1 /* 2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3 * Copyright (C) 2007 The Regents of the University of California. 4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6 * UCRL-CODE-235197 7 * 8 * This file is part of the SPL, Solaris Porting Layer. 9 * 10 * The SPL is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * The SPL is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #define SPL_KMEM_CACHE_IMPLEMENTING 25 26 #include <sys/kmem.h> 27 #include <sys/kmem_cache.h> 28 #include <sys/taskq.h> 29 #include <sys/timer.h> 30 #include <sys/vmem.h> 31 #include <sys/wait.h> 32 #include <sys/string.h> 33 #include <linux/slab.h> 34 #include <linux/swap.h> 35 #include <linux/prefetch.h> 36 37 /* 38 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() 39 * with smp_mb__{before,after}_atomic() because they were redundant. This is 40 * only used inside our SLAB allocator, so we implement an internal wrapper 41 * here to give us smp_mb__{before,after}_atomic() on older kernels. 42 */ 43 #ifndef smp_mb__before_atomic 44 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x) 45 #endif 46 47 #ifndef smp_mb__after_atomic 48 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x) 49 #endif 50 51 /* 52 * Cache magazines are an optimization designed to minimize the cost of 53 * allocating memory. They do this by keeping a per-cpu cache of recently 54 * freed objects, which can then be reallocated without taking a lock. This 55 * can improve performance on highly contended caches. However, because 56 * objects in magazines will prevent otherwise empty slabs from being 57 * immediately released this may not be ideal for low memory machines. 58 * 59 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum 60 * magazine size. When this value is set to 0 the magazine size will be 61 * automatically determined based on the object size. Otherwise magazines 62 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines 63 * may never be entirely disabled in this implementation. 64 */ 65 static unsigned int spl_kmem_cache_magazine_size = 0; 66 module_param(spl_kmem_cache_magazine_size, uint, 0444); 67 MODULE_PARM_DESC(spl_kmem_cache_magazine_size, 68 "Default magazine size (2-256), set automatically (0)"); 69 70 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB; 71 module_param(spl_kmem_cache_obj_per_slab, uint, 0644); 72 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab"); 73 74 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE; 75 module_param(spl_kmem_cache_max_size, uint, 0644); 76 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB"); 77 78 /* 79 * For small objects the Linux slab allocator should be used to make the most 80 * efficient use of the memory. However, large objects are not supported by 81 * the Linux slab and therefore the SPL implementation is preferred. A cutoff 82 * of 16K was determined to be optimal for architectures using 4K pages and 83 * to also work well on architecutres using larger 64K page sizes. 84 */ 85 static unsigned int spl_kmem_cache_slab_limit = 86 SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE; 87 module_param(spl_kmem_cache_slab_limit, uint, 0644); 88 MODULE_PARM_DESC(spl_kmem_cache_slab_limit, 89 "Objects less than N bytes use the Linux slab"); 90 91 /* 92 * The number of threads available to allocate new slabs for caches. This 93 * should not need to be tuned but it is available for performance analysis. 94 */ 95 static unsigned int spl_kmem_cache_kmem_threads = 4; 96 module_param(spl_kmem_cache_kmem_threads, uint, 0444); 97 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads, 98 "Number of spl_kmem_cache threads"); 99 100 /* 101 * Slab allocation interfaces 102 * 103 * While the Linux slab implementation was inspired by the Solaris 104 * implementation I cannot use it to emulate the Solaris APIs. I 105 * require two features which are not provided by the Linux slab. 106 * 107 * 1) Constructors AND destructors. Recent versions of the Linux 108 * kernel have removed support for destructors. This is a deal 109 * breaker for the SPL which contains particularly expensive 110 * initializers for mutex's, condition variables, etc. We also 111 * require a minimal level of cleanup for these data types unlike 112 * many Linux data types which do need to be explicitly destroyed. 113 * 114 * 2) Virtual address space backed slab. Callers of the Solaris slab 115 * expect it to work well for both small are very large allocations. 