xref: /freebsd/sys/contrib/openzfs/module/os/linux/spl/spl-kmem-cache.c (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *
10  *  The SPL is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or (at your
13  *  option) any later version.
14  *
15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #define	SPL_KMEM_CACHE_IMPLEMENTING
25 
26 #include <sys/kmem.h>
27 #include <sys/kmem_cache.h>
28 #include <sys/taskq.h>
29 #include <sys/timer.h>
30 #include <sys/vmem.h>
31 #include <sys/wait.h>
32 #include <sys/string.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/prefetch.h>
36 
37 /*
38  * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
39  * with smp_mb__{before,after}_atomic() because they were redundant. This is
40  * only used inside our SLAB allocator, so we implement an internal wrapper
41  * here to give us smp_mb__{before,after}_atomic() on older kernels.
42  */
43 #ifndef smp_mb__before_atomic
44 #define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
45 #endif
46 
47 #ifndef smp_mb__after_atomic
48 #define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
49 #endif
50 
51 /*
52  * Cache magazines are an optimization designed to minimize the cost of
53  * allocating memory.  They do this by keeping a per-cpu cache of recently
54  * freed objects, which can then be reallocated without taking a lock. This
55  * can improve performance on highly contended caches.  However, because
56  * objects in magazines will prevent otherwise empty slabs from being
57  * immediately released this may not be ideal for low memory machines.
58  *
59  * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
60  * magazine size.  When this value is set to 0 the magazine size will be
61  * automatically determined based on the object size.  Otherwise magazines
62  * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
63  * may never be entirely disabled in this implementation.
64  */
65 static unsigned int spl_kmem_cache_magazine_size = 0;
66 module_param(spl_kmem_cache_magazine_size, uint, 0444);
67 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
68 	"Default magazine size (2-256), set automatically (0)");
69 
70 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
71 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
72 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
73 
74 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
75 module_param(spl_kmem_cache_max_size, uint, 0644);
76 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
77 
78 /*
79  * For small objects the Linux slab allocator should be used to make the most
80  * efficient use of the memory.  However, large objects are not supported by
81  * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
82  * of 16K was determined to be optimal for architectures using 4K pages and
83  * to also work well on architecutres using larger 64K page sizes.
84  */
85 static unsigned int spl_kmem_cache_slab_limit =
86     SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE;
87 module_param(spl_kmem_cache_slab_limit, uint, 0644);
88 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
89 	"Objects less than N bytes use the Linux slab");
90 
91 /*
92  * The number of threads available to allocate new slabs for caches.  This
93  * should not need to be tuned but it is available for performance analysis.
94  */
95 static unsigned int spl_kmem_cache_kmem_threads = 4;
96 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
97 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
98 	"Number of spl_kmem_cache threads");
99 
100 /*
101  * Slab allocation interfaces
102  *
103  * While the Linux slab implementation was inspired by the Solaris
104  * implementation I cannot use it to emulate the Solaris APIs.  I
105  * require two features which are not provided by the Linux slab.
106  *
107  * 1) Constructors AND destructors.  Recent versions of the Linux
108  *    kernel have removed support for destructors.  This is a deal
109  *    breaker for the SPL which contains particularly expensive
110  *    initializers for mutex's, condition variables, etc.  We also
111  *    require a minimal level of cleanup for these data types unlike
112  *    many Linux data types which do need to be explicitly destroyed.
113  *
114  * 2) Virtual address space backed slab.  Callers of the Solaris slab
115  *    expect it to work well for both small are very large allocations.
116  *    Because of memory fragmentation the Linux slab which is backed
117  *    by kmalloc'ed memory performs very badly when confronted with
118  *    large numbers of large allocations.  Basing the slab on the
119  *    virtual address space removes the need for contiguous pages
120  *    and greatly improve performance for large allocations.
121  *
122  * For these reasons, the SPL has its own slab implementation with
123  * the needed features.  It is not as highly optimized as either the
124  * Solaris or Linux slabs, but it should get me most of what is
125  * needed until it can be optimized or obsoleted by another approach.
126  *
127  * One serious concern I do have about this method is the relatively
128  * small virtual address space on 32bit arches.  This will seriously
129  * constrain the size of the slab caches and their performance.
130  */
131 
132 struct list_head spl_kmem_cache_list;   /* List of caches */
133 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
134 static taskq_t *spl_kmem_cache_taskq;   /* Task queue for aging / reclaim */
135 
136 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
137 
138 static void *
139 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
140 {
141 	gfp_t lflags = kmem_flags_convert(flags);
142 	void *ptr;
143 
144 	if (skc->skc_flags & KMC_RECLAIMABLE)
145 		lflags |= __GFP_RECLAIMABLE;
146 	ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
147 
148 	/* Resulting allocated memory will be page aligned */
149 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
150 
151 	return (ptr);
152 }
153 
154 static void
155 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
156 {
157 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
158 
159 	/*
160 	 * The Linux direct reclaim path uses this out of band value to
161 	 * determine if forward progress is being made.  Normally this is
162 	 * incremented by kmem_freepages() which is part of the various
163 	 * Linux slab implementations.  However, since we are using none
164 	 * of that infrastructure we are responsible for incrementing it.
165 	 */
166 	if (current->reclaim_state)
167 #ifdef	HAVE_RECLAIM_STATE_RECLAIMED
168 		current->reclaim_state->reclaimed += size >> PAGE_SHIFT;
169 #else
170 		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
171 #endif
172 	vfree(ptr);
173 }
174 
175 /*
176  * Required space for each aligned sks.
177  */
178 static inline uint32_t
179 spl_sks_size(spl_kmem_cache_t *skc)
180 {
181 	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
182 	    skc->skc_obj_align, uint32_t));
183 }
184 
185 /*
186  * Required space for each aligned object.
