1 /* 2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3 * Copyright (C) 2007 The Regents of the University of California. 4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6 * UCRL-CODE-235197 7 * 8 * This file is part of the SPL, Solaris Porting Layer. 9 * 10 * The SPL is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * The SPL is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #define SPL_KMEM_CACHE_IMPLEMENTING 25 26 #include <sys/kmem.h> 27 #include <sys/kmem_cache.h> 28 #include <sys/taskq.h> 29 #include <sys/timer.h> 30 #include <sys/vmem.h> 31 #include <sys/wait.h> 32 #include <sys/string.h> 33 #include <linux/slab.h> 34 #include <linux/swap.h> 35 #include <linux/prefetch.h> 36 37 /* 38 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() 39 * with smp_mb__{before,after}_atomic() because they were redundant. This is 40 * only used inside our SLAB allocator, so we implement an internal wrapper 41 * here to give us smp_mb__{before,after}_atomic() on older kernels. 42 */ 43 #ifndef smp_mb__before_atomic 44 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x) 45 #endif 46 47 #ifndef smp_mb__after_atomic 48 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x) 49 #endif 50 51 /* BEGIN CSTYLED */ 52 /* 53 * Cache magazines are an optimization designed to minimize the cost of 54 * allocating memory. They do this by keeping a per-cpu cache of recently 55 * freed objects, which can then be reallocated without taking a lock. This 56 * can improve performance on highly contended caches. However, because 57 * objects in magazines will prevent otherwise empty slabs from being 58 * immediately released this may not be ideal for low memory machines. 59 * 60 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum 61 * magazine size. When this value is set to 0 the magazine size will be 62 * automatically determined based on the object size. Otherwise magazines 63 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines 64 * may never be entirely disabled in this implementation. 65 */ 66 static unsigned int spl_kmem_cache_magazine_size = 0; 67 module_param(spl_kmem_cache_magazine_size, uint, 0444); 68 MODULE_PARM_DESC(spl_kmem_cache_magazine_size, 69 "Default magazine size (2-256), set automatically (0)"); 70 71 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB; 72 module_param(spl_kmem_cache_obj_per_slab, uint, 0644); 73 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab"); 74 75 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE; 76 module_param(spl_kmem_cache_max_size, uint, 0644); 77 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB"); 78 79 /* 80 * For small objects the Linux slab allocator should be used to make the most 81 * efficient use of the memory. However, large objects are not supported by 82 * the Linux slab and therefore the SPL implementation is preferred. A cutoff 83 * of 16K was determined to be optimal for architectures using 4K pages and 84 * to also work well on architecutres using larger 64K page sizes. 85 */ 86 static unsigned int spl_kmem_cache_slab_limit = 87 SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE; 88 module_param(spl_kmem_cache_slab_limit, uint, 0644); 89 MODULE_PARM_DESC(spl_kmem_cache_slab_limit, 90 "Objects less than N bytes use the Linux slab"); 91 92 /* 93 * The number of threads available to allocate new slabs for caches. This 94 * should not need to be tuned but it is available for performance analysis. 95 */ 96 static unsigned int spl_kmem_cache_kmem_threads = 4; 97 module_param(spl_kmem_cache_kmem_threads, uint, 0444); 98 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads, 99 "Number of spl_kmem_cache threads"); 100 /* END CSTYLED */ 101 102 /* 103 * Slab allocation interfaces 104 * 105 * While the Linux slab implementation was inspired by the Solaris 106 * implementation I cannot use it to emulate the Solaris APIs. I 107 * require two features which are not provided by the Linux slab. 108 * 109 * 1) Constructors AND destructors. Recent versions of the Linux 110 * kernel have removed support for destructors. This is a deal 111 * breaker for the SPL which contains particularly expensive 112 * initializers for mutex's, condition variables, etc. We also 113 * require a minimal level of cleanup for these data types unlike 114 * many Linux data types which do need to be explicitly destroyed. 115 * 116 * 2) Virtual address space backed slab. Callers of the Solaris slab 117 * expect it to work well for both small are very large allocations. 118 * Because of memory fragmentation the Linux slab which is backed 119 * by kmalloc'ed memory performs very badly when confronted with 120 * large numbers of large allocations. Basing the slab on the 121 * virtual address space removes the need for contiguous pages 122 * and greatly improve performance for large allocations. 123 * 124 * For these reasons, the SPL has its own slab implementation with 125 * the needed features. It is not as highly optimized as either the 126 * Solaris or Linux slabs, but it should get me most of what is 127 * needed until it can be optimized or obsoleted by another approach. 128 * 129 * One serious concern I do have about this method is the relatively 130 * small virtual address space on 32bit arches. This will seriously 131 * constrain the size of the slab caches and their performance. 