116 * Because of memory fragmentation the Linux slab which is backed 117 * by kmalloc'ed memory performs very badly when confronted with 118 * large numbers of large allocations. Basing the slab on the 119 * virtual address space removes the need for contiguous pages 120 * and greatly improve performance for large allocations. 121 * 122 * For these reasons, the SPL has its own slab implementation with 123 * the needed features. It is not as highly optimized as either the 124 * Solaris or Linux slabs, but it should get me most of what is 125 * needed until it can be optimized or obsoleted by another approach. 126 * 127 * One serious concern I do have about this method is the relatively 128 * small virtual address space on 32bit arches. This will seriously 129 * constrain the size of the slab caches and their performance. 130 */ 131 132 struct list_head spl_kmem_cache_list; /* List of caches */ 133 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */ 134 static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */ 135 136 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj); 137 138 static void * 139 kv_alloc(spl_kmem_cache_t *skc, int size, int flags) 140 { 141 gfp_t lflags = kmem_flags_convert(flags); 142 void *ptr; 143 144 if (skc->skc_flags & KMC_RECLAIMABLE) 145 lflags |= __GFP_RECLAIMABLE; 146 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM); 147 148 /* Resulting allocated memory will be page aligned */ 149 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 150 151 return (ptr); 152 } 153 154 static void 155 kv_free(spl_kmem_cache_t *skc, void *ptr, int size) 156 { 157 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 158 159 /* 160 * The Linux direct reclaim path uses this out of band value to 161 * determine if forward progress is being made. Normally this is 162 * incremented by kmem_freepages() which is part of the various 163 * Linux slab implementations. However, since we are using none 164 * of that infrastructure we are responsible for incrementing it. 165 */ 166 if (current->reclaim_state) 167 #ifdef HAVE_RECLAIM_STATE_RECLAIMED 168 current->reclaim_state->reclaimed += size >> PAGE_SHIFT; 169 #else 170 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT; 171 #endif 172 vfree(ptr); 173 } 174 175 /* 176 * Required space for each aligned sks. 177 */ 178 static inline uint32_t 179 spl_sks_size(spl_kmem_cache_t *skc) 180 { 181 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t), 182 skc->skc_obj_align, uint32_t)); 183 } 184 185 /* 186 * Required space for each aligned object. 187 */ 188 static inline uint32_t 189 spl_obj_size(spl_kmem_cache_t *skc) 190 { 191 uint32_t align = skc->skc_obj_align; 192 193 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) + 194 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t)); 195 } 196 197 uint64_t 198 spl_kmem_cache_inuse(kmem_cache_t *cache) 199 { 200 return (cache->skc_obj_total); 201 } 202 EXPORT_SYMBOL(spl_kmem_cache_inuse); 203 204 uint64_t 205 spl_kmem_cache_entry_size(kmem_cache_t *cache) 206 { 207 return (cache->skc_obj_size); 208 } 209 EXPORT_SYMBOL(spl_kmem_cache_entry_size); 210 211 /* 212 * Lookup the spl_kmem_object_t for an object given that object. 213 */ 214 static inline spl_kmem_obj_t * 215 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj) 216 { 217 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size, 218 skc->skc_obj_align, uint32_t)); 219 } 220 221 /* 222 * It's important that we pack the spl_kmem_obj_t structure and the 223 * actual objects in to one large address space to minimize the number 224 * of calls to the allocator. It is far better to do a few large 225 * allocations and then subdivide it ourselves. Now which allocator 226 * we use requires balancing a few trade offs. 227 * 228 * For small objects we use kmem_alloc() because as long as you are 229 * only requesting a small number of pages (ideally just one) its cheap. 230 * However, when you start requesting multiple pages with kmem_alloc() 231 * it gets increasingly expensive since it requires contiguous pages. 232 * For this reason we shift to vmem_alloc() for slabs of large objects 233 * which removes the need for contiguous pages. We do not use 234 * vmem_alloc() in all cases because there is significant locking 235 * overhead in __get_vm_area_node(). This function takes a single 236 * global lock when acquiring an available virtual address range which 237 * serializes all vmem_alloc()'s for all slab caches. Using slightly 238 * different allocation functions for small and large objects should 239 * give us the best of both worlds. 