, 744 GFP_KERNEL); 745 if (rc != 0) { 746 kfree(skc); 747 return (NULL); 748 } 749 750 /* 751 * Verify the requested alignment restriction is sane. 752 */ 753 if (align) { 754 VERIFY(ISP2(align)); 755 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); 756 VERIFY3U(align, <=, PAGE_SIZE); 757 skc->skc_obj_align = align; 758 } 759 760 /* 761 * When no specific type of slab is requested (kmem, vmem, or 762 * linuxslab) then select a cache type based on the object size 763 * and default tunables. 764 */ 765 if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) { 766 if (spl_kmem_cache_slab_limit && 767 size <= (size_t)spl_kmem_cache_slab_limit) { 768 /* 769 * Objects smaller than spl_kmem_cache_slab_limit can 770 * use the Linux slab for better space-efficiency. 771 */ 772 skc->skc_flags |= KMC_SLAB; 773 } else { 774 /* 775 * All other objects are considered large and are 776 * placed on kvmem backed slabs. 777 */ 778 skc->skc_flags |= KMC_KVMEM; 779 } 780 } 781 782 /* 783 * Given the type of slab allocate the required resources. 784 */ 785 if (skc->skc_flags & KMC_KVMEM) { 786 rc = spl_slab_size(skc, 787 &skc->skc_slab_objs, &skc->skc_slab_size); 788 if (rc) 789 goto out; 790 791 rc = spl_magazine_create(skc); 792 if (rc) 793 goto out; 794 } else { 795 unsigned long slabflags = 0; 796 797 if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) 798 goto out; 799 800 #if defined(SLAB_USERCOPY) 801 /* 802 * Required for PAX-enabled kernels if the slab is to be 803 * used for copying between user and kernel space. 804 */ 805 slabflags |= SLAB_USERCOPY; 806 #endif 807 808 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY) 809 /* 810 * Newer grsec patchset uses kmem_cache_create_usercopy() 811 * instead of SLAB_USERCOPY flag 812 */ 813 skc->skc_linux_cache = kmem_cache_create_usercopy( 814 skc->skc_name, size, align, slabflags, 0, size, NULL); 815 #else 816 skc->skc_linux_cache = kmem_cache_create( 817 skc->skc_name, size, align, slabflags, NULL); 818 #endif 819 if (skc->skc_linux_cache == NULL) 820 goto out; 821 } 822 823 down_write(&spl_kmem_cache_sem); 824 list_add_tail(&skc->skc_list, &spl_kmem_cache_list); 825 up_write(&spl_kmem_cache_sem); 826 827 return (skc); 828 out: 829 kfree(skc->skc_name); 830 percpu_counter_destroy(&skc->skc_linux_alloc); 831 kfree(skc); 832 return (NULL); 833 } 834 EXPORT_SYMBOL(spl_kmem_cache_create); 835 836 /* 837 * Register a move callback for cache defragmentation. 838 * XXX: Unimplemented but harmless to stub out for now. 839 */ 840 void 841 spl_kmem_cache_set_move(spl_kmem_cache_t *skc, 842 kmem_cbrc_t (move)(void *, void *, size_t, void *)) 843 { 844 ASSERT(move != NULL); 845 } 846 EXPORT_SYMBOL(spl_kmem_cache_set_move); 847 848 /* 849 * Destroy a cache and all objects associated with the cache. 850 */ 851 void 852 spl_kmem_cache_destroy(spl_kmem_cache_t *skc) 853 { 854 DECLARE_WAIT_QUEUE_HEAD(wq); 855 taskqid_t id; 856 857 ASSERT(skc->skc_magic == SKC_MAGIC); 858 ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB)); 859 860 down_write(&spl_kmem_cache_sem); 861 list_del_init(&skc->skc_list); 862 up_write(&spl_kmem_cache_sem); 863 864 /* Cancel any and wait for any pending delayed tasks */ 865 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 866 867 spin_lock(&skc->skc_lock); 868 id = skc->skc_taskqid; 869 spin_unlock(&skc->skc_lock); 870 871 taskq_cancel_id(spl_kmem_cache_taskq, id); 872 873 /* 874 * Wait until all current callers complete, this is mainly 875 * to catch the case where a low memory situation triggers a 876 * cache reaping action which races with this destroy. 