187  */
188 static inline uint32_t
189 spl_obj_size(spl_kmem_cache_t *skc)
190 {
191 	uint32_t align = skc->skc_obj_align;
192 
193 	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
194 	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
195 }
196 
197 uint64_t
198 spl_kmem_cache_inuse(kmem_cache_t *cache)
199 {
200 	return (cache->skc_obj_total);
201 }
202 EXPORT_SYMBOL(spl_kmem_cache_inuse);
203 
204 uint64_t
205 spl_kmem_cache_entry_size(kmem_cache_t *cache)
206 {
207 	return (cache->skc_obj_size);
208 }
209 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
210 
211 /*
212  * Lookup the spl_kmem_object_t for an object given that object.
213  */
214 static inline spl_kmem_obj_t *
215 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
216 {
217 	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
218 	    skc->skc_obj_align, uint32_t));
219 }
220 
221 /*
222  * It's important that we pack the spl_kmem_obj_t structure and the
223  * actual objects in to one large address space to minimize the number
224  * of calls to the allocator.  It is far better to do a few large
225  * allocations and then subdivide it ourselves.  Now which allocator
226  * we use requires balancing a few trade offs.
227  *
228  * For small objects we use kmem_alloc() because as long as you are
229  * only requesting a small number of pages (ideally just one) its cheap.
230  * However, when you start requesting multiple pages with kmem_alloc()
231  * it gets increasingly expensive since it requires contiguous pages.
232  * For this reason we shift to vmem_alloc() for slabs of large objects
233  * which removes the need for contiguous pages.  We do not use
234  * vmem_alloc() in all cases because there is significant locking
235  * overhead in __get_vm_area_node().  This function takes a single
236  * global lock when acquiring an available virtual address range which
237  * serializes all vmem_alloc()'s for all slab caches.  Using slightly
238  * different allocation functions for small and large objects should
239  * give us the best of both worlds.
240  *
241  * +------------------------+
242  * | spl_kmem_slab_t --+-+  |
243  * | skc_obj_size    <-+ |  |
244  * | spl_kmem_obj_t      |  |
245  * | skc_obj_size    <---+  |
246  * | spl_kmem_obj_t      |  |
247  * | ...                 v  |
248  * +------------------------+
249  */
250 static spl_kmem_slab_t *
251 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
252 {
253 	spl_kmem_slab_t *sks;
254 	void *base;
255 	uint32_t obj_size;
256 
257 	base = kv_alloc(skc, skc->skc_slab_size, flags);
258 	if (base == NULL)
259 		return (NULL);
260 
261 	sks = (spl_kmem_slab_t *)base;
262 	sks->sks_magic = SKS_MAGIC;
263 	sks->sks_objs = skc->skc_slab_objs;
264 	sks->sks_age = jiffies;
265 	sks->sks_cache = skc;
266 	INIT_LIST_HEAD(&sks->sks_list);
267 	INIT_LIST_HEAD(&sks->sks_free_list);
268 	sks->sks_ref = 0;
269 	obj_size = spl_obj_size(skc);
270 
271 	for (int i = 0; i < sks->sks_objs; i++) {
272 		void *obj = base + spl_sks_size(skc) + (i * obj_size);
273 
274 		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
275 		spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
276 		sko->sko_addr = obj;
277 		sko->sko_magic = SKO_MAGIC;
278 		sko->sko_slab = sks;
279 		INIT_LIST_HEAD(&sko->sko_list);
280 		list_add_tail(&sko->sko_list, &sks->sks_free_list);
281 	}
282 
283 	return (sks);
284 }
285 
286 /*
287  * Remove a slab from complete or partial list, it must be called with
288  * the 'skc->skc_lock' held but the actual free must be performed
289  * outside the lock to prevent deadlocking on vmem addresses.
290  */
291 static void
292 spl_slab_free(spl_kmem_slab_t *sks,
293     struct list_head *sks_list, struct list_head *sko_list)
294 {
295 	spl_kmem_cache_t *skc;
296 
297 	ASSERT(sks->sks_magic == SKS_MAGIC);
298 	ASSERT(sks->sks_ref == 0);
299 
300 	skc = sks->sks_cache;
301 	ASSERT(skc->skc_magic == SKC_MAGIC);
302 
303 	/*
304 	 * Update slab/objects counters in the cache, then remove the
305 	 * slab from the skc->skc_partial_list.  Finally add the slab
306 	 * and all its objects in to the private work lists where the
307 	 * destructors will be called and the memory freed to the system.
308 	 */
309 	skc->skc_obj_total -= sks->sks_objs;
310 	skc->skc_slab_total--;
311 	list_del(&sks->sks_list);
312 	list_add(&sks->sks_list, sks_list);
313 	list_splice_init(&sks->sks_free_list, sko_list);
314 }
315 
316 /*
317  * Reclaim empty slabs at the end of the partial list.
318  */
319 static void
320 spl_slab_reclaim(spl_kmem_cache_t *skc)
321 {
322 	spl_kmem_slab_t *sks = NULL, *m = NULL;
323 	spl_kmem_obj_t *sko = NULL, *n = NULL;
324 	LIST_HEAD(sks_list);
325 	LIST_HEAD(sko_list);
326 
327 	/*
328 	 * Empty slabs and objects must be moved to a private list so they
329 	 * can be safely freed outside the spin lock.  All empty slabs are
330 	 * at the end of skc->skc_partial_list, therefore once a non-empty
331 	 * slab is found we can stop scanning.
332 	 */
333 	spin_lock(&skc->skc_lock);
334 	list_for_each_entry_safe_reverse(sks, m,
335 	    &skc->skc_partial_list, sks_list) {
336 
337 		if (sks->sks_ref > 0)
338 			break;
339 
340 		spl_slab_free(sks, &sks_list, &sko_list);
341 	}
342 	spin_unlock(&skc->skc_lock);
343 
344 	/*
345 	 * The following two loops ensure all the object destructors are run,
346 	 * and the slabs themselves are freed.  This is all done outside the
347 	 * skc->skc_lock since this allows the destructor to sleep, and
348 	 * allows us to perform a conditional reschedule when a freeing a
349 	 * large number of objects and slabs back to the system.