240 * 241 * +------------------------+ 242 * | spl_kmem_slab_t --+-+ | 243 * | skc_obj_size <-+ | | 244 * | spl_kmem_obj_t | | 245 * | skc_obj_size <---+ | 246 * | spl_kmem_obj_t | | 247 * | ... v | 248 * +------------------------+ 249 */ 250 static spl_kmem_slab_t * 251 spl_slab_alloc(spl_kmem_cache_t *skc, int flags) 252 { 253 spl_kmem_slab_t *sks; 254 void *base; 255 uint32_t obj_size; 256 257 base = kv_alloc(skc, skc->skc_slab_size, flags); 258 if (base == NULL) 259 return (NULL); 260 261 sks = (spl_kmem_slab_t *)base; 262 sks->sks_magic = SKS_MAGIC; 263 sks->sks_objs = skc->skc_slab_objs; 264 sks->sks_age = jiffies; 265 sks->sks_cache = skc; 266 INIT_LIST_HEAD(&sks->sks_list); 267 INIT_LIST_HEAD(&sks->sks_free_list); 268 sks->sks_ref = 0; 269 obj_size = spl_obj_size(skc); 270 271 for (int i = 0; i < sks->sks_objs; i++) { 272 void *obj = base + spl_sks_size(skc) + (i * obj_size); 273 274 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 275 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj); 276 sko->sko_addr = obj; 277 sko->sko_magic = SKO_MAGIC; 278 sko->sko_slab = sks; 279 INIT_LIST_HEAD(&sko->sko_list); 280 list_add_tail(&sko->sko_list, &sks->sks_free_list); 281 } 282 283 return (sks); 284 } 285 286 /* 287 * Remove a slab from complete or partial list, it must be called with 288 * the 'skc->skc_lock' held but the actual free must be performed 289 * outside the lock to prevent deadlocking on vmem addresses. 290 */ 291 static void 292 spl_slab_free(spl_kmem_slab_t *sks, 293 struct list_head *sks_list, struct list_head *sko_list) 294 { 295 spl_kmem_cache_t *skc; 296 297 ASSERT(sks->sks_magic == SKS_MAGIC); 298 ASSERT(sks->sks_ref == 0); 299 300 skc = sks->sks_cache; 301 ASSERT(skc->skc_magic == SKC_MAGIC); 302 303 /* 304 * Update slab/objects counters in the cache, then remove the 305 * slab from the skc->skc_partial_list. Finally add the slab 306 * and all its objects in to the private work lists where the 307 * destructors will be called and the memory freed to the system. 308 */ 309 skc->skc_obj_total -= sks->sks_objs; 310 skc->skc_slab_total--; 311 list_del(&sks->sks_list); 312 list_add(&sks->sks_list, sks_list); 313 list_splice_init(&sks->sks_free_list, sko_list); 314 } 315 316 /* 317 * Reclaim empty slabs at the end of the partial list. 318 */ 319 static void 320 spl_slab_reclaim(spl_kmem_cache_t *skc) 321 { 322 spl_kmem_slab_t *sks = NULL, *m = NULL; 323 spl_kmem_obj_t *sko = NULL, *n = NULL; 324 LIST_HEAD(sks_list); 325 LIST_HEAD(sko_list); 326 327 /* 328 * Empty slabs and objects must be moved to a private list so they 329 * can be safely freed outside the spin lock. All empty slabs are 330 * at the end of skc->skc_partial_list, therefore once a non-empty 331 * slab is found we can stop scanning. 332 */ 333 spin_lock(&skc->skc_lock); 334 list_for_each_entry_safe_reverse(sks, m, 335 &skc->skc_partial_list, sks_list) { 336 337 if (sks->sks_ref > 0) 338 break; 339 340 spl_slab_free(sks, &sks_list, &sko_list); 341 } 342 spin_unlock(&skc->skc_lock); 343 344 /* 345 * The following two loops ensure all the object destructors are run, 346 * and the slabs themselves are freed. This is all done outside the 347 * skc->skc_lock since this allows the destructor to sleep, and 348 * allows us to perform a conditional reschedule when a freeing a 349 * large number of objects and slabs back to the system. 350 */ 351 352 list_for_each_entry_safe(sko, n, &sko_list, sko_list) { 353 ASSERT(sko->sko_magic == SKO_MAGIC); 354 } 355 356 list_for_each_entry_safe(sks, m, &sks_list, sks_list) { 357 ASSERT(sks->sks_magic == SKS_MAGIC); 358 kv_free(skc, sks, skc->skc_slab_size); 359 } 360 } 361 362 static spl_kmem_emergency_t * 363 spl_emergency_search(struct rb_root *root, void *obj) 364 { 365 struct rb_node *node = root->rb_node; 366 spl_kmem_emergency_t *ske; 367 unsigned long address = (unsigned long)obj; 368 369 while (node) { 370 ske = container_of(node, spl_kmem_emergency_t, ske_node); 371 372 if (address < ske->ske_obj) 373 node = node->rb_left; 374 else if (address > ske->ske_obj) 375 node = node->rb_right; 376 else 377 return (ske); 378 } 379 380 return (NULL); 381 } 382 383 static int 384 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske) 385 { 386 struct rb_node **new = &(root->rb_node), *parent = NULL; 387 spl_kmem_emergency_t *ske_tmp; 388 unsigned long address = ske->ske_obj; 389 390 while (*new) { 391 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node); 392 393 parent = *new; 394 if (address < ske_tmp->ske_obj) 395 new = &((*new)->rb_left); 396 else if (address > ske_tmp->ske_obj) 