877 */ 878 wait_event(wq, atomic_read(&skc->skc_ref) == 0); 879 880 if (skc->skc_flags & KMC_KVMEM) { 881 spl_magazine_destroy(skc); 882 spl_slab_reclaim(skc); 883 } else { 884 ASSERT(skc->skc_flags & KMC_SLAB); 885 kmem_cache_destroy(skc->skc_linux_cache); 886 } 887 888 spin_lock(&skc->skc_lock); 889 890 /* 891 * Validate there are no objects in use and free all the 892 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. 893 */ 894 ASSERT3U(skc->skc_slab_alloc, ==, 0); 895 ASSERT3U(skc->skc_obj_alloc, ==, 0); 896 ASSERT3U(skc->skc_slab_total, ==, 0); 897 ASSERT3U(skc->skc_obj_total, ==, 0); 898 ASSERT3U(skc->skc_obj_emergency, ==, 0); 899 ASSERT(list_empty(&skc->skc_complete_list)); 900 901 ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0); 902 percpu_counter_destroy(&skc->skc_linux_alloc); 903 904 spin_unlock(&skc->skc_lock); 905 906 kfree(skc->skc_name); 907 kfree(skc); 908 } 909 EXPORT_SYMBOL(spl_kmem_cache_destroy); 910 911 /* 912 * Allocate an object from a slab attached to the cache. This is used to 913 * repopulate the per-cpu magazine caches in batches when they run low. 914 */ 915 static void * 916 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks) 917 { 918 spl_kmem_obj_t *sko; 919 920 ASSERT(skc->skc_magic == SKC_MAGIC); 921 ASSERT(sks->sks_magic == SKS_MAGIC); 922 923 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list); 924 ASSERT(sko->sko_magic == SKO_MAGIC); 925 ASSERT(sko->sko_addr != NULL); 926 927 /* Remove from sks_free_list */ 928 list_del_init(&sko->sko_list); 929 930 sks->sks_age = jiffies; 931 sks->sks_ref++; 932 skc->skc_obj_alloc++; 933 934 /* Track max obj usage statistics */ 935 if (skc->skc_obj_alloc > skc->skc_obj_max) 936 skc->skc_obj_max = skc->skc_obj_alloc; 937 938 /* Track max slab usage statistics */ 939 if (sks->sks_ref == 1) { 940 skc->skc_slab_alloc++; 941 942 if (skc->skc_slab_alloc > skc->skc_slab_max) 943 skc->skc_slab_max = skc->skc_slab_alloc; 944 } 945 946 return (sko->sko_addr); 947 } 948 949 /* 950 * Generic slab allocation function to run by the global work queues. 951 * It is responsible for allocating a new slab, linking it in to the list 952 * of partial slabs, and then waking any waiters. 953 */ 954 static int 955 __spl_cache_grow(spl_kmem_cache_t *skc, int flags) 956 { 957 spl_kmem_slab_t *sks; 958 959 fstrans_cookie_t cookie = spl_fstrans_mark(); 960 sks = spl_slab_alloc(skc, flags); 961 spl_fstrans_unmark(cookie); 962 963 spin_lock(&skc->skc_lock); 964 if (sks) { 965 skc->skc_slab_total++; 966 skc->skc_obj_total += sks->sks_objs; 967 list_add_tail(&sks->sks_list, &skc->skc_partial_list); 968 969 smp_mb__before_atomic(); 970 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 971 smp_mb__after_atomic(); 972 } 973 spin_unlock(&skc->skc_lock); 974 975 return (sks == NULL ? -ENOMEM : 0); 976 } 977 978 static void 979 spl_cache_grow_work(void *data) 980 { 981 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data; 982 spl_kmem_cache_t *skc = ska->ska_cache; 983 984 int error = __spl_cache_grow(skc, ska->ska_flags); 985 986 atomic_dec(&skc->skc_ref); 987 smp_mb__before_atomic(); 988 clear_bit(KMC_BIT_GROWING, &skc->skc_flags); 989 smp_mb__after_atomic(); 990 if (error == 0) 991 wake_up_all(&skc->skc_waitq); 992 993 kfree(ska); 994 } 995 996 /* 997 * Returns non-zero when a new slab should be available. 