350 	 */
351 
352 	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
353 		ASSERT(sko->sko_magic == SKO_MAGIC);
354 	}
355 
356 	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
357 		ASSERT(sks->sks_magic == SKS_MAGIC);
358 		kv_free(skc, sks, skc->skc_slab_size);
359 	}
360 }
361 
362 static spl_kmem_emergency_t *
363 spl_emergency_search(struct rb_root *root, void *obj)
364 {
365 	struct rb_node *node = root->rb_node;
366 	spl_kmem_emergency_t *ske;
367 	unsigned long address = (unsigned long)obj;
368 
369 	while (node) {
370 		ske = container_of(node, spl_kmem_emergency_t, ske_node);
371 
372 		if (address < ske->ske_obj)
373 			node = node->rb_left;
374 		else if (address > ske->ske_obj)
375 			node = node->rb_right;
376 		else
377 			return (ske);
378 	}
379 
380 	return (NULL);
381 }
382 
383 static int
384 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
385 {
386 	struct rb_node **new = &(root->rb_node), *parent = NULL;
387 	spl_kmem_emergency_t *ske_tmp;
388 	unsigned long address = ske->ske_obj;
389 
390 	while (*new) {
391 		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
392 
393 		parent = *new;
394 		if (address < ske_tmp->ske_obj)
395 			new = &((*new)->rb_left);
396 		else if (address > ske_tmp->ske_obj)
397 			new = &((*new)->rb_right);
398 		else
399 			return (0);
400 	}
401 
402 	rb_link_node(&ske->ske_node, parent, new);
403 	rb_insert_color(&ske->ske_node, root);
404 
405 	return (1);
406 }
407 
408 /*
409  * Allocate a single emergency object and track it in a red black tree.
410  */
411 static int
412 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
413 {
414 	gfp_t lflags = kmem_flags_convert(flags);
415 	spl_kmem_emergency_t *ske;
416 	int order = get_order(skc->skc_obj_size);
417 	int empty;
418 
419 	/* Last chance use a partial slab if one now exists */
420 	spin_lock(&skc->skc_lock);
421 	empty = list_empty(&skc->skc_partial_list);
422 	spin_unlock(&skc->skc_lock);
423 	if (!empty)
424 		return (-EEXIST);
425 
426 	if (skc->skc_flags & KMC_RECLAIMABLE)
427 		lflags |= __GFP_RECLAIMABLE;
428 	ske = kmalloc(sizeof (*ske), lflags);
429 	if (ske == NULL)
430 		return (-ENOMEM);
431 
432 	ske->ske_obj = __get_free_pages(lflags, order);
433 	if (ske->ske_obj == 0) {
434 		kfree(ske);
435 		return (-ENOMEM);
436 	}
437 
438 	spin_lock(&skc->skc_lock);
439 	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
440 	if (likely(empty)) {
441 		skc->skc_obj_total++;
442 		skc->skc_obj_emergency++;
443 		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
444 			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
445 	}
446 	spin_unlock(&skc->skc_lock);
447 
448 	if (unlikely(!empty)) {
449 		free_pages(ske->ske_obj, order);
450 		kfree(ske);
451 		return (-EINVAL);
452 	}
453 
454 	*obj = (void *)ske->ske_obj;
455 
456 	return (0);
457 }
458 
459 /*
460  * Locate the passed object in the red black tree and free it.
461  */
462 static int
463 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
464 {
465 	spl_kmem_emergency_t *ske;
466 	int order = get_order(skc->skc_obj_size);
467 
468 	spin_lock(&skc->skc_lock);
469 	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
470 	if (ske) {
471 		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
472 		skc->skc_obj_emergency--;
473 		skc->skc_obj_total--;
474 	}
475 	spin_unlock(&skc->skc_lock);
476 
477 	if (ske == NULL)
478 		return (-ENOENT);
479 
480 	free_pages(ske->ske_obj, order);
481 	kfree(ske);
482 
483 	return (0);
484 }
485 
486 /*
487  * Release objects from the per-cpu magazine back to their slab.  The flush
488  * argument contains the max number of entries to remove from the magazine.
489  */
490 static void
491 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
492 {
493 	spin_lock(&skc->skc_lock);
494 
495 	ASSERT(skc->skc_magic == SKC_MAGIC);
496 	ASSERT(skm->skm_magic == SKM_MAGIC);
497 
498 	int count = MIN(flush, skm->skm_avail);
499 	for (int i = 0; i < count; i++)
500 		spl_cache_shrink(skc, skm->skm_objs[i]);
501 
502 	skm->skm_avail -= count;
503 	memmove(skm->skm_objs, &(skm->skm_objs[count]),
504 	    sizeof (void *) * skm->skm_avail);
505 
506 	spin_unlock(&skc->skc_lock);
507 }
508 
509 /*
510  * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
511  * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
512  * for very small objects we may end up with more than this so as not
513  * to waste space in the minimal allocation of a single page.
514  */
515 static int
516 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
517 {
518 	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
519 
520 	sks_size = spl_sks_size(skc);
521 	obj_size = spl_obj_size(skc);
522 	max_size = (spl_kmem_cache_max_size * 1024 * 1024);
523 	tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
524 
525 	if (tgt_size <= max_size) {
526 		tgt_objs = (tgt_size - sks_size) / obj_size;
527 	} else {
528 		tgt_objs = (max_size - sks_size) / obj_size;
529 		tgt_size = (tgt_objs * obj_size) + sks_size;
530 	}
531 
532 	if (tgt_objs == 0)
533 		return (-ENOSPC);
534 
535 	*objs = tgt_objs;
536 	*size = tgt_size;
537 
538 	return (0);
539 }
540 
541 /*
542  * Make a guess at reasonable per-cpu magazine size based on the size of
543  * each object and the cost of caching N of them in each magazine.  Long
544  * term this should really adapt based on an observed usage heuristic.
545  */
546 static int
547 spl_magazine_size(spl_kmem_cache_t *skc)
548 {
549 	uint32_t obj_size = spl_obj_size(skc);
550 	int size;
551 
552 	if (spl_kmem_cache_magazine_size > 0)
553 		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
554 
555 	/* Per-magazine sizes below assume a 4Kib page size */
556 	if (obj_size > (PAGE_SIZE * 256))
557 		size = 4;  /* Minimum 4Mib per-magazine */
558 	else if (obj_size > (PAGE_SIZE * 32))
559 		size = 16; /* Minimum 2Mib per-magazine */
560 	else if (obj_size > (PAGE_SIZE))
561 		size = 64; /* Minimum 256Kib per-magazine */
562 	else if (obj_size > (PAGE_SIZE / 4))
563 		size = 128; /* Minimum 128Kib per-magazine */
564 	else
565 		size = 256;
566 
567 	return (size);
568 }
569 
570 /*
571  * Allocate a per-cpu magazine to associate with a specific core.