397 new = &((*new)->rb_right); 398 else 399 return (0); 400 } 401 402 rb_link_node(&ske->ske_node, parent, new); 403 rb_insert_color(&ske->ske_node, root); 404 405 return (1); 406 } 407 408 /* 409 * Allocate a single emergency object and track it in a red black tree. 410 */ 411 static int 412 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj) 413 { 414 gfp_t lflags = kmem_flags_convert(flags); 415 spl_kmem_emergency_t *ske; 416 int order = get_order(skc->skc_obj_size); 417 int empty; 418 419 /* Last chance use a partial slab if one now exists */ 420 spin_lock(&skc->skc_lock); 421 empty = list_empty(&skc->skc_partial_list); 422 spin_unlock(&skc->skc_lock); 423 if (!empty) 424 return (-EEXIST); 425 426 if (skc->skc_flags & KMC_RECLAIMABLE) 427 lflags |= __GFP_RECLAIMABLE; 428 ske = kmalloc(sizeof (*ske), lflags); 429 if (ske == NULL) 430 return (-ENOMEM); 431 432 ske->ske_obj = __get_free_pages(lflags, order); 433 if (ske->ske_obj == 0) { 434 kfree(ske); 435 return (-ENOMEM); 436 } 437 438 spin_lock(&skc->skc_lock); 439 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske); 440 if (likely(empty)) { 441 skc->skc_obj_total++; 442 skc->skc_obj_emergency++; 443 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max) 444 skc->skc_obj_emergency_max = skc->skc_obj_emergency; 445 } 446 spin_unlock(&skc->skc_lock); 447 448 if (unlikely(!empty)) { 449 free_pages(ske->ske_obj, order); 450 kfree(ske); 451 return (-EINVAL); 452 } 453 454 *obj = (void *)ske->ske_obj; 455 456 return (0); 457 } 458 459 /* 460 * Locate the passed object in the red black tree and free it. 461 */ 462 static int 463 spl_emergency_free(spl_kmem_cache_t *skc, void *obj) 464 { 465 spl_kmem_emergency_t *ske; 466 int order = get_order(skc->skc_obj_size); 467 468 spin_lock(&skc->skc_lock); 469 ske = spl_emergency_search(&skc->skc_emergency_tree, obj); 470 if (ske) { 471 rb_erase(&ske->ske_node, &skc->skc_emergency_tree); 472 skc->skc_obj_emergency--; 473 skc->skc_obj_total--; 474 } 475 spin_unlock(&skc->skc_lock); 476 477 if (ske == NULL) 478 return (-ENOENT); 479 480 free_pages(ske->ske_obj, order); 481 kfree(ske); 482 483 return (0); 484 } 485 486 /* 487 * Release objects from the per-cpu magazine back to their slab. The flush 488 * argument contains the max number of entries to remove from the magazine. 489 */ 490 static void 491 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush) 492 { 493 spin_lock(&skc->skc_lock); 494 495 ASSERT(skc->skc_magic == SKC_MAGIC); 496 ASSERT(skm->skm_magic == SKM_MAGIC); 497 498 int count = MIN(flush, skm->skm_avail); 499 for (int i = 0; i < count; i++) 500 spl_cache_shrink(skc, skm->skm_objs[i]); 501 502 skm->skm_avail -= count; 503 memmove(skm->skm_objs, &(skm->skm_objs[count]), 504 sizeof (void *) * skm->skm_avail); 505 506 spin_unlock(&skc->skc_lock); 507 } 508 509 /* 510 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t. 511 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However, 512 * for very small objects we may end up with more than this so as not 513 * to waste space in the minimal allocation of a single page. 514 */ 515 static int 516 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size) 517 { 518 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs; 519 520 sks_size = spl_sks_size(skc); 521 obj_size = spl_obj_size(skc); 522 max_size = (spl_kmem_cache_max_size * 1024 * 1024); 523 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size); 524 525 if (tgt_size <= max_size) { 526 tgt_objs = (tgt_size - sks_size) / obj_size; 527 } else { 528 tgt_objs = (max_size - sks_size) / obj_size; 529 tgt_size = (tgt_objs * obj_size) + sks_size; 530 } 531 532 if (tgt_objs == 0) 533 return (-ENOSPC); 534 535 *objs = tgt_objs; 536 *size = tgt_size; 537 538 return (0); 539 } 540 541 /* 542 * Make a guess at reasonable per-cpu magazine size based on the size of 543 * each object and the cost of caching N of them in each magazine. Long 544 * term this should really adapt based on an observed usage heuristic. 