998 */ 999 static int 1000 spl_cache_grow_wait(spl_kmem_cache_t *skc) 1001 { 1002 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags)); 1003 } 1004 1005 /* 1006 * No available objects on any slabs, create a new slab. Note that this 1007 * functionality is disabled for KMC_SLAB caches which are backed by the 1008 * Linux slab. 1009 */ 1010 static int 1011 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj) 1012 { 1013 int remaining, rc = 0; 1014 1015 ASSERT0(flags & ~KM_PUBLIC_MASK); 1016 ASSERT(skc->skc_magic == SKC_MAGIC); 1017 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 1018 1019 *obj = NULL; 1020 1021 /* 1022 * Since we can't sleep attempt an emergency allocation to satisfy 1023 * the request. The only alterative is to fail the allocation but 1024 * it's preferable try. The use of KM_NOSLEEP is expected to be rare. 1025 */ 1026 if (flags & KM_NOSLEEP) 1027 return (spl_emergency_alloc(skc, flags, obj)); 1028 1029 might_sleep(); 1030 1031 /* 1032 * Before allocating a new slab wait for any reaping to complete and 1033 * then return so the local magazine can be rechecked for new objects. 1034 */ 1035 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) { 1036 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING, 1037 TASK_UNINTERRUPTIBLE); 1038 return (rc ? rc : -EAGAIN); 1039 } 1040 1041 /* 1042 * Note: It would be nice to reduce the overhead of context switch 1043 * and improve NUMA locality, by trying to allocate a new slab in the 1044 * current process context with KM_NOSLEEP flag. 1045 * 1046 * However, this can't be applied to vmem/kvmem due to a bug that 1047 * spl_vmalloc() doesn't honor gfp flags in page table allocation. 1048 */ 1049 1050 /* 1051 * This is handled by dispatching a work request to the global work 1052 * queue. This allows us to asynchronously allocate a new slab while 1053 * retaining the ability to safely fall back to a smaller synchronous 1054 * allocations to ensure forward progress is always maintained. 1055 */ 1056 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) { 1057 spl_kmem_alloc_t *ska; 1058 1059 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags)); 1060 if (ska == NULL) { 1061 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags); 1062 smp_mb__after_atomic(); 1063 wake_up_all(&skc->skc_waitq); 1064 return (-ENOMEM); 1065 } 1066 1067 atomic_inc(&skc->skc_ref); 1068 ska->ska_cache = skc; 1069 ska->ska_flags = flags; 1070 taskq_init_ent(&ska->ska_tqe); 1071 taskq_dispatch_ent(spl_kmem_cache_taskq, 1072 spl_cache_grow_work, ska, 0, &ska->ska_tqe); 1073 } 1074 1075 /* 1076 * The goal here is to only detect the rare case where a virtual slab 1077 * allocation has deadlocked. We must be careful to minimize the use 1078 * of emergency objects which are more expensive to track. Therefore, 1079 * we set a very long timeout for the asynchronous allocation and if 1080 * the timeout is reached the cache is flagged as deadlocked. From 1081 * this point only new emergency objects will be allocated until the 1082 * asynchronous allocation completes and clears the deadlocked flag. 1083 */ 1084 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) { 1085 rc = spl_emergency_alloc(skc, flags, obj); 1086 } else { 1087 remaining = wait_event_timeout(skc->skc_waitq, 1088 spl_cache_grow_wait(skc), HZ / 10); 1089 1090 if (!remaining) { 1091 spin_lock(&skc->skc_lock); 1092 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) { 1093 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 1094 skc->skc_obj_deadlock++; 1095 } 1096 spin_unlock(&skc->skc_lock); 1097 } 1098 1099 rc = -ENOMEM; 1100 } 1101 1102 return (rc); 1103 } 1104 1105 /* 1106 * Refill a per-cpu magazine with objects from the slabs for this cache. 