572  */
573 static spl_kmem_magazine_t *
574 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
575 {
576 	spl_kmem_magazine_t *skm;
577 	int size = sizeof (spl_kmem_magazine_t) +
578 	    sizeof (void *) * skc->skc_mag_size;
579 
580 	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
581 	if (skm) {
582 		skm->skm_magic = SKM_MAGIC;
583 		skm->skm_avail = 0;
584 		skm->skm_size = skc->skc_mag_size;
585 		skm->skm_refill = skc->skc_mag_refill;
586 		skm->skm_cache = skc;
587 		skm->skm_cpu = cpu;
588 	}
589 
590 	return (skm);
591 }
592 
593 /*
594  * Free a per-cpu magazine associated with a specific core.
595  */
596 static void
597 spl_magazine_free(spl_kmem_magazine_t *skm)
598 {
599 	ASSERT(skm->skm_magic == SKM_MAGIC);
600 	ASSERT(skm->skm_avail == 0);
601 	kfree(skm);
602 }
603 
604 /*
605  * Create all pre-cpu magazines of reasonable sizes.
606  */
607 static int
608 spl_magazine_create(spl_kmem_cache_t *skc)
609 {
610 	int i = 0;
611 
612 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
613 
614 	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
615 	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
616 	skc->skc_mag_size = spl_magazine_size(skc);
617 	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
618 
619 	for_each_possible_cpu(i) {
620 		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
621 		if (!skc->skc_mag[i]) {
622 			for (i--; i >= 0; i--)
623 				spl_magazine_free(skc->skc_mag[i]);
624 
625 			kfree(skc->skc_mag);
626 			return (-ENOMEM);
627 		}
628 	}
629 
630 	return (0);
631 }
632 
633 /*
634  * Destroy all pre-cpu magazines.
635  */
636 static void
637 spl_magazine_destroy(spl_kmem_cache_t *skc)
638 {
639 	spl_kmem_magazine_t *skm;
640 	int i = 0;
641 
642 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
643 
644 	for_each_possible_cpu(i) {
645 		skm = skc->skc_mag[i];
646 		spl_cache_flush(skc, skm, skm->skm_avail);
647 		spl_magazine_free(skm);
648 	}
649 
650 	kfree(skc->skc_mag);
651 }
652 
653 /*
654  * Create a object cache based on the following arguments:
655  * name		cache name
656  * size		cache object size
657  * align	cache object alignment
658  * ctor		cache object constructor
659  * dtor		cache object destructor
660  * reclaim	cache object reclaim
661  * priv		cache private data for ctor/dtor/reclaim
662  * vmp		unused must be NULL
663  * flags
664  *	KMC_KVMEM       Force kvmem backed SPL cache
665  *	KMC_SLAB        Force Linux slab backed cache
666  *	KMC_NODEBUG	Disable debugging (unsupported)
667  *	KMC_RECLAIMABLE	Memory can be freed under pressure
668  */
669 spl_kmem_cache_t *
670 spl_kmem_cache_create(const char *name, size_t size, size_t align,
671     spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
672     void *priv, void *vmp, int flags)
673 {
674 	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
675 	spl_kmem_cache_t *skc;
676 	int rc;
677 
678 	/*
679 	 * Unsupported flags
680 	 */
681 	ASSERT(vmp == NULL);
682 	ASSERT(reclaim == NULL);
683 
684 	might_sleep();
685 
686 	skc = kzalloc(sizeof (*skc), lflags);
687 	if (skc == NULL)
688 		return (NULL);
689 
690 	skc->skc_magic = SKC_MAGIC;
691 	skc->skc_name_size = strlen(name) + 1;
692 	skc->skc_name = kmalloc(skc->skc_name_size, lflags);
693 	if (skc->skc_name == NULL) {
694 		kfree(skc);
695 		return (NULL);
696 	}
697 	strlcpy(skc->skc_name, name, skc->skc_name_size);
698 
699 	skc->skc_ctor = ctor;
700 	skc->skc_dtor = dtor;
701 	skc->skc_private = priv;
702 	skc->skc_vmp = vmp;
703 	skc->skc_linux_cache = NULL;
704 	skc->skc_flags = flags;
705 	skc->skc_obj_size = size;
706 	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
707 	atomic_set(&skc->skc_ref, 0);
708 
709 	INIT_LIST_HEAD(&skc->skc_list);
710 	INIT_LIST_HEAD(&skc->skc_complete_list);
711 	INIT_LIST_HEAD(&skc->skc_partial_list);
712 	skc->skc_emergency_tree = RB_ROOT;
713 	spin_lock_init(&skc->skc_lock);
714 	init_waitqueue_head(&skc->skc_waitq);
715 	skc->skc_slab_fail = 0;
716 	skc->skc_slab_create = 0;
717 	skc->skc_slab_destroy = 0;
718 	skc->skc_slab_total = 0;
719 	skc->skc_slab_alloc = 0;
720 	skc->skc_slab_max = 0;
721 	skc->skc_obj_total = 0;
722 	skc->skc_obj_alloc = 0;
723 	skc->skc_obj_max = 0;
724 	skc->skc_obj_deadlock = 0;
725 	skc->skc_obj_emergency = 0;
726 	skc->skc_obj_emergency_max = 0;
727 
728 	rc = percpu_counter_init(&skc->skc_linux_alloc, 0, GFP_KERNEL);
729 	if (rc != 0) {
730 		kfree(skc);
731 		return (NULL);
732 	}
733 
734 	/*
735 	 * Verify the requested alignment restriction is sane.