132 */ 133 134 struct list_head spl_kmem_cache_list; /* List of caches */ 135 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */ 136 static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */ 137 138 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj); 139 140 static void * 141 kv_alloc(spl_kmem_cache_t *skc, int size, int flags) 142 { 143 gfp_t lflags = kmem_flags_convert(flags); 144 void *ptr; 145 146 if (skc->skc_flags & KMC_RECLAIMABLE) 147 lflags |= __GFP_RECLAIMABLE; 148 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM); 149 150 /* Resulting allocated memory will be page aligned */ 151 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 152 153 return (ptr); 154 } 155 156 static void 157 kv_free(spl_kmem_cache_t *skc, void *ptr, int size) 158 { 159 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 160 161 /* 162 * The Linux direct reclaim path uses this out of band value to 163 * determine if forward progress is being made. Normally this is 164 * incremented by kmem_freepages() which is part of the various 165 * Linux slab implementations. However, since we are using none 166 * of that infrastructure we are responsible for incrementing it. 167 */ 168 if (current->reclaim_state) 169 #ifdef HAVE_RECLAIM_STATE_RECLAIMED 170 current->reclaim_state->reclaimed += size >> PAGE_SHIFT; 171 #else 172 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT; 173 #endif 174 vfree(ptr); 175 } 176 177 /* 178 * Required space for each aligned sks. 179 */ 180 static inline uint32_t 181 spl_sks_size(spl_kmem_cache_t *skc) 182 { 183 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t), 184 skc->skc_obj_align, uint32_t)); 185 } 186 187 /* 188 * Required space for each aligned object. 189 */ 190 static inline uint32_t 191 spl_obj_size(spl_kmem_cache_t *skc) 192 { 193 uint32_t align = skc->skc_obj_align; 194 195 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) + 196 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t)); 197 } 198 199 uint64_t 200 spl_kmem_cache_inuse(kmem_cache_t *cache) 201 { 202 return (cache->skc_obj_total); 203 } 204 EXPORT_SYMBOL(spl_kmem_cache_inuse); 205 206 uint64_t 207 spl_kmem_cache_entry_size(kmem_cache_t *cache) 208 { 209 return (cache->skc_obj_size); 210 } 211 EXPORT_SYMBOL(spl_kmem_cache_entry_size); 212 213 /* 214 * Lookup the spl_kmem_object_t for an object given that object. 215 */ 216 static inline spl_kmem_obj_t * 217 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj) 218 { 219 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size, 220 skc->skc_obj_align, uint32_t)); 221 } 222 223 /* 224 * It's important that we pack the spl_kmem_obj_t structure and the 225 * actual objects in to one large address space to minimize the number 226 * of calls to the allocator. It is far better to do a few large 227 * allocations and then subdivide it ourselves. Now which allocator 228 * we use requires balancing a few trade offs. 229 * 230 * For small objects we use kmem_alloc() because as long as you are 231 * only requesting a small number of pages (ideally just one) its cheap. 232 * However, when you start requesting multiple pages with kmem_alloc() 233 * it gets increasingly expensive since it requires contiguous pages. 234 * For this reason we shift to vmem_alloc() for slabs of large objects 235 * which removes the need for contiguous pages. We do not use 236 * vmem_alloc() in all cases because there is significant locking 237 * overhead in __get_vm_area_node(). This function takes a single 238 * global lock when acquiring an available virtual address range which 239 * serializes all vmem_alloc()'s for all slab caches. Using slightly 240 * different allocation functions for small and large objects should 241 * give us the best of both worlds. 242 * 243 * +------------------------+ 244 * | spl_kmem_slab_t --+-+ | 245 * | skc_obj_size <-+ | | 246 * | spl_kmem_obj_t | | 247 * | skc_obj_size <---+ | 248 * | spl_kmem_obj_t | | 249 * | ... v | 250 * +------------------------+ 251 */ 252 static spl_kmem_slab_t * 253 spl_slab_alloc(spl_kmem_cache_t *skc, int flags) 254 { 255 spl_kmem_slab_t *sks; 256 void *base; 257 uint32_t obj_size; 258 259 base = kv_alloc(skc, skc->skc_slab_size, flags); 260 if (base == NULL) 261 return (NULL); 262 263 sks = (spl_kmem_slab_t *)base; 264 sks->sks_magic = SKS_MAGIC; 265 sks->sks_objs = skc->skc_slab_objs; 266 sks->sks_age = jiffies; 267 sks->sks_cache = skc; 268 INIT_LIST_HEAD(&sks->sks_list); 269 INIT_LIST_HEAD(&sks->sks_free_list); 270 sks->sks_ref = 0; 271 obj_size = spl_obj_size(skc); 272 273 for (int i = 0; i < sks->sks_objs; i++) { 274 void *obj = base + spl_sks_size(skc) + (i * obj_size); 275 276 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 277 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj); 278 sko->sko_addr = obj; 279 sko->sko_magic = SKO_MAGIC; 280 sko->sko_slab = sks; 281 INIT_LIST_HEAD(&sko->sko_list); 282 list_add_tail(&sko->sko_list, &sks->sks_free_list); 283 } 284 285 return (sks); 286 } 287 288 /* 289 * Remove a slab from complete or partial list, it must be called with 290 * the 'skc->skc_lock' held but the actual free must be performed 291 * outside the lock to prevent deadlocking on vmem addresses. 292 */ 293 static void 294 spl_slab_free(spl_kmem_slab_t *sks, 295 struct list_head *sks_list, struct list_head *sko_list) 296 { 297 spl_kmem_cache_t *skc; 298 299 ASSERT(sks->sks_magic == SKS_MAGIC); 300 ASSERT(sks->sks_ref == 0); 301 302 skc = sks->sks_cache; 303 ASSERT(skc->skc_magic == SKC_MAGIC); 304 305 /* 306 * Update slab/objects counters in the cache, then remove the 307 * slab from the skc->skc_partial_list. Finally add the slab 308 * and all its objects in to the private work lists where the 309 * destructors will be called and the memory freed to the system. 