1107 * Ideally the magazine can be repopulated using existing objects which have 1108 * been released, however if we are unable to locate enough free objects new 1109 * slabs of objects will be created. On success NULL is returned, otherwise 1110 * the address of a single emergency object is returned for use by the caller. 1111 */ 1112 static void * 1113 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags) 1114 { 1115 spl_kmem_slab_t *sks; 1116 int count = 0, rc, refill; 1117 void *obj = NULL; 1118 1119 ASSERT(skc->skc_magic == SKC_MAGIC); 1120 ASSERT(skm->skm_magic == SKM_MAGIC); 1121 1122 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail); 1123 spin_lock(&skc->skc_lock); 1124 1125 while (refill > 0) { 1126 /* No slabs available we may need to grow the cache */ 1127 if (list_empty(&skc->skc_partial_list)) { 1128 spin_unlock(&skc->skc_lock); 1129 1130 local_irq_enable(); 1131 rc = spl_cache_grow(skc, flags, &obj); 1132 local_irq_disable(); 1133 1134 /* Emergency object for immediate use by caller */ 1135 if (rc == 0 && obj != NULL) 1136 return (obj); 1137 1138 if (rc) 1139 goto out; 1140 1141 /* Rescheduled to different CPU skm is not local */ 1142 if (skm != skc->skc_mag[smp_processor_id()]) 1143 goto out; 1144 1145 /* 1146 * Potentially rescheduled to the same CPU but 1147 * allocations may have occurred from this CPU while 1148 * we were sleeping so recalculate max refill. 1149 */ 1150 refill = MIN(refill, skm->skm_size - skm->skm_avail); 1151 1152 spin_lock(&skc->skc_lock); 1153 continue; 1154 } 1155 1156 /* Grab the next available slab */ 1157 sks = list_entry((&skc->skc_partial_list)->next, 1158 spl_kmem_slab_t, sks_list); 1159 ASSERT(sks->sks_magic == SKS_MAGIC); 1160 ASSERT(sks->sks_ref < sks->sks_objs); 1161 ASSERT(!list_empty(&sks->sks_free_list)); 1162 1163 /* 1164 * Consume as many objects as needed to refill the requested 1165 * cache. We must also be careful not to overfill it. 1166 */ 1167 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && 1168 ++count) { 1169 ASSERT(skm->skm_avail < skm->skm_size); 1170 ASSERT(count < skm->skm_size); 1171 skm->skm_objs[skm->skm_avail++] = 1172 spl_cache_obj(skc, sks); 1173 } 1174 1175 /* Move slab to skc_complete_list when full */ 1176 if (sks->sks_ref == sks->sks_objs) { 1177 list_del(&sks->sks_list); 1178 list_add(&sks->sks_list, &skc->skc_complete_list); 1179 } 1180 } 1181 1182 spin_unlock(&skc->skc_lock); 1183 out: 1184 return (NULL); 1185 } 1186 1187 /* 1188 * Release an object back to the slab from which it came. 1189 */ 1190 static void 1191 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj) 1192 { 1193 spl_kmem_slab_t *sks = NULL; 1194 spl_kmem_obj_t *sko = NULL; 1195 1196 ASSERT(skc->skc_magic == SKC_MAGIC); 1197 1198 sko = spl_sko_from_obj(skc, obj); 1199 ASSERT(sko->sko_magic == SKO_MAGIC); 1200 sks = sko->sko_slab; 1201 ASSERT(sks->sks_magic == SKS_MAGIC); 1202 ASSERT(sks->sks_cache == skc); 1203 list_add(&sko->sko_list, &sks->sks_free_list); 1204 1205 sks->sks_age = jiffies; 1206 sks->sks_ref--; 1207 skc->skc_obj_alloc--; 1208 1209 /* 1210 * Move slab to skc_partial_list when no longer full. Slabs 1211 * are added to the head to keep the partial list is quasi-full 1212 * sorted order. Fuller at the head, emptier at the tail. 1213 */ 1214 if (sks->sks_ref == (sks->sks_objs - 1)) { 1215 list_del(&sks->sks_list); 1216 list_add(&sks->sks_list, &skc->skc_partial_list); 1217 } 1218 1219 /* 1220 * Move empty slabs to the end of the partial list so 1221 * they can be easily found and freed during reclamation. 1222 */ 1223 if (sks->sks_ref == 0) { 1224 list_del(&sks->sks_list); 1225 list_add_tail(&sks->sks_list, &skc->skc_partial_list); 1226 skc->skc_slab_alloc--; 1227 } 1228 } 1229 1230 /* 1231 * Allocate an object from the per-cpu magazine, or if the magazine 1232 * is empty directly allocate from a slab and repopulate the magazine. 