736 	 */
737 	if (align) {
738 		VERIFY(ISP2(align));
739 		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
740 		VERIFY3U(align, <=, PAGE_SIZE);
741 		skc->skc_obj_align = align;
742 	}
743 
744 	/*
745 	 * When no specific type of slab is requested (kmem, vmem, or
746 	 * linuxslab) then select a cache type based on the object size
747 	 * and default tunables.
748 	 */
749 	if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
750 		if (spl_kmem_cache_slab_limit &&
751 		    size <= (size_t)spl_kmem_cache_slab_limit) {
752 			/*
753 			 * Objects smaller than spl_kmem_cache_slab_limit can
754 			 * use the Linux slab for better space-efficiency.
755 			 */
756 			skc->skc_flags |= KMC_SLAB;
757 		} else {
758 			/*
759 			 * All other objects are considered large and are
760 			 * placed on kvmem backed slabs.
761 			 */
762 			skc->skc_flags |= KMC_KVMEM;
763 		}
764 	}
765 
766 	/*
767 	 * Given the type of slab allocate the required resources.
768 	 */
769 	if (skc->skc_flags & KMC_KVMEM) {
770 		rc = spl_slab_size(skc,
771 		    &skc->skc_slab_objs, &skc->skc_slab_size);
772 		if (rc)
773 			goto out;
774 
775 		rc = spl_magazine_create(skc);
776 		if (rc)
777 			goto out;
778 	} else {
779 		unsigned long slabflags = 0;
780 
781 		if (size > spl_kmem_cache_slab_limit)
782 			goto out;
783 
784 		if (skc->skc_flags & KMC_RECLAIMABLE)
785 			slabflags |= SLAB_RECLAIM_ACCOUNT;
786 
787 		skc->skc_linux_cache = kmem_cache_create_usercopy(
788 		    skc->skc_name, size, align, slabflags, 0, size, NULL);
789 		if (skc->skc_linux_cache == NULL)
790 			goto out;
791 	}
792 
793 	down_write(&spl_kmem_cache_sem);
794 	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
795 	up_write(&spl_kmem_cache_sem);
796 
797 	return (skc);
798 out:
799 	kfree(skc->skc_name);
800 	percpu_counter_destroy(&skc->skc_linux_alloc);
801 	kfree(skc);
802 	return (NULL);
803 }
804 EXPORT_SYMBOL(spl_kmem_cache_create);
805 
806 /*
807  * Register a move callback for cache defragmentation.
808  * XXX: Unimplemented but harmless to stub out for now.
809  */
810 void
811 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
812     kmem_cbrc_t (move)(void *, void *, size_t, void *))
813 {
814 	ASSERT(move != NULL);
815 }
816 EXPORT_SYMBOL(spl_kmem_cache_set_move);
817 
818 /*
819  * Destroy a cache and all objects associated with the cache.
820  */
821 void
822 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
823 {
824 	DECLARE_WAIT_QUEUE_HEAD(wq);
825 	taskqid_t id;
826 
827 	ASSERT(skc->skc_magic == SKC_MAGIC);
828 	ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
829 
830 	down_write(&spl_kmem_cache_sem);
831 	list_del_init(&skc->skc_list);
832 	up_write(&spl_kmem_cache_sem);
833 
834 	/* Cancel any and wait for any pending delayed tasks */
835 	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
836 
837 	spin_lock(&skc->skc_lock);
838 	id = skc->skc_taskqid;
839 	spin_unlock(&skc->skc_lock);
840 
841 	taskq_cancel_id(spl_kmem_cache_taskq, id);
842 
843 	/*
844 	 * Wait until all current callers complete, this is mainly
845 	 * to catch the case where a low memory situation triggers a
846 	 * cache reaping action which races with this destroy.
847 	 */
848 	wait_event(wq, atomic_read(&skc->skc_ref) == 0);
849 
850 	if (skc->skc_flags & KMC_KVMEM) {
851 		spl_magazine_destroy(skc);
852 		spl_slab_reclaim(skc);
853 	} else {
854 		ASSERT(skc->skc_flags & KMC_SLAB);
855 		kmem_cache_destroy(skc->skc_linux_cache);
856 	}
857 
858 	spin_lock(&skc->skc_lock);
859 
860 	/*
861 	 * Validate there are no objects in use and free all the
862 	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
863 	 */
864 	ASSERT3U(skc->skc_slab_alloc, ==, 0);
865 	ASSERT3U(skc->skc_obj_alloc, ==, 0);
866 	ASSERT3U(skc->skc_slab_total, ==, 0);
867 	ASSERT3U(skc->skc_obj_total, ==, 0);
868 	ASSERT3U(skc->skc_obj_emergency, ==, 0);
869 	ASSERT(list_empty(&skc->skc_complete_list));
870 
871 	ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
872 	percpu_counter_destroy(&skc->skc_linux_alloc);
873 
874 	spin_unlock(&skc->skc_lock);
875 
876 	kfree(skc->skc_name);
877 	kfree(skc);
878 }
879 EXPORT_SYMBOL(spl_kmem_cache_destroy);
880 
881 /*
882  * Allocate an object from a slab attached to the cache.  This is used to
883  * repopulate the per-cpu magazine caches in batches when they run low.
884  */
885 static void *
886 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
887 {
888 	spl_kmem_obj_t *sko;
889 
890 	ASSERT(skc->skc_magic == SKC_MAGIC);
891 	ASSERT(sks->sks_magic == SKS_MAGIC);
892 
893 	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
894 	ASSERT(sko->sko_magic == SKO_MAGIC);
895 	ASSERT(sko->sko_addr != NULL);
896 
897 	/* Remove from sks_free_list */
898 	list_del_init(&sko->sko_list);
899 
900 	sks->sks_age = jiffies;
901 	sks->sks_ref++;
902 	skc->skc_obj_alloc++;
903 
904 	/* Track max obj usage statistics */
905 	if (skc->skc_obj_alloc > skc->skc_obj_max)
906 		skc->skc_obj_max = skc->skc_obj_alloc;
907 
908 	/* Track max slab usage statistics */
909 	if (sks->sks_ref == 1) {
910 		skc->skc_slab_alloc++;
911 
912 		if (skc->skc_slab_alloc > skc->skc_slab_max)
913 			skc->skc_slab_max = skc->skc_slab_alloc;
914 	}
915 
916 	return (sko->sko_addr);
917 }
918 
919 /*
920  * Generic slab allocation function to run by the global work queues.