310 */ 311 skc->skc_obj_total -= sks->sks_objs; 312 skc->skc_slab_total--; 313 list_del(&sks->sks_list); 314 list_add(&sks->sks_list, sks_list); 315 list_splice_init(&sks->sks_free_list, sko_list); 316 } 317 318 /* 319 * Reclaim empty slabs at the end of the partial list. 320 */ 321 static void 322 spl_slab_reclaim(spl_kmem_cache_t *skc) 323 { 324 spl_kmem_slab_t *sks = NULL, *m = NULL; 325 spl_kmem_obj_t *sko = NULL, *n = NULL; 326 LIST_HEAD(sks_list); 327 LIST_HEAD(sko_list); 328 329 /* 330 * Empty slabs and objects must be moved to a private list so they 331 * can be safely freed outside the spin lock. All empty slabs are 332 * at the end of skc->skc_partial_list, therefore once a non-empty 333 * slab is found we can stop scanning. 334 */ 335 spin_lock(&skc->skc_lock); 336 list_for_each_entry_safe_reverse(sks, m, 337 &skc->skc_partial_list, sks_list) { 338 339 if (sks->sks_ref > 0) 340 break; 341 342 spl_slab_free(sks, &sks_list, &sko_list); 343 } 344 spin_unlock(&skc->skc_lock); 345 346 /* 347 * The following two loops ensure all the object destructors are run, 348 * and the slabs themselves are freed. This is all done outside the 349 * skc->skc_lock since this allows the destructor to sleep, and 350 * allows us to perform a conditional reschedule when a freeing a 351 * large number of objects and slabs back to the system. 352 */ 353 354 list_for_each_entry_safe(sko, n, &sko_list, sko_list) { 355 ASSERT(sko->sko_magic == SKO_MAGIC); 356 } 357 358 list_for_each_entry_safe(sks, m, &sks_list, sks_list) { 359 ASSERT(sks->sks_magic == SKS_MAGIC); 360 kv_free(skc, sks, skc->skc_slab_size); 361 } 362 } 363 364 static spl_kmem_emergency_t * 365 spl_emergency_search(struct rb_root *root, void *obj) 366 { 367 struct rb_node *node = root->rb_node; 368 spl_kmem_emergency_t *ske; 369 unsigned long address = (unsigned long)obj; 370 371 while (node) { 372 ske = container_of(node, spl_kmem_emergency_t, ske_node); 373 374 if (address < ske->ske_obj) 375 node = node->rb_left; 376 else if (address > ske->ske_obj) 377 node = node->rb_right; 378 else 379 return (ske); 380 } 381 382 return (NULL); 383 } 384 385 static int 386 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske) 387 { 388 struct rb_node **new = &(root->rb_node), *parent = NULL; 389 spl_kmem_emergency_t *ske_tmp; 390 unsigned long address = ske->ske_obj; 391 392 while (*new) { 393 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node); 394 395 parent = *new; 396 if (address < ske_tmp->ske_obj) 397 new = &((*new)->rb_left); 398 else if (address > ske_tmp->ske_obj) 399 new = &((*new)->rb_right); 400 else 401 return (0); 402 } 403 404 rb_link_node(&ske->ske_node, parent, new); 405 rb_insert_color(&ske->ske_node, root); 406 407 return (1); 408 } 409 410 /* 411 * Allocate a single emergency object and track it in a red black tree. 412 */ 413 static int 414 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj) 415 { 416 gfp_t lflags = kmem_flags_convert(flags); 417 spl_kmem_emergency_t *ske; 418 int order = get_order(skc->skc_obj_size); 419 int empty; 420 421 /* Last chance use a partial slab if one now exists */ 422 spin_lock(&skc->skc_lock); 423 empty = list_empty(&skc->skc_partial_list); 424 spin_unlock(&skc->skc_lock); 425 if (!empty) 426 return (-EEXIST); 427 428 if (skc->skc_flags & KMC_RECLAIMABLE) 429 lflags |= __GFP_RECLAIMABLE; 430 ske = kmalloc(sizeof (*ske), lflags); 431 if (ske == NULL) 432 return (-ENOMEM); 433 434 ske->ske_obj = __get_free_pages(lflags, order); 435 if (ske->ske_obj == 0) { 436 kfree(ske); 437 return (-ENOMEM); 438 } 439 440 spin_lock(&skc->skc_lock); 441 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske); 442 if (likely(empty)) { 443 skc->skc_obj_total++; 444 skc->skc_obj_emergency++; 445 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max) 446 skc->skc_obj_emergency_max = skc->skc_obj_emergency; 447 } 448 spin_unlock(&skc->skc_lock); 449 450 if (unlikely(!empty)) { 451 free_pages(ske->ske_obj, order); 452 kfree(ske); 453 return (-EINVAL); 454 } 455 456 *obj = (void *)ske->ske_obj; 457 458 return (0); 459 } 460 461 /* 462 * Locate the passed object in the red black tree and free it. 463 */ 464 static int 465 spl_emergency_free(spl_kmem_cache_t *skc, void *obj) 466 { 467 spl_kmem_emergency_t *ske; 468 int order = get_order(skc->skc_obj_size); 469 470 spin_lock(&skc->skc_lock); 471 ske = spl_emergency_search(&skc->skc_emergency_tree, obj); 472 if (ske) { 473 rb_erase(&ske->ske_node, &skc->skc_emergency_tree); 474 skc->skc_obj_emergency--; 475 skc->skc_obj_total--; 476 } 477 spin_unlock(&skc->skc_lock); 478 479 if (ske == NULL) 480 return (-ENOENT); 481 482 free_pages(ske->ske_obj, order); 483 kfree(ske); 484 485 return (0); 486 } 487 488 /* 489 * Release objects from the per-cpu magazine back to their slab. The flush 490 * argument contains the max number of entries to remove from the magazine. 