1233 */ 1234 void * 1235 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags) 1236 { 1237 spl_kmem_magazine_t *skm; 1238 void *obj = NULL; 1239 1240 ASSERT0(flags & ~KM_PUBLIC_MASK); 1241 ASSERT(skc->skc_magic == SKC_MAGIC); 1242 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1243 1244 /* 1245 * Allocate directly from a Linux slab. All optimizations are left 1246 * to the underlying cache we only need to guarantee that KM_SLEEP 1247 * callers will never fail. 1248 */ 1249 if (skc->skc_flags & KMC_SLAB) { 1250 struct kmem_cache *slc = skc->skc_linux_cache; 1251 do { 1252 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags)); 1253 } while ((obj == NULL) && !(flags & KM_NOSLEEP)); 1254 1255 if (obj != NULL) { 1256 /* 1257 * Even though we leave everything up to the 1258 * underlying cache we still keep track of 1259 * how many objects we've allocated in it for 1260 * better debuggability. 1261 */ 1262 percpu_counter_inc(&skc->skc_linux_alloc); 1263 } 1264 goto ret; 1265 } 1266 1267 local_irq_disable(); 1268 1269 restart: 1270 /* 1271 * Safe to update per-cpu structure without lock, but 1272 * in the restart case we must be careful to reacquire 1273 * the local magazine since this may have changed 1274 * when we need to grow the cache. 1275 */ 1276 skm = skc->skc_mag[smp_processor_id()]; 1277 ASSERT(skm->skm_magic == SKM_MAGIC); 1278 1279 if (likely(skm->skm_avail)) { 1280 /* Object available in CPU cache, use it */ 1281 obj = skm->skm_objs[--skm->skm_avail]; 1282 } else { 1283 obj = spl_cache_refill(skc, skm, flags); 1284 if ((obj == NULL) && !(flags & KM_NOSLEEP)) 1285 goto restart; 1286 1287 local_irq_enable(); 1288 goto ret; 1289 } 1290 1291 local_irq_enable(); 1292 ASSERT(obj); 1293 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 1294 1295 ret: 1296 /* Pre-emptively migrate object to CPU L1 cache */ 1297 if (obj) { 1298 if (obj && skc->skc_ctor) 1299 skc->skc_ctor(obj, skc->skc_private, flags); 1300 else 1301 prefetchw(obj); 1302 } 1303 1304 return (obj); 1305 } 1306 EXPORT_SYMBOL(spl_kmem_cache_alloc); 1307 1308 /* 1309 * Free an object back to the local per-cpu magazine, there is no 1310 * guarantee that this is the same magazine the object was originally 1311 * allocated from. We may need to flush entire from the magazine 1312 * back to the slabs to make space. 1313 */ 1314 void 1315 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj) 1316 { 1317 spl_kmem_magazine_t *skm; 1318 unsigned long flags; 1319 int do_reclaim = 0; 1320 int do_emergency = 0; 1321 1322 ASSERT(skc->skc_magic == SKC_MAGIC); 1323 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1324 1325 /* 1326 * Run the destructor 1327 */ 1328 if (skc->skc_dtor) 1329 skc->skc_dtor(obj, skc->skc_private); 1330 1331 /* 1332 * Free the object from the Linux underlying Linux slab. 1333 */ 1334 if (skc->skc_flags & KMC_SLAB) { 1335 kmem_cache_free(skc->skc_linux_cache, obj); 1336 percpu_counter_dec(&skc->skc_linux_alloc); 1337 return; 1338 } 1339 1340 /* 1341 * While a cache has outstanding emergency objects all freed objects 1342 * must be checked. However, since emergency objects will never use 1343 * a virtual address these objects can be safely excluded as an 1344 * optimization. 