921  * It is responsible for allocating a new slab, linking it in to the list
922  * of partial slabs, and then waking any waiters.
923  */
924 static int
925 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
926 {
927 	spl_kmem_slab_t *sks;
928 
929 	fstrans_cookie_t cookie = spl_fstrans_mark();
930 	sks = spl_slab_alloc(skc, flags);
931 	spl_fstrans_unmark(cookie);
932 
933 	spin_lock(&skc->skc_lock);
934 	if (sks) {
935 		skc->skc_slab_total++;
936 		skc->skc_obj_total += sks->sks_objs;
937 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
938 
939 		smp_mb__before_atomic();
940 		clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
941 		smp_mb__after_atomic();
942 	}
943 	spin_unlock(&skc->skc_lock);
944 
945 	return (sks == NULL ? -ENOMEM : 0);
946 }
947 
948 static void
949 spl_cache_grow_work(void *data)
950 {
951 	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
952 	spl_kmem_cache_t *skc = ska->ska_cache;
953 
954 	int error = __spl_cache_grow(skc, ska->ska_flags);
955 
956 	atomic_dec(&skc->skc_ref);
957 	smp_mb__before_atomic();
958 	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
959 	smp_mb__after_atomic();
960 	if (error == 0)
961 		wake_up_all(&skc->skc_waitq);
962 
963 	kfree(ska);
964 }
965 
966 /*
967  * Returns non-zero when a new slab should be available.
968  */
969 static int
970 spl_cache_grow_wait(spl_kmem_cache_t *skc)
971 {
972 	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
973 }
974 
975 /*
976  * No available objects on any slabs, create a new slab.  Note that this
977  * functionality is disabled for KMC_SLAB caches which are backed by the
978  * Linux slab.
979  */
980 static int
981 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
982 {
983 	int remaining, rc = 0;
984 
985 	ASSERT0(flags & ~KM_PUBLIC_MASK);
986 	ASSERT(skc->skc_magic == SKC_MAGIC);
987 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
988 
989 	*obj = NULL;
990 
991 	/*
992 	 * Since we can't sleep attempt an emergency allocation to satisfy
993 	 * the request.  The only alterative is to fail the allocation but
994 	 * it's preferable try.  The use of KM_NOSLEEP is expected to be rare.
995 	 */
996 	if (flags & KM_NOSLEEP)
997 		return (spl_emergency_alloc(skc, flags, obj));
998 
999 	might_sleep();
1000 
1001 	/*
1002 	 * Before allocating a new slab wait for any reaping to complete and
1003 	 * then return so the local magazine can be rechecked for new objects.
1004 	 */
1005 	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1006 		rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1007 		    TASK_UNINTERRUPTIBLE);
1008 		return (rc ? rc : -EAGAIN);
1009 	}
1010 
1011 	/*
1012 	 * Note: It would be nice to reduce the overhead of context switch
1013 	 * and improve NUMA locality, by trying to allocate a new slab in the
1014 	 * current process context with KM_NOSLEEP flag.
1015 	 *
1016 	 * However, this can't be applied to vmem/kvmem due to a bug that
1017 	 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1018 	 */
1019 
1020 	/*
1021 	 * This is handled by dispatching a work request to the global work
1022 	 * queue.  This allows us to asynchronously allocate a new slab while
1023 	 * retaining the ability to safely fall back to a smaller synchronous
1024 	 * allocations to ensure forward progress is always maintained.
1025 	 */
1026 	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1027 		spl_kmem_alloc_t *ska;
1028 
1029 		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1030 		if (ska == NULL) {
1031 			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1032 			smp_mb__after_atomic();
1033 			wake_up_all(&skc->skc_waitq);
1034 			return (-ENOMEM);
1035 		}
1036 
1037 		atomic_inc(&skc->skc_ref);
1038 		ska->ska_cache = skc;
1039 		ska->ska_flags = flags;
1040 		taskq_init_ent(&ska->ska_tqe);
1041 		taskq_dispatch_ent(spl_kmem_cache_taskq,
1042 		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1043 	}
1044 
1045 	/*
1046 	 * The goal here is to only detect the rare case where a virtual slab
1047 	 * allocation has deadlocked.  We must be careful to minimize the use
1048 	 * of emergency objects which are more expensive to track.  Therefore,
1049 	 * we set a very long timeout for the asynchronous allocation and if
1050 	 * the timeout is reached the cache is flagged as deadlocked.  From
1051 	 * this point only new emergency objects will be allocated until the
1052 	 * asynchronous allocation completes and clears the deadlocked flag.
1053 	 */
1054 	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1055 		rc = spl_emergency_alloc(skc, flags, obj);
1056 	} else {
1057 		remaining = wait_event_timeout(skc->skc_waitq,
1058 		    spl_cache_grow_wait(skc), HZ / 10);
1059 
1060 		if (!remaining) {
1061 			spin_lock(&skc->skc_lock);
1062 			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1063 				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1064 				skc->skc_obj_deadlock++;
1065 			}
1066 			spin_unlock(&skc->skc_lock);
1067 		}
1068 
1069 		rc = -ENOMEM;
1070 	}
1071 
1072 	return (rc);
1073 }
1074 
1075 /*
1076  * Refill a per-cpu magazine with objects from the slabs for this cache.
1077  * Ideally the magazine can be repopulated using existing objects which have
1078  * been released, however if we are unable to locate enough free objects new
1079  * slabs of objects will be created.  On success NULL is returned, otherwise
1080  * the address of a single emergency object is returned for use by the caller.