491 */ 492 static void 493 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush) 494 { 495 spin_lock(&skc->skc_lock); 496 497 ASSERT(skc->skc_magic == SKC_MAGIC); 498 ASSERT(skm->skm_magic == SKM_MAGIC); 499 500 int count = MIN(flush, skm->skm_avail); 501 for (int i = 0; i < count; i++) 502 spl_cache_shrink(skc, skm->skm_objs[i]); 503 504 skm->skm_avail -= count; 505 memmove(skm->skm_objs, &(skm->skm_objs[count]), 506 sizeof (void *) * skm->skm_avail); 507 508 spin_unlock(&skc->skc_lock); 509 } 510 511 /* 512 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t. 513 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However, 514 * for very small objects we may end up with more than this so as not 515 * to waste space in the minimal allocation of a single page. 516 */ 517 static int 518 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size) 519 { 520 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs; 521 522 sks_size = spl_sks_size(skc); 523 obj_size = spl_obj_size(skc); 524 max_size = (spl_kmem_cache_max_size * 1024 * 1024); 525 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size); 526 527 if (tgt_size <= max_size) { 528 tgt_objs = (tgt_size - sks_size) / obj_size; 529 } else { 530 tgt_objs = (max_size - sks_size) / obj_size; 531 tgt_size = (tgt_objs * obj_size) + sks_size; 532 } 533 534 if (tgt_objs == 0) 535 return (-ENOSPC); 536 537 *objs = tgt_objs; 538 *size = tgt_size; 539 540 return (0); 541 } 542 543 /* 544 * Make a guess at reasonable per-cpu magazine size based on the size of 545 * each object and the cost of caching N of them in each magazine. Long 546 * term this should really adapt based on an observed usage heuristic. 547 */ 548 static int 549 spl_magazine_size(spl_kmem_cache_t *skc) 550 { 551 uint32_t obj_size = spl_obj_size(skc); 552 int size; 553 554 if (spl_kmem_cache_magazine_size > 0) 555 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2)); 556 557 /* Per-magazine sizes below assume a 4Kib page size */ 558 if (obj_size > (PAGE_SIZE * 256)) 559 size = 4; /* Minimum 4Mib per-magazine */ 560 else if (obj_size > (PAGE_SIZE * 32)) 561 size = 16; /* Minimum 2Mib per-magazine */ 562 else if (obj_size > (PAGE_SIZE)) 563 size = 64; /* Minimum 256Kib per-magazine */ 564 else if (obj_size > (PAGE_SIZE / 4)) 565 size = 128; /* Minimum 128Kib per-magazine */ 566 else 567 size = 256; 568 569 return (size); 570 } 571 572 /* 573 * Allocate a per-cpu magazine to associate with a specific core. 574 */ 575 static spl_kmem_magazine_t * 576 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu) 577 { 578 spl_kmem_magazine_t *skm; 579 int size = sizeof (spl_kmem_magazine_t) + 580 sizeof (void *) * skc->skc_mag_size; 581 582 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu)); 583 if (skm) { 584 skm->skm_magic = SKM_MAGIC; 585 skm->skm_avail = 0; 586 skm->skm_size = skc->skc_mag_size; 587 skm->skm_refill = skc->skc_mag_refill; 588 skm->skm_cache = skc; 589 skm->skm_cpu = cpu; 590 } 591 592 return (skm); 593 } 594 595 /* 596 * Free a per-cpu magazine associated with a specific core. 597 */ 598 static void 599 spl_magazine_free(spl_kmem_magazine_t *skm) 600 { 601 ASSERT(skm->skm_magic == SKM_MAGIC); 602 ASSERT(skm->skm_avail == 0); 603 kfree(skm); 604 } 605 606 /* 607 * Create all pre-cpu magazines of reasonable sizes. 608 */ 609 static int 610 spl_magazine_create(spl_kmem_cache_t *skc) 611 { 612 int i = 0; 613 614 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 615 616 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) * 617 num_possible_cpus(), kmem_flags_convert(KM_SLEEP)); 618 skc->skc_mag_size = spl_magazine_size(skc); 619 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2; 620 621 for_each_possible_cpu(i) { 622 skc->skc_mag[i] = spl_magazine_alloc(skc, i); 623 if (!skc->skc_mag[i]) { 624 for (i--; i >= 0; i--) 625 spl_magazine_free(skc->skc_mag[i]); 626 627 kfree(skc->skc_mag); 628 return (-ENOMEM); 629 } 630 } 631 632 return (0); 633 } 634 635 /* 636 * Destroy all pre-cpu magazines. 637 */ 638 static void 639 spl_magazine_destroy(spl_kmem_cache_t *skc) 640 { 641 spl_kmem_magazine_t *skm; 642 int i = 0; 643 644 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 645 646 for_each_possible_cpu(i) { 647 skm = skc->skc_mag[i]; 648 spl_cache_flush(skc, skm, skm->skm_avail); 649 spl_magazine_free(skm); 650 } 651 652 kfree(skc->skc_mag); 653 } 654 655 /* 656 * Create a object cache based on the following arguments: 657 * name cache name 658 * size cache object size 659 * align cache object alignment 660 * ctor cache object constructor 661 * dtor cache object destructor 662 * reclaim cache object reclaim 663 * priv cache private data for ctor/dtor/reclaim 664 * vmp unused must be NULL 665 * flags 666 * KMC_KVMEM Force kvmem backed SPL cache 667 * KMC_SLAB Force Linux slab backed cache 668 * KMC_NODEBUG Disable debugging (unsupported) 669 * KMC_RECLAIMABLE Memory can be freed under pressure 670 */ 671 spl_kmem_cache_t * 672 spl_kmem_cache_create(const char *name, size_t size, size_t align, 673 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim, 674 void *priv, void *vmp, int flags) 675 { 676 gfp_t lflags = kmem_flags_convert(KM_SLEEP); 677 spl_kmem_cache_t *skc; 678 int rc; 679 680 /* 681 * Unsupported flags 682 */ 683 ASSERT(vmp == NULL); 684 ASSERT(reclaim == NULL); 685 686 might_sleep(); 687 688 skc = kzalloc(sizeof (*skc), lflags); 689 if (skc == NULL) 690 return (NULL); 691 692 skc->skc_magic = SKC_MAGIC; 693 skc->skc_name_size = strlen(name) + 1; 694 skc->skc_name = kmalloc(skc->skc_name_size, lflags); 695 if (skc->skc_name == NULL) { 696 kfree(skc); 697 return (NULL); 698 } 699 strlcpy(skc->skc_name, name, skc->skc_name_size); 700 701 skc->skc_ctor = ctor; 702 skc->skc_dtor = dtor; 703 skc->skc_private = priv; 704 skc->skc_vmp = vmp; 705 skc->skc_linux_cache = NULL; 706 skc->skc_flags = flags; 707 skc->skc_obj_size = size; 708 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN; 709 atomic_set(&skc->skc_ref, 0); 710 711 INIT_LIST_HEAD(&skc->skc_list); 712 INIT_LIST_HEAD(&skc->skc_complete_list); 713 INIT_LIST_HEAD(&skc->skc_partial_list); 714 skc->skc_emergency_tree = RB_ROOT; 715 spin_lock_init(&skc->skc_lock); 716 init_waitqueue_head(&skc->skc_waitq); 717 skc->skc_slab_fail = 0; 718 skc->skc_slab_create = 0; 719 skc->skc_slab_destroy = 0; 720 skc->skc_slab_total = 0; 721 skc->skc_slab_alloc = 0; 722 skc->skc_slab_max = 0; 723 skc->skc_obj_total = 0; 724 skc->skc_obj_alloc = 0; 725 skc->skc_obj_max = 0; 726 skc->skc_obj_deadlock = 0; 727 skc->skc_obj_emergency = 0; 728 skc->skc_obj_emergency_max = 0; 729 730 rc = percpu_counter_init(&skc->skc_linux_alloc, 0, GFP_KERNEL); 731 if (rc != 0) { 732 kfree(skc); 733 return (NULL); 734 } 735 736 /* 737 * Verify the requested alignment restriction is sane. 738 */ 739 if (align) { 740 VERIFY(ISP2(align)); 741 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); 742 VERIFY3U(align, <=, PAGE_SIZE); 743 skc->skc_obj_align = align; 744 } 745 746 /* 747 * When no specific type of slab is requested (kmem, vmem, or 748 * linuxslab) then select a cache type based on the object size 749 * and default tunables. 750 */ 751 if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) { 752 if (spl_kmem_cache_slab_limit && 753 size <= (size_t)spl_kmem_cache_slab_limit) { 754 /* 755 * Objects smaller than spl_kmem_cache_slab_limit can 756 * use the Linux slab for better space-efficiency. 757 */ 758 skc->skc_flags |= KMC_SLAB; 759 } else { 760 /* 761 * All other objects are considered large and are 762 * placed on kvmem backed slabs. 763 */ 764 skc->skc_flags |= KMC_KVMEM; 765 } 766 } 767 768 /* 769 * Given the type of slab allocate the required resources. 770 */ 771 if (skc->skc_flags & KMC_KVMEM) { 772 rc = spl_slab_size(skc, 773 &skc->skc_slab_objs, &skc->skc_slab_size); 774 if (rc) 775 goto out; 776 777 rc = spl_magazine_create(skc); 778 if (rc) 779 goto out; 780 } else { 781 unsigned long slabflags = 0; 782 783 if (size > spl_kmem_cache_slab_limit) 784 goto out; 785 786 if (skc->skc_flags & KMC_RECLAIMABLE) 787 slabflags |= SLAB_RECLAIM_ACCOUNT; 788 789 skc->skc_linux_cache = kmem_cache_create_usercopy( 790 skc->skc_name, size, align, slabflags, 0, size, NULL); 791 if (skc->skc_linux_cache == NULL) 792 goto out; 793 } 794 795 down_write(&spl_kmem_cache_sem); 796 list_add_tail(&skc->skc_list, &spl_kmem_cache_list); 797 up_write(&spl_kmem_cache_sem); 798 799 return (skc); 800 out: 801 kfree(skc->skc_name); 802 percpu_counter_destroy(&skc->skc_linux_alloc); 803 kfree(skc); 804 return (NULL); 805 } 806 EXPORT_SYMBOL(spl_kmem_cache_create); 807 808 /* 809 * Register a move callback for cache defragmentation. 810 * XXX: Unimplemented but harmless to stub out for now. 811 */ 812 void 813 spl_kmem_cache_set_move(spl_kmem_cache_t *skc, 814 kmem_cbrc_t (move)(void *, void *, size_t, void *)) 815 { 816 ASSERT(move != NULL); 817 } 818 EXPORT_SYMBOL(spl_kmem_cache_set_move); 819 820 /* 821 * Destroy a cache and all objects associated with the cache. 822 */ 823 void 824 spl_kmem_cache_destroy(spl_kmem_cache_t *skc) 825 { 826 DECLARE_WAIT_QUEUE_HEAD(wq); 827 taskqid_t id; 828 829 ASSERT(skc->skc_magic == SKC_MAGIC); 830 ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB)); 831 832 down_write(&spl_kmem_cache_sem); 833 list_del_init(&skc->skc_list); 834 up_write(&spl_kmem_cache_sem); 835 836 /* Cancel any and wait for any pending delayed tasks */ 837 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 838 839 spin_lock(&skc->skc_lock); 840 id = skc->skc_taskqid; 841 spin_unlock(&skc->skc_lock); 842 843 taskq_cancel_id(spl_kmem_cache_taskq, id); 844 845 /* 846 * Wait until all current callers complete, this is mainly 847 * to catch the case where a low memory situation triggers a 848 * cache reaping action which races with this destroy. 849 */ 850 wait_event(wq, atomic_read(&skc->skc_ref) == 0); 851 852 if (skc->skc_flags & KMC_KVMEM) { 853 spl_magazine_destroy(skc); 854 spl_slab_reclaim(skc); 855 } else { 856 ASSERT(skc->skc_flags & KMC_SLAB); 857 kmem_cache_destroy(skc->skc_linux_cache); 858 } 859 860 spin_lock(&skc->skc_lock); 861 862 /* 863 * Validate there are no objects in use and free all the 864 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. 865 */ 866 ASSERT3U(skc->skc_slab_alloc, ==, 0); 867 ASSERT3U(skc->skc_obj_alloc, ==, 0); 868 ASSERT3U(skc->skc_slab_total, ==, 0); 869 ASSERT3U(skc->skc_obj_total, ==, 0); 870 ASSERT3U(skc->skc_obj_emergency, ==, 0); 871 ASSERT(list_empty(&skc->skc_complete_list)); 872 873 ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0); 874 percpu_counter_destroy(&skc->skc_linux_alloc); 875 876 spin_unlock(&skc->skc_lock); 877 878 kfree(skc->skc_name); 879 kfree(skc); 880 } 881 EXPORT_SYMBOL(spl_kmem_cache_destroy); 882 883 /* 884 * Allocate an object from a slab attached to the cache. This is used to 885 * repopulate the per-cpu magazine caches in batches when they run low. 886 */ 887 static void * 888 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks) 889 { 890 spl_kmem_obj_t *sko; 891 892 ASSERT(skc->skc_magic == SKC_MAGIC); 893 ASSERT(sks->sks_magic == SKS_MAGIC); 894 895 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list); 896 ASSERT(sko->sko_magic == SKO_MAGIC); 897 ASSERT(sko->sko_addr != NULL); 898 899 /* Remove from sks_free_list */ 900 list_del_init(&sko->sko_list); 901 902 sks->sks_age = jiffies; 903 sks->sks_ref++; 904 skc->skc_obj_alloc++; 905 906 /* Track max obj usage statistics */ 907 if (skc->skc_obj_alloc > skc->skc_obj_max) 908 skc->skc_obj_max = skc->skc_obj_alloc; 909 910 /* Track max slab usage statistics */ 911 if (sks->sks_ref == 1) { 912 skc->skc_slab_alloc++; 913 914 if (skc->skc_slab_alloc > skc->skc_slab_max) 915 skc->skc_slab_max = skc->skc_slab_alloc; 916 } 917 918 return (sko->sko_addr); 919 } 920 921 /* 922 * Generic slab allocation function to run by the global work queues. 