1345 */ 1346 if (!is_vmalloc_addr(obj)) { 1347 spin_lock(&skc->skc_lock); 1348 do_emergency = (skc->skc_obj_emergency > 0); 1349 spin_unlock(&skc->skc_lock); 1350 1351 if (do_emergency && (spl_emergency_free(skc, obj) == 0)) 1352 return; 1353 } 1354 1355 local_irq_save(flags); 1356 1357 /* 1358 * Safe to update per-cpu structure without lock, but 1359 * no remote memory allocation tracking is being performed 1360 * it is entirely possible to allocate an object from one 1361 * CPU cache and return it to another. 1362 */ 1363 skm = skc->skc_mag[smp_processor_id()]; 1364 ASSERT(skm->skm_magic == SKM_MAGIC); 1365 1366 /* 1367 * Per-CPU cache full, flush it to make space for this object, 1368 * this may result in an empty slab which can be reclaimed once 1369 * interrupts are re-enabled. 1370 */ 1371 if (unlikely(skm->skm_avail >= skm->skm_size)) { 1372 spl_cache_flush(skc, skm, skm->skm_refill); 1373 do_reclaim = 1; 1374 } 1375 1376 /* Available space in cache, use it */ 1377 skm->skm_objs[skm->skm_avail++] = obj; 1378 1379 local_irq_restore(flags); 1380 1381 if (do_reclaim) 1382 spl_slab_reclaim(skc); 1383 } 1384 EXPORT_SYMBOL(spl_kmem_cache_free); 1385 1386 /* 1387 * Depending on how many and which objects are released it may simply 1388 * repopulate the local magazine which will then need to age-out. Objects 1389 * which cannot fit in the magazine will be released back to their slabs 1390 * which will also need to age out before being released. This is all just 1391 * best effort and we do not want to thrash creating and destroying slabs. 1392 */ 1393 void 1394 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc) 1395 { 1396 ASSERT(skc->skc_magic == SKC_MAGIC); 1397 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1398 1399 if (skc->skc_flags & KMC_SLAB) 1400 return; 1401 1402 atomic_inc(&skc->skc_ref); 1403 1404 /* 1405 * Prevent concurrent cache reaping when contended. 1406 */ 1407 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) 1408 goto out; 1409 1410 /* Reclaim from the magazine and free all now empty slabs. */ 1411 unsigned long irq_flags; 1412 local_irq_save(irq_flags); 1413 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()]; 1414 spl_cache_flush(skc, skm, skm->skm_avail); 1415 local_irq_restore(irq_flags); 1416 1417 spl_slab_reclaim(skc); 1418 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags); 1419 smp_mb__after_atomic(); 1420 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING); 1421 out: 1422 atomic_dec(&skc->skc_ref); 1423 } 1424 EXPORT_SYMBOL(spl_kmem_cache_reap_now); 1425 1426 /* 1427 * This is stubbed out for code consistency with other platforms. There 1428 * is existing logic to prevent concurrent reaping so while this is ugly 1429 * it should do no harm. 1430 */ 1431 int 1432 spl_kmem_cache_reap_active(void) 1433 { 1434 return (0); 1435 } 1436 EXPORT_SYMBOL(spl_kmem_cache_reap_active); 1437 1438 /* 1439 * Reap all free slabs from all registered caches. 1440 */ 1441 void 1442 spl_kmem_reap(void) 1443 { 1444 spl_kmem_cache_t *skc = NULL; 1445 1446 down_read(&spl_kmem_cache_sem); 1447 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { 1448 spl_kmem_cache_reap_now(skc); 1449 } 1450 up_read(&spl_kmem_cache_sem); 1451 } 1452 EXPORT_SYMBOL(spl_kmem_reap); 1453 1454 int 1455 spl_kmem_cache_init(void) 1456 { 1457 init_rwsem(&spl_kmem_cache_sem); 1458 INIT_LIST_HEAD(&spl_kmem_cache_list); 1459 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache", 1460 spl_kmem_cache_kmem_threads, maxclsyspri, 1461 spl_kmem_cache_kmem_threads * 8, INT_MAX, 1462 TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1463 1464 if (spl_kmem_cache_taskq == NULL) 1465 return (-ENOMEM); 1466 1467 return (0); 1468 } 1469 1470 void 1471 spl_kmem_cache_fini(void) 1472 { 1473 taskq_destroy(spl_kmem_cache_taskq); 1474 } 1475