1081  */
1082 static void *
1083 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1084 {
1085 	spl_kmem_slab_t *sks;
1086 	int count = 0, rc, refill;
1087 	void *obj = NULL;
1088 
1089 	ASSERT(skc->skc_magic == SKC_MAGIC);
1090 	ASSERT(skm->skm_magic == SKM_MAGIC);
1091 
1092 	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1093 	spin_lock(&skc->skc_lock);
1094 
1095 	while (refill > 0) {
1096 		/* No slabs available we may need to grow the cache */
1097 		if (list_empty(&skc->skc_partial_list)) {
1098 			spin_unlock(&skc->skc_lock);
1099 
1100 			local_irq_enable();
1101 			rc = spl_cache_grow(skc, flags, &obj);
1102 			local_irq_disable();
1103 
1104 			/* Emergency object for immediate use by caller */
1105 			if (rc == 0 && obj != NULL)
1106 				return (obj);
1107 
1108 			if (rc)
1109 				goto out;
1110 
1111 			/* Rescheduled to different CPU skm is not local */
1112 			if (skm != skc->skc_mag[smp_processor_id()])
1113 				goto out;
1114 
1115 			/*
1116 			 * Potentially rescheduled to the same CPU but
1117 			 * allocations may have occurred from this CPU while
1118 			 * we were sleeping so recalculate max refill.
1119 			 */
1120 			refill = MIN(refill, skm->skm_size - skm->skm_avail);
1121 
1122 			spin_lock(&skc->skc_lock);
1123 			continue;
1124 		}
1125 
1126 		/* Grab the next available slab */
1127 		sks = list_entry((&skc->skc_partial_list)->next,
1128 		    spl_kmem_slab_t, sks_list);
1129 		ASSERT(sks->sks_magic == SKS_MAGIC);
1130 		ASSERT(sks->sks_ref < sks->sks_objs);
1131 		ASSERT(!list_empty(&sks->sks_free_list));
1132 
1133 		/*
1134 		 * Consume as many objects as needed to refill the requested
1135 		 * cache.  We must also be careful not to overfill it.
1136 		 */
1137 		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1138 		    ++count) {
1139 			ASSERT(skm->skm_avail < skm->skm_size);
1140 			ASSERT(count < skm->skm_size);
1141 			skm->skm_objs[skm->skm_avail++] =
1142 			    spl_cache_obj(skc, sks);
1143 		}
1144 
1145 		/* Move slab to skc_complete_list when full */
1146 		if (sks->sks_ref == sks->sks_objs) {
1147 			list_del(&sks->sks_list);
1148 			list_add(&sks->sks_list, &skc->skc_complete_list);
1149 		}
1150 	}
1151 
1152 	spin_unlock(&skc->skc_lock);
1153 out:
1154 	return (NULL);
1155 }
1156 
1157 /*
1158  * Release an object back to the slab from which it came.
1159  */
1160 static void
1161 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1162 {
1163 	spl_kmem_slab_t *sks = NULL;
1164 	spl_kmem_obj_t *sko = NULL;
1165 
1166 	ASSERT(skc->skc_magic == SKC_MAGIC);
1167 
1168 	sko = spl_sko_from_obj(skc, obj);
1169 	ASSERT(sko->sko_magic == SKO_MAGIC);
1170 	sks = sko->sko_slab;
1171 	ASSERT(sks->sks_magic == SKS_MAGIC);
1172 	ASSERT(sks->sks_cache == skc);
1173 	list_add(&sko->sko_list, &sks->sks_free_list);
1174 
1175 	sks->sks_age = jiffies;
1176 	sks->sks_ref--;
1177 	skc->skc_obj_alloc--;
1178 
1179 	/*
1180 	 * Move slab to skc_partial_list when no longer full.  Slabs
1181 	 * are added to the head to keep the partial list is quasi-full
1182 	 * sorted order.  Fuller at the head, emptier at the tail.
1183 	 */
1184 	if (sks->sks_ref == (sks->sks_objs - 1)) {
1185 		list_del(&sks->sks_list);
1186 		list_add(&sks->sks_list, &skc->skc_partial_list);
1187 	}
1188 
1189 	/*
1190 	 * Move empty slabs to the end of the partial list so
1191 	 * they can be easily found and freed during reclamation.
1192 	 */
1193 	if (sks->sks_ref == 0) {
1194 		list_del(&sks->sks_list);
1195 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1196 		skc->skc_slab_alloc--;
1197 	}
1198 }
1199 
1200 /*
1201  * Allocate an object from the per-cpu magazine, or if the magazine
1202  * is empty directly allocate from a slab and repopulate the magazine.
1203  */
1204 void *
1205 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1206 {
1207 	spl_kmem_magazine_t *skm;
1208 	void *obj = NULL;
1209 
1210 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1211 	ASSERT(skc->skc_magic == SKC_MAGIC);
1212 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1213 
1214 	/*
1215 	 * Allocate directly from a Linux slab.  All optimizations are left
1216 	 * to the underlying cache we only need to guarantee that KM_SLEEP
1217 	 * callers will never fail.
1218 	 */
1219 	if (skc->skc_flags & KMC_SLAB) {
1220 		struct kmem_cache *slc = skc->skc_linux_cache;
1221 		do {
1222 			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1223 		} while ((obj == NULL) && !(flags & KM_NOSLEEP));
1224 
1225 		if (obj != NULL) {
1226 			/*
1227 			 * Even though we leave everything up to the
1228 			 * underlying cache we still keep track of
1229 			 * how many objects we've allocated in it for
1230 			 * better debuggability.
1231 			 */
1232 			percpu_counter_inc(&skc->skc_linux_alloc);
1233 		}
1234 		goto ret;
1235 	}
1236 
1237 	local_irq_disable();
1238 
1239 restart:
1240 	/*
1241 	 * Safe to update per-cpu structure without lock, but
1242 	 * in the restart case we must be careful to reacquire
1243 	 * the local magazine since this may have changed
1244 	 * when we need to grow the cache.