545 */ 546 static int 547 spl_magazine_size(spl_kmem_cache_t *skc) 548 { 549 uint32_t obj_size = spl_obj_size(skc); 550 int size; 551 552 if (spl_kmem_cache_magazine_size > 0) 553 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2)); 554 555 /* Per-magazine sizes below assume a 4Kib page size */ 556 if (obj_size > (PAGE_SIZE * 256)) 557 size = 4; /* Minimum 4Mib per-magazine */ 558 else if (obj_size > (PAGE_SIZE * 32)) 559 size = 16; /* Minimum 2Mib per-magazine */ 560 else if (obj_size > (PAGE_SIZE)) 561 size = 64; /* Minimum 256Kib per-magazine */ 562 else if (obj_size > (PAGE_SIZE / 4)) 563 size = 128; /* Minimum 128Kib per-magazine */ 564 else 565 size = 256; 566 567 return (size); 568 } 569 570 /* 571 * Allocate a per-cpu magazine to associate with a specific core. 572 */ 573 static spl_kmem_magazine_t * 574 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu) 575 { 576 spl_kmem_magazine_t *skm; 577 int size = sizeof (spl_kmem_magazine_t) + 578 sizeof (void *) * skc->skc_mag_size; 579 580 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu)); 581 if (skm) { 582 skm->skm_magic = SKM_MAGIC; 583 skm->skm_avail = 0; 584 skm->skm_size = skc->skc_mag_size; 585 skm->skm_refill = skc->skc_mag_refill; 586 skm->skm_cache = skc; 587 skm->skm_cpu = cpu; 588 } 589 590 return (skm); 591 } 592 593 /* 594 * Free a per-cpu magazine associated with a specific core. 595 */ 596 static void 597 spl_magazine_free(spl_kmem_magazine_t *skm) 598 { 599 ASSERT(skm->skm_magic == SKM_MAGIC); 600 ASSERT(skm->skm_avail == 0); 601 kfree(skm); 602 } 603 604 /* 605 * Create all pre-cpu magazines of reasonable sizes. 606 */ 607 static int 608 spl_magazine_create(spl_kmem_cache_t *skc) 609 { 610 int i = 0; 611 612 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 613 614 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) * 615 num_possible_cpus(), kmem_flags_convert(KM_SLEEP)); 616 skc->skc_mag_size = spl_magazine_size(skc); 617 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2; 618 619 for_each_possible_cpu(i) { 620 skc->skc_mag[i] = spl_magazine_alloc(skc, i); 621 if (!skc->skc_mag[i]) { 622 for (i--; i >= 0; i--) 623 spl_magazine_free(skc->skc_mag[i]); 624 625 kfree(skc->skc_mag); 626 return (-ENOMEM); 627 } 628 } 629 630 return (0); 631 } 632 633 /* 634 * Destroy all pre-cpu magazines. 635 */ 636 static void 637 spl_magazine_destroy(spl_kmem_cache_t *skc) 638 { 639 spl_kmem_magazine_t *skm; 640 int i = 0; 641 642 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 643 644 for_each_possible_cpu(i) { 645 skm = skc->skc_mag[i]; 646 spl_cache_flush(skc, skm, skm->skm_avail); 647 spl_magazine_free(skm); 648 } 649 650 kfree(skc->skc_mag); 651 } 652 653 /* 654 * Create a object cache based on the following arguments: 655 * name cache name 656 * size cache object size 657 * align cache object alignment 658 * ctor cache object constructor 659 * dtor cache object destructor 660 * reclaim cache object reclaim 661 * priv cache private data for ctor/dtor/reclaim 662 * vmp unused must be NULL 663 * flags 664 * KMC_KVMEM Force kvmem backed SPL cache 665 * KMC_SLAB Force Linux slab backed cache 666 * KMC_NODEBUG Disable debugging (unsupported) 667 * KMC_RECLAIMABLE Memory can be freed under pressure 668 */ 669 spl_kmem_cache_t * 670 spl_kmem_cache_create(const char *name, size_t size, size_t align, 671 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim, 672 void *priv, void *vmp, int flags) 673 { 674 gfp_t lflags = kmem_flags_convert(KM_SLEEP); 675 spl_kmem_cache_t *skc; 676 int rc; 677 678 /* 679 * Unsupported flags 680 */ 681 ASSERT(vmp == NULL); 682 ASSERT(reclaim == NULL); 683 684 might_sleep(); 685 686 skc = kzalloc(sizeof (*skc), lflags); 687 if (skc == NULL) 688 return (NULL); 689 690 skc->skc_magic = SKC_MAGIC; 691 skc->skc_name_size = strlen(name) + 1; 692 skc->skc_name = kmalloc(skc->skc_name_size, lflags); 693 if (skc->skc_name == NULL) { 694 kfree(skc); 695 return (NULL); 696 } 697 strlcpy(skc->skc_name, name, skc->skc_name_size); 698 699 skc->skc_ctor = ctor; 700 skc->skc_dtor = dtor; 701 skc->skc_private = priv; 702 skc->skc_vmp = vmp; 703 skc->skc_linux_cache = NULL; 704 skc->skc_flags = flags; 705 skc->skc_obj_size = size; 706 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN; 707 atomic_set(&skc->skc_ref, 0); 708 709 INIT_LIST_HEAD(&skc->skc_list); 710 INIT_LIST_HEAD(&skc->skc_complete_list); 711 INIT_LIST_HEAD(&skc->skc_partial_list); 712 skc->skc_emergency_tree = RB_ROOT; 713 spin_lock_init(&skc->skc_lock); 714 init_waitqueue_head(&skc->skc_waitq); 715 skc->skc_slab_fail = 0; 716 skc->skc_slab_create = 0; 717 skc->skc_slab_destroy = 0; 718 skc->skc_slab_total = 0; 719 skc->skc_slab_alloc = 0; 720 skc->skc_slab_max = 0; 721 skc->skc_obj_total = 0; 722 skc->skc_obj_alloc = 0; 723 skc->skc_obj_max = 0; 724 skc->skc_obj_deadlock = 0; 725 skc->skc_obj_emergency = 0; 726 skc->skc_obj_emergency_max = 0; 727 728 rc = percpu_counter_init(&skc->skc_linux_alloc, 0, GFP_KERNEL); 729 if (rc != 0) { 730 kfree(skc->skc_name); 731 kfree(skc); 732 return (NULL); 733 } 734 735 /* 736 * Verify the requested alignment restriction is sane. 737 */ 738 if (align) { 739 VERIFY(ISP2(align)); 740 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); 741 VERIFY3U(align, <=, PAGE_SIZE); 742 skc->skc_obj_align = align; 743 } 744 745 /* 746 * When no specific type of slab is requested (kmem, vmem, or 747 * linuxslab) then select a cache type based on the object size 748 * and default tunables. 