923 * It is responsible for allocating a new slab, linking it in to the list 924 * of partial slabs, and then waking any waiters. 925 */ 926 static int 927 __spl_cache_grow(spl_kmem_cache_t *skc, int flags) 928 { 929 spl_kmem_slab_t *sks; 930 931 fstrans_cookie_t cookie = spl_fstrans_mark(); 932 sks = spl_slab_alloc(skc, flags); 933 spl_fstrans_unmark(cookie); 934 935 spin_lock(&skc->skc_lock); 936 if (sks) { 937 skc->skc_slab_total++; 938 skc->skc_obj_total += sks->sks_objs; 939 list_add_tail(&sks->sks_list, &skc->skc_partial_list); 940 941 smp_mb__before_atomic(); 942 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 943 smp_mb__after_atomic(); 944 } 945 spin_unlock(&skc->skc_lock); 946 947 return (sks == NULL ? -ENOMEM : 0); 948 } 949 950 static void 951 spl_cache_grow_work(void *data) 952 { 953 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data; 954 spl_kmem_cache_t *skc = ska->ska_cache; 955 956 int error = __spl_cache_grow(skc, ska->ska_flags); 957 958 atomic_dec(&skc->skc_ref); 959 smp_mb__before_atomic(); 960 clear_bit(KMC_BIT_GROWING, &skc->skc_flags); 961 smp_mb__after_atomic(); 962 if (error == 0) 963 wake_up_all(&skc->skc_waitq); 964 965 kfree(ska); 966 } 967 968 /* 969 * Returns non-zero when a new slab should be available. 970 */ 971 static int 972 spl_cache_grow_wait(spl_kmem_cache_t *skc) 973 { 974 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags)); 975 } 976 977 /* 978 * No available objects on any slabs, create a new slab. Note that this 979 * functionality is disabled for KMC_SLAB caches which are backed by the 980 * Linux slab. 981 */ 982 static int 983 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj) 984 { 985 int remaining, rc = 0; 986 987 ASSERT0(flags & ~KM_PUBLIC_MASK); 988 ASSERT(skc->skc_magic == SKC_MAGIC); 989 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 990 991 *obj = NULL; 992 993 /* 994 * Since we can't sleep attempt an emergency allocation to satisfy 995 * the request. The only alterative is to fail the allocation but 996 * it's preferable try. The use of KM_NOSLEEP is expected to be rare. 997 */ 998 if (flags & KM_NOSLEEP) 999 return (spl_emergency_alloc(skc, flags, obj)); 1000 1001 might_sleep(); 1002 1003 /* 1004 * Before allocating a new slab wait for any reaping to complete and 1005 * then return so the local magazine can be rechecked for new objects. 1006 */ 1007 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) { 1008 rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING, 1009 TASK_UNINTERRUPTIBLE); 1010 return (rc ? rc : -EAGAIN); 1011 } 1012 1013 /* 1014 * Note: It would be nice to reduce the overhead of context switch 1015 * and improve NUMA locality, by trying to allocate a new slab in the 1016 * current process context with KM_NOSLEEP flag. 1017 * 1018 * However, this can't be applied to vmem/kvmem due to a bug that 1019 * spl_vmalloc() doesn't honor gfp flags in page table allocation. 1020 */ 1021 1022 /* 1023 * This is handled by dispatching a work request to the global work 1024 * queue. This allows us to asynchronously allocate a new slab while 1025 * retaining the ability to safely fall back to a smaller synchronous 1026 * allocations to ensure forward progress is always maintained. 1027 */ 1028 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) { 1029 spl_kmem_alloc_t *ska; 1030 1031 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags)); 1032 if (ska == NULL) { 1033 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags); 1034 smp_mb__after_atomic(); 1035 wake_up_all(&skc->skc_waitq); 1036 return (-ENOMEM); 1037 } 1038 1039 atomic_inc(&skc->skc_ref); 1040 ska->ska_cache = skc; 1041 ska->ska_flags = flags; 1042 taskq_init_ent(&ska->ska_tqe); 1043 taskq_dispatch_ent(spl_kmem_cache_taskq, 1044 spl_cache_grow_work, ska, 0, &ska->ska_tqe); 1045 } 1046 1047 /* 1048 * The goal here is to only detect the rare case where a virtual slab 1049 * allocation has deadlocked. We must be careful to minimize the use 1050 * of emergency objects which are more expensive to track. Therefore, 1051 * we set a very long timeout for the asynchronous allocation and if 1052 * the timeout is reached the cache is flagged as deadlocked. From 1053 * this point only new emergency objects will be allocated until the 1054 * asynchronous allocation completes and clears the deadlocked flag. 1055 */ 1056 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) { 1057 rc = spl_emergency_alloc(skc, flags, obj); 1058 } else { 1059 remaining = wait_event_timeout(skc->skc_waitq, 1060 spl_cache_grow_wait(skc), HZ / 10); 1061 1062 if (!remaining) { 1063 spin_lock(&skc->skc_lock); 1064 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) { 1065 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 1066 skc->skc_obj_deadlock++; 1067 } 1068 spin_unlock(&skc->skc_lock); 1069 } 1070 1071 rc = -ENOMEM; 1072 } 1073 1074 return (rc); 1075 } 1076 1077 /* 1078 * Refill a per-cpu magazine with objects from the slabs for this cache. 