1245 	 */
1246 	skm = skc->skc_mag[smp_processor_id()];
1247 	ASSERT(skm->skm_magic == SKM_MAGIC);
1248 
1249 	if (likely(skm->skm_avail)) {
1250 		/* Object available in CPU cache, use it */
1251 		obj = skm->skm_objs[--skm->skm_avail];
1252 	} else {
1253 		obj = spl_cache_refill(skc, skm, flags);
1254 		if ((obj == NULL) && !(flags & KM_NOSLEEP))
1255 			goto restart;
1256 
1257 		local_irq_enable();
1258 		goto ret;
1259 	}
1260 
1261 	local_irq_enable();
1262 	ASSERT(obj);
1263 	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1264 
1265 ret:
1266 	/* Pre-emptively migrate object to CPU L1 cache */
1267 	if (obj) {
1268 		if (obj && skc->skc_ctor)
1269 			skc->skc_ctor(obj, skc->skc_private, flags);
1270 		else
1271 			prefetchw(obj);
1272 	}
1273 
1274 	return (obj);
1275 }
1276 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1277 
1278 /*
1279  * Free an object back to the local per-cpu magazine, there is no
1280  * guarantee that this is the same magazine the object was originally
1281  * allocated from.  We may need to flush entire from the magazine
1282  * back to the slabs to make space.
1283  */
1284 void
1285 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1286 {
1287 	spl_kmem_magazine_t *skm;
1288 	unsigned long flags;
1289 	int do_reclaim = 0;
1290 	int do_emergency = 0;
1291 
1292 	ASSERT(skc->skc_magic == SKC_MAGIC);
1293 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1294 
1295 	/*
1296 	 * Run the destructor
1297 	 */
1298 	if (skc->skc_dtor)
1299 		skc->skc_dtor(obj, skc->skc_private);
1300 
1301 	/*
1302 	 * Free the object from the Linux underlying Linux slab.
1303 	 */
1304 	if (skc->skc_flags & KMC_SLAB) {
1305 		kmem_cache_free(skc->skc_linux_cache, obj);
1306 		percpu_counter_dec(&skc->skc_linux_alloc);
1307 		return;
1308 	}
1309 
1310 	/*
1311 	 * While a cache has outstanding emergency objects all freed objects
1312 	 * must be checked.  However, since emergency objects will never use
1313 	 * a virtual address these objects can be safely excluded as an
1314 	 * optimization.
1315 	 */
1316 	if (!is_vmalloc_addr(obj)) {
1317 		spin_lock(&skc->skc_lock);
1318 		do_emergency = (skc->skc_obj_emergency > 0);
1319 		spin_unlock(&skc->skc_lock);
1320 
1321 		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1322 			return;
1323 	}
1324 
1325 	local_irq_save(flags);
1326 
1327 	/*
1328 	 * Safe to update per-cpu structure without lock, but
1329 	 * no remote memory allocation tracking is being performed
1330 	 * it is entirely possible to allocate an object from one
1331 	 * CPU cache and return it to another.
1332 	 */
1333 	skm = skc->skc_mag[smp_processor_id()];
1334 	ASSERT(skm->skm_magic == SKM_MAGIC);
1335 
1336 	/*
1337 	 * Per-CPU cache full, flush it to make space for this object,
1338 	 * this may result in an empty slab which can be reclaimed once
1339 	 * interrupts are re-enabled.
1340 	 */
1341 	if (unlikely(skm->skm_avail >= skm->skm_size)) {
1342 		spl_cache_flush(skc, skm, skm->skm_refill);
1343 		do_reclaim = 1;
1344 	}
1345 
1346 	/* Available space in cache, use it */
1347 	skm->skm_objs[skm->skm_avail++] = obj;
1348 
1349 	local_irq_restore(flags);
1350 
1351 	if (do_reclaim)
1352 		spl_slab_reclaim(skc);
1353 }
1354 EXPORT_SYMBOL(spl_kmem_cache_free);
1355 
1356 /*
1357  * Depending on how many and which objects are released it may simply
1358  * repopulate the local magazine which will then need to age-out.  Objects
1359  * which cannot fit in the magazine will be released back to their slabs
1360  * which will also need to age out before being released.  This is all just
1361  * best effort and we do not want to thrash creating and destroying slabs.
1362  */
1363 void
1364 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1365 {
1366 	ASSERT(skc->skc_magic == SKC_MAGIC);
1367 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1368 
1369 	if (skc->skc_flags & KMC_SLAB)
1370 		return;
1371 
1372 	atomic_inc(&skc->skc_ref);
1373 
1374 	/*
1375 	 * Prevent concurrent cache reaping when contended.
1376 	 */
1377 	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1378 		goto out;
1379 
1380 	/* Reclaim from the magazine and free all now empty slabs. */
1381 	unsigned long irq_flags;
1382 	local_irq_save(irq_flags);
1383 	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1384 	spl_cache_flush(skc, skm, skm->skm_avail);
1385 	local_irq_restore(irq_flags);
1386 
1387 	spl_slab_reclaim(skc);
1388 	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1389 	smp_mb__after_atomic();
1390 	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1391 out:
1392 	atomic_dec(&skc->skc_ref);
1393 }
1394 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1395 
1396 /*
1397  * This is stubbed out for code consistency with other platforms.  There
1398  * is existing logic to prevent concurrent reaping so while this is ugly
1399  * it should do no harm.
1400  */
1401 int
1402 spl_kmem_cache_reap_active(void)
1403 {
1404 	return (0);
1405 }
1406 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1407 
1408 /*
1409  * Reap all free slabs from all registered caches.
1410  */
1411 void
1412 spl_kmem_reap(void)
1413 {
1414 	spl_kmem_cache_t *skc = NULL;
1415 
1416 	down_read(&spl_kmem_cache_sem);
1417 	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1418 		spl_kmem_cache_reap_now(skc);
1419 	}
1420 	up_read(&spl_kmem_cache_sem);
1421 }
1422 EXPORT_SYMBOL(spl_kmem_reap);
1423 
1424 int
1425 spl_kmem_cache_init(void)
1426 {
1427 	init_rwsem(&spl_kmem_cache_sem);
1428 	INIT_LIST_HEAD(&spl_kmem_cache_list);
1429 	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1430 	    spl_kmem_cache_kmem_threads, maxclsyspri,
1431 	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
1432 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1433 
1434 	if (spl_kmem_cache_taskq == NULL)
1435 		return (-ENOMEM);
1436 
1437 	return (0);
1438 }
1439 
1440 void
1441 spl_kmem_cache_fini(void)
1442 {
1443 	taskq_destroy(spl_kmem_cache_taskq);
1444 }
1445