749 */ 750 if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) { 751 if (spl_kmem_cache_slab_limit && 752 size <= (size_t)spl_kmem_cache_slab_limit) { 753 /* 754 * Objects smaller than spl_kmem_cache_slab_limit can 755 * use the Linux slab for better space-efficiency. 756 */ 757 skc->skc_flags |= KMC_SLAB; 758 } else { 759 /* 760 * All other objects are considered large and are 761 * placed on kvmem backed slabs. 762 */ 763 skc->skc_flags |= KMC_KVMEM; 764 } 765 } 766 767 /* 768 * Given the type of slab allocate the required resources. 769 */ 770 if (skc->skc_flags & KMC_KVMEM) { 771 rc = spl_slab_size(skc, 772 &skc->skc_slab_objs, &skc->skc_slab_size); 773 if (rc) 774 goto out; 775 776 rc = spl_magazine_create(skc); 777 if (rc) 778 goto out; 779 } else { 780 unsigned long slabflags = 0; 781 782 if (size > spl_kmem_cache_slab_limit) 783 goto out; 784 785 if (skc->skc_flags & KMC_RECLAIMABLE) 786 slabflags |= SLAB_RECLAIM_ACCOUNT; 787 788 skc->skc_linux_cache = kmem_cache_create_usercopy( 789 skc->skc_name, size, align, slabflags, 0, size, NULL); 790 if (skc->skc_linux_cache == NULL) 791 goto out; 792 } 793 794 down_write(&spl_kmem_cache_sem); 795 list_add_tail(&skc->skc_list, &spl_kmem_cache_list); 796 up_write(&spl_kmem_cache_sem); 797 798 return (skc); 799 out: 800 kfree(skc->skc_name); 801 percpu_counter_destroy(&skc->skc_linux_alloc); 802 kfree(skc); 803 return (NULL); 804 } 805 EXPORT_SYMBOL(spl_kmem_cache_create); 806 807 /* 808 * Register a move callback for cache defragmentation. 809 * XXX: Unimplemented but harmless to stub out for now. 810 */ 811 void 812 spl_kmem_cache_set_move(spl_kmem_cache_t *skc, 813 kmem_cbrc_t (move)(void *, void *, size_t, void *)) 814 { 815 ASSERT(move != NULL); 816 } 817 EXPORT_SYMBOL(spl_kmem_cache_set_move); 818 819 /* 820 * Destroy a cache and all objects associated with the cache. 821 */ 822 void 823 spl_kmem_cache_destroy(spl_kmem_cache_t *skc) 824 { 825 DECLARE_WAIT_QUEUE_HEAD(wq); 826 taskqid_t id; 827 828 ASSERT(skc->skc_magic == SKC_MAGIC); 829 ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB)); 830 831 down_write(&spl_kmem_cache_sem); 832 list_del_init(&skc->skc_list); 833 up_write(&spl_kmem_cache_sem); 834 835 /* Cancel any and wait for any pending delayed tasks */ 836 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 837 838 spin_lock(&skc->skc_lock); 839 id = skc->skc_taskqid; 840 spin_unlock(&skc->skc_lock); 841 842 taskq_cancel_id(spl_kmem_cache_taskq, id); 843 844 /* 845 * Wait until all current callers complete, this is mainly 846 * to catch the case where a low memory situation triggers a 847 * cache reaping action which races with this destroy. 848 */ 849 wait_event(wq, atomic_read(&skc->skc_ref) == 0); 850 851 if (skc->skc_flags & KMC_KVMEM) { 852 spl_magazine_destroy(skc); 853 spl_slab_reclaim(skc); 854 } else { 855 ASSERT(skc->skc_flags & KMC_SLAB); 856 kmem_cache_destroy(skc->skc_linux_cache); 857 } 858 859 spin_lock(&skc->skc_lock); 860 861 /* 862 * Validate there are no objects in use and free all the 863 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. 864 */ 865 ASSERT3U(skc->skc_slab_alloc, ==, 0); 866 ASSERT3U(skc->skc_obj_alloc, ==, 0); 867 ASSERT3U(skc->skc_slab_total, ==, 0); 868 ASSERT3U(skc->skc_obj_total, ==, 0); 869 ASSERT3U(skc->skc_obj_emergency, ==, 0); 870 ASSERT(list_empty(&skc->skc_complete_list)); 871 872 ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0); 873 percpu_counter_destroy(&skc->skc_linux_alloc); 874 875 spin_unlock(&skc->skc_lock); 876 877 kfree(skc->skc_name); 878 kfree(skc); 879 } 880 EXPORT_SYMBOL(spl_kmem_cache_destroy); 881 882 /* 883 * Allocate an object from a slab attached to the cache. This is used to 884 * repopulate the per-cpu magazine caches in batches when they run low. 885 */ 886 static void * 887 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks) 888 { 889 spl_kmem_obj_t *sko; 890 891 ASSERT(skc->skc_magic == SKC_MAGIC); 892 ASSERT(sks->sks_magic == SKS_MAGIC); 893 894 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list); 895 ASSERT(sko->sko_magic == SKO_MAGIC); 896 ASSERT(sko->sko_addr != NULL); 897 898 /* Remove from sks_free_list */ 899 list_del_init(&sko->sko_list); 900 901 sks->sks_age = jiffies; 902 sks->sks_ref++; 903 skc->skc_obj_alloc++; 904 905 /* Track max obj usage statistics */ 906 if (skc->skc_obj_alloc > skc->skc_obj_max) 907 skc->skc_obj_max = skc->skc_obj_alloc; 908 909 /* Track max slab usage statistics */ 910 if (sks->sks_ref == 1) { 911 skc->skc_slab_alloc++; 912 913 if (skc->skc_slab_alloc > skc->skc_slab_max) 914 skc->skc_slab_max = skc->skc_slab_alloc; 915 } 916 917 return (sko->sko_addr); 918 } 919 920 /* 921 * Generic slab allocation function to run by the global work queues. 