1079 * Ideally the magazine can be repopulated using existing objects which have 1080 * been released, however if we are unable to locate enough free objects new 1081 * slabs of objects will be created. On success NULL is returned, otherwise 1082 * the address of a single emergency object is returned for use by the caller. 1083 */ 1084 static void * 1085 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags) 1086 { 1087 spl_kmem_slab_t *sks; 1088 int count = 0, rc, refill; 1089 void *obj = NULL; 1090 1091 ASSERT(skc->skc_magic == SKC_MAGIC); 1092 ASSERT(skm->skm_magic == SKM_MAGIC); 1093 1094 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail); 1095 spin_lock(&skc->skc_lock); 1096 1097 while (refill > 0) { 1098 /* No slabs available we may need to grow the cache */ 1099 if (list_empty(&skc->skc_partial_list)) { 1100 spin_unlock(&skc->skc_lock); 1101 1102 local_irq_enable(); 1103 rc = spl_cache_grow(skc, flags, &obj); 1104 local_irq_disable(); 1105 1106 /* Emergency object for immediate use by caller */ 1107 if (rc == 0 && obj != NULL) 1108 return (obj); 1109 1110 if (rc) 1111 goto out; 1112 1113 /* Rescheduled to different CPU skm is not local */ 1114 if (skm != skc->skc_mag[smp_processor_id()]) 1115 goto out; 1116 1117 /* 1118 * Potentially rescheduled to the same CPU but 1119 * allocations may have occurred from this CPU while 1120 * we were sleeping so recalculate max refill. 1121 */ 1122 refill = MIN(refill, skm->skm_size - skm->skm_avail); 1123 1124 spin_lock(&skc->skc_lock); 1125 continue; 1126 } 1127 1128 /* Grab the next available slab */ 1129 sks = list_entry((&skc->skc_partial_list)->next, 1130 spl_kmem_slab_t, sks_list); 1131 ASSERT(sks->sks_magic == SKS_MAGIC); 1132 ASSERT(sks->sks_ref < sks->sks_objs); 1133 ASSERT(!list_empty(&sks->sks_free_list)); 1134 1135 /* 1136 * Consume as many objects as needed to refill the requested 1137 * cache. We must also be careful not to overfill it. 1138 */ 1139 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && 1140 ++count) { 1141 ASSERT(skm->skm_avail < skm->skm_size); 1142 ASSERT(count < skm->skm_size); 1143 skm->skm_objs[skm->skm_avail++] = 1144 spl_cache_obj(skc, sks); 1145 } 1146 1147 /* Move slab to skc_complete_list when full */ 1148 if (sks->sks_ref == sks->sks_objs) { 1149 list_del(&sks->sks_list); 1150 list_add(&sks->sks_list, &skc->skc_complete_list); 1151 } 1152 } 1153 1154 spin_unlock(&skc->skc_lock); 1155 out: 1156 return (NULL); 1157 } 1158 1159 /* 1160 * Release an object back to the slab from which it came. 1161 */ 1162 static void 1163 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj) 1164 { 1165 spl_kmem_slab_t *sks = NULL; 1166 spl_kmem_obj_t *sko = NULL; 1167 1168 ASSERT(skc->skc_magic == SKC_MAGIC); 1169 1170 sko = spl_sko_from_obj(skc, obj); 1171 ASSERT(sko->sko_magic == SKO_MAGIC); 1172 sks = sko->sko_slab; 1173 ASSERT(sks->sks_magic == SKS_MAGIC); 1174 ASSERT(sks->sks_cache == skc); 1175 list_add(&sko->sko_list, &sks->sks_free_list); 1176 1177 sks->sks_age = jiffies; 1178 sks->sks_ref--; 1179 skc->skc_obj_alloc--; 1180 1181 /* 1182 * Move slab to skc_partial_list when no longer full. Slabs 1183 * are added to the head to keep the partial list is quasi-full 1184 * sorted order. Fuller at the head, emptier at the tail. 1185 */ 1186 if (sks->sks_ref == (sks->sks_objs - 1)) { 1187 list_del(&sks->sks_list); 1188 list_add(&sks->sks_list, &skc->skc_partial_list); 1189 } 1190 1191 /* 1192 * Move empty slabs to the end of the partial list so 1193 * they can be easily found and freed during reclamation. 1194 */ 1195 if (sks->sks_ref == 0) { 1196 list_del(&sks->sks_list); 1197 list_add_tail(&sks->sks_list, &skc->skc_partial_list); 1198 skc->skc_slab_alloc--; 1199 } 1200 } 1201 1202 /* 1203 * Allocate an object from the per-cpu magazine, or if the magazine 1204 * is empty directly allocate from a slab and repopulate the magazine. 1205 */ 1206 void * 1207 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags) 1208 { 1209 spl_kmem_magazine_t *skm; 1210 void *obj = NULL; 1211 1212 ASSERT0(flags & ~KM_PUBLIC_MASK); 1213 ASSERT(skc->skc_magic == SKC_MAGIC); 1214 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1215 1216 /* 1217 * Allocate directly from a Linux slab. All optimizations are left 1218 * to the underlying cache we only need to guarantee that KM_SLEEP 1219 * callers will never fail. 1220 */ 1221 if (skc->skc_flags & KMC_SLAB) { 1222 struct kmem_cache *slc = skc->skc_linux_cache; 1223 do { 1224 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags)); 1225 } while ((obj == NULL) && !(flags & KM_NOSLEEP)); 1226 1227 if (obj != NULL) { 1228 /* 1229 * Even though we leave everything up to the 1230 * underlying cache we still keep track of 1231 * how many objects we've allocated in it for 1232 * better debuggability. 1233 */ 1234 percpu_counter_inc(&skc->skc_linux_alloc); 1235 } 1236 goto ret; 1237 } 1238 1239 local_irq_disable(); 1240 1241 restart: 1242 /* 1243 * Safe to update per-cpu structure without lock, but 1244 * in the restart case we must be careful to reacquire 1245 * the local magazine since this may have changed 1246 * when we need to grow the cache. 1247 */ 1248 skm = skc->skc_mag[smp_processor_id()]; 1249 ASSERT(skm->skm_magic == SKM_MAGIC); 1250 1251 if (likely(skm->skm_avail)) { 1252 /* Object available in CPU cache, use it */ 1253 obj = skm->skm_objs[--skm->skm_avail]; 1254 } else { 1255 obj = spl_cache_refill(skc, skm, flags); 1256 if ((obj == NULL) && !(flags & KM_NOSLEEP)) 1257 goto restart; 1258 1259 local_irq_enable(); 1260 goto ret; 1261 } 1262 1263 local_irq_enable(); 1264 ASSERT(obj); 1265 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 1266 1267 ret: 1268 /* Pre-emptively migrate object to CPU L1 cache */ 1269 if (obj) { 1270 if (obj && skc->skc_ctor) 1271 skc->skc_ctor(obj, skc->skc_private, flags); 1272 else 1273 prefetchw(obj); 1274 } 1275 1276 return (obj); 1277 } 1278 EXPORT_SYMBOL(spl_kmem_cache_alloc); 1279 1280 /* 1281 * Free an object back to the local per-cpu magazine, there is no 1282 * guarantee that this is the same magazine the object was originally 1283 * allocated from. We may need to flush entire from the magazine 1284 * back to the slabs to make space. 1285 */ 1286 void 1287 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj) 1288 { 1289 spl_kmem_magazine_t *skm; 1290 unsigned long flags; 1291 int do_reclaim = 0; 1292 int do_emergency = 0; 1293 1294 ASSERT(skc->skc_magic == SKC_MAGIC); 1295 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1296 1297 /* 1298 * Run the destructor 1299 */ 1300 if (skc->skc_dtor) 1301 skc->skc_dtor(obj, skc->skc_private); 1302 1303 /* 1304 * Free the object from the Linux underlying Linux slab. 1305 */ 1306 if (skc->skc_flags & KMC_SLAB) { 1307 kmem_cache_free(skc->skc_linux_cache, obj); 1308 percpu_counter_dec(&skc->skc_linux_alloc); 1309 return; 1310 } 1311 1312 /* 1313 * While a cache has outstanding emergency objects all freed objects 1314 * must be checked. However, since emergency objects will never use 1315 * a virtual address these objects can be safely excluded as an 1316 * optimization. 1317 */ 1318 if (!is_vmalloc_addr(obj)) { 1319 spin_lock(&skc->skc_lock); 1320 do_emergency = (skc->skc_obj_emergency > 0); 1321 spin_unlock(&skc->skc_lock); 1322 1323 if (do_emergency && (spl_emergency_free(skc, obj) == 0)) 1324 return; 1325 } 1326 1327 local_irq_save(flags); 1328 1329 /* 1330 * Safe to update per-cpu structure without lock, but 1331 * no remote memory allocation tracking is being performed 1332 * it is entirely possible to allocate an object from one 1333 * CPU cache and return it to another. 1334 */ 1335 skm = skc->skc_mag[smp_processor_id()]; 1336 ASSERT(skm->skm_magic == SKM_MAGIC); 1337 1338 /* 1339 * Per-CPU cache full, flush it to make space for this object, 1340 * this may result in an empty slab which can be reclaimed once 1341 * interrupts are re-enabled. 1342 */ 1343 if (unlikely(skm->skm_avail >= skm->skm_size)) { 1344 spl_cache_flush(skc, skm, skm->skm_refill); 1345 do_reclaim = 1; 1346 } 1347 1348 /* Available space in cache, use it */ 1349 skm->skm_objs[skm->skm_avail++] = obj; 1350 1351 local_irq_restore(flags); 1352 1353 if (do_reclaim) 1354 spl_slab_reclaim(skc); 1355 } 1356 EXPORT_SYMBOL(spl_kmem_cache_free); 1357 1358 /* 1359 * Depending on how many and which objects are released it may simply 1360 * repopulate the local magazine which will then need to age-out. Objects 1361 * which cannot fit in the magazine will be released back to their slabs 1362 * which will also need to age out before being released. This is all just 1363 * best effort and we do not want to thrash creating and destroying slabs. 1364 */ 1365 void 1366 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc) 1367 { 1368 ASSERT(skc->skc_magic == SKC_MAGIC); 1369 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1370 1371 if (skc->skc_flags & KMC_SLAB) 1372 return; 1373 1374 atomic_inc(&skc->skc_ref); 1375 1376 /* 1377 * Prevent concurrent cache reaping when contended. 1378 */ 1379 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) 1380 goto out; 1381 1382 /* Reclaim from the magazine and free all now empty slabs. */ 1383 unsigned long irq_flags; 1384 local_irq_save(irq_flags); 1385 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()]; 1386 spl_cache_flush(skc, skm, skm->skm_avail); 1387 local_irq_restore(irq_flags); 1388 1389 spl_slab_reclaim(skc); 1390 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags); 1391 smp_mb__after_atomic(); 1392 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING); 1393 out: 1394 atomic_dec(&skc->skc_ref); 1395 } 1396 EXPORT_SYMBOL(spl_kmem_cache_reap_now); 1397 1398 /* 1399 * This is stubbed out for code consistency with other platforms. There 1400 * is existing logic to prevent concurrent reaping so while this is ugly 1401 * it should do no harm. 1402 */ 1403 int 1404 spl_kmem_cache_reap_active(void) 1405 { 1406 return (0); 1407 } 1408 EXPORT_SYMBOL(spl_kmem_cache_reap_active); 1409 1410 /* 1411 * Reap all free slabs from all registered caches. 1412 */ 1413 void 1414 spl_kmem_reap(void) 1415 { 1416 spl_kmem_cache_t *skc = NULL; 1417 1418 down_read(&spl_kmem_cache_sem); 1419 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { 1420 spl_kmem_cache_reap_now(skc); 1421 } 1422 up_read(&spl_kmem_cache_sem); 1423 } 1424 EXPORT_SYMBOL(spl_kmem_reap); 1425 1426 int 1427 spl_kmem_cache_init(void) 1428 { 1429 init_rwsem(&spl_kmem_cache_sem); 1430 INIT_LIST_HEAD(&spl_kmem_cache_list); 1431 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache", 1432 spl_kmem_cache_kmem_threads, maxclsyspri, 1433 spl_kmem_cache_kmem_threads * 8, INT_MAX, 1434 TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1435 1436 if (spl_kmem_cache_taskq == NULL) 1437 return (-ENOMEM); 1438 1439 return (0); 1440 } 1441 1442 void 1443 spl_kmem_cache_fini(void) 1444 { 1445 taskq_destroy(spl_kmem_cache_taskq); 1446 } 1447