922 * It is responsible for allocating a new slab, linking it in to the list 923 * of partial slabs, and then waking any waiters. 924 */ 925 static int 926 __spl_cache_grow(spl_kmem_cache_t *skc, int flags) 927 { 928 spl_kmem_slab_t *sks; 929 930 fstrans_cookie_t cookie = spl_fstrans_mark(); 931 sks = spl_slab_alloc(skc, flags); 932 spl_fstrans_unmark(cookie); 933 934 spin_lock(&skc->skc_lock); 935 if (sks) { 936 skc->skc_slab_total++; 937 skc->skc_obj_total += sks->sks_objs; 938 list_add_tail(&sks->sks_list, &skc->skc_partial_list); 939 940 smp_mb__before_atomic(); 941 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 942 smp_mb__after_atomic(); 943 } 944 spin_unlock(&skc->skc_lock); 945 946 return (sks == NULL ? -ENOMEM : 0); 947 } 948 949 static void 950 spl_cache_grow_work(void *data) 951 { 952 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data; 953 spl_kmem_cache_t *skc = ska->ska_cache; 954 955 int error = __spl_cache_grow(skc, ska->ska_flags); 956 957 atomic_dec(&skc->skc_ref); 958 smp_mb__before_atomic(); 959 clear_bit(KMC_BIT_GROWING, &skc->skc_flags); 960 smp_mb__after_atomic(); 961 if (error == 0) 962 wake_up_all(&skc->skc_waitq); 963 964 kfree(ska); 965 } 966 967 /* 968 * Returns non-zero when a new slab should be available. 969 */ 970 static int 971 spl_cache_grow_wait(spl_kmem_cache_t *skc) 972 { 973 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags)); 974 } 975 976 /* 977 * No available objects on any slabs, create a new slab. Note that this 978 * functionality is disabled for KMC_SLAB caches which are backed by the 979 * Linux slab. 980 */ 981 static int 982 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj) 983 { 984 int remaining, rc = 0; 985 986 ASSERT0(flags & ~KM_PUBLIC_MASK); 987 ASSERT(skc->skc_magic == SKC_MAGIC); 988 ASSERT((skc->skc_flags & KMC_SLAB) == 0); 989 990 *obj = NULL; 991 992 /* 993 * Since we can't sleep attempt an emergency allocation to satisfy 994 * the request. The only alterative is to fail the allocation but 995 * it's preferable try. The use of KM_NOSLEEP is expected to be rare. 996 */ 997 if (flags & KM_NOSLEEP) 998 return (spl_emergency_alloc(skc, flags, obj)); 999 1000 might_sleep(); 1001 1002 /* 1003 * Before allocating a new slab wait for any reaping to complete and 1004 * then return so the local magazine can be rechecked for new objects. 1005 */ 1006 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) { 1007 rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING, 1008 TASK_UNINTERRUPTIBLE); 1009 return (rc ? rc : -EAGAIN); 1010 } 1011 1012 /* 1013 * Note: It would be nice to reduce the overhead of context switch 1014 * and improve NUMA locality, by trying to allocate a new slab in the 1015 * current process context with KM_NOSLEEP flag. 1016 * 1017 * However, this can't be applied to vmem/kvmem due to a bug that 1018 * spl_vmalloc() doesn't honor gfp flags in page table allocation. 1019 */ 1020 1021 /* 1022 * This is handled by dispatching a work request to the global work 1023 * queue. This allows us to asynchronously allocate a new slab while 1024 * retaining the ability to safely fall back to a smaller synchronous 1025 * allocations to ensure forward progress is always maintained. 1026 */ 1027 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) { 1028 spl_kmem_alloc_t *ska; 1029 1030 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags)); 1031 if (ska == NULL) { 1032 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags); 1033 smp_mb__after_atomic(); 1034 wake_up_all(&skc->skc_waitq); 1035 return (-ENOMEM); 1036 } 1037 1038 atomic_inc(&skc->skc_ref); 1039 ska->ska_cache = skc; 1040 ska->ska_flags = flags; 1041 taskq_init_ent(&ska->ska_tqe); 1042 taskq_dispatch_ent(spl_kmem_cache_taskq, 1043 spl_cache_grow_work, ska, 0, &ska->ska_tqe); 1044 } 1045 1046 /* 1047 * The goal here is to only detect the rare case where a virtual slab 1048 * allocation has deadlocked. We must be careful to minimize the use 1049 * of emergency objects which are more expensive to track. Therefore, 1050 * we set a very long timeout for the asynchronous allocation and if 1051 * the timeout is reached the cache is flagged as deadlocked. From 1052 * this point only new emergency objects will be allocated until the 1053 * asynchronous allocation completes and clears the deadlocked flag. 1054 */ 1055 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) { 1056 rc = spl_emergency_alloc(skc, flags, obj); 1057 } else { 1058 remaining = wait_event_timeout(skc->skc_waitq, 1059 spl_cache_grow_wait(skc), HZ / 10); 1060 1061 if (!remaining) { 1062 spin_lock(&skc->skc_lock); 1063 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) { 1064 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 1065 skc->skc_obj_deadlock++; 1066 } 1067 spin_unlock(&skc->skc_lock); 1068 } 1069 1070 rc = -ENOMEM; 1071 } 1072 1073 return (rc); 1074 } 1075 1076 /* 1077 * Refill a per-cpu magazine with objects from the slabs for this cache. 1078 * Ideally the magazine can be repopulated using existing objects which have 1079 * been released, however if we are unable to locate enough free objects new 1080 * slabs of objects will be created. On success NULL is returned, otherwise 1081 * the address of a single emergency object is returned for use by the caller. 1082 */ 1083 static void * 1084 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags) 1085 { 1086 spl_kmem_slab_t *sks; 1087 int count = 0, rc, refill; 1088 void *obj = NULL; 1089 1090 ASSERT(skc->skc_magic == SKC_MAGIC); 1091 ASSERT(skm->skm_magic == SKM_MAGIC); 1092 1093 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail); 1094 spin_lock(&skc->skc_lock); 1095 1096 while (refill > 0) { 1097 /* No slabs available we may need to grow the cache */ 1098 if (list_empty(&skc->skc_partial_list)) { 1099 spin_unlock(&skc->skc_lock); 1100 1101 local_irq_enable(); 1102 rc = spl_cache_grow(skc, flags, &obj); 1103 local_irq_disable(); 1104 1105 /* Emergency object for immediate use by caller */ 1106 if (rc == 0 && obj != NULL) 1107 return (obj); 1108 1109 if (rc) 1110 goto out; 1111 1112 /* Rescheduled to different CPU skm is not local */ 1113 if (skm != skc->skc_mag[smp_processor_id()]) 1114 goto out; 1115 1116 /* 1117 * Potentially rescheduled to the same CPU but 1118 * allocations may have occurred from this CPU while 1119 * we were sleeping so recalculate max refill. 1120 */ 1121 refill = MIN(refill, skm->skm_size - skm->skm_avail); 1122 1123 spin_lock(&skc->skc_lock); 1124 continue; 1125 } 1126 1127 /* Grab the next available slab */ 1128 sks = list_entry((&skc->skc_partial_list)->next, 1129 spl_kmem_slab_t, sks_list); 1130 ASSERT(sks->sks_magic == SKS_MAGIC); 1131 ASSERT(sks->sks_ref < sks->sks_objs); 1132 ASSERT(!list_empty(&sks->sks_free_list)); 1133 1134 /* 1135 * Consume as many objects as needed to refill the requested 1136 * cache. We must also be careful not to overfill it. 1137 */ 1138 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && 1139 ++count) { 1140 ASSERT(skm->skm_avail < skm->skm_size); 1141 ASSERT(count < skm->skm_size); 1142 skm->skm_objs[skm->skm_avail++] = 1143 spl_cache_obj(skc, sks); 1144 } 1145 1146 /* Move slab to skc_complete_list when full */ 1147 if (sks->sks_ref == sks->sks_objs) { 1148 list_del(&sks->sks_list); 1149 list_add(&sks->sks_list, &skc->skc_complete_list); 1150 } 1151 } 1152 1153 spin_unlock(&skc->skc_lock); 1154 out: 1155 return (NULL); 1156 } 1157 1158 /* 1159 * Release an object back to the slab from which it came. 1160 */ 1161 static void 1162 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj) 1163 { 1164 spl_kmem_slab_t *sks = NULL; 1165 spl_kmem_obj_t *sko = NULL; 1166 1167 ASSERT(skc->skc_magic == SKC_MAGIC); 1168 1169 sko = spl_sko_from_obj(skc, obj); 1170 ASSERT(sko->sko_magic == SKO_MAGIC); 1171 sks = sko->sko_slab; 1172 ASSERT(sks->sks_magic == SKS_MAGIC); 1173 ASSERT(sks->sks_cache == skc); 1174 list_add(&sko->sko_list, &sks->sks_free_list); 1175 1176 sks->sks_age = jiffies; 1177 sks->sks_ref--; 1178 skc->skc_obj_alloc--; 1179 1180 /* 1181 * Move slab to skc_partial_list when no longer full. Slabs 1182 * are added to the head to keep the partial list is quasi-full 1183 * sorted order. Fuller at the head, emptier at the tail. 1184 */ 1185 if (sks->sks_ref == (sks->sks_objs - 1)) { 1186 list_del(&sks->sks_list); 1187 list_add(&sks->sks_list, &skc->skc_partial_list); 1188 } 1189 1190 /* 1191 * Move empty slabs to the end of the partial list so 1192 * they can be easily found and freed during reclamation. 1193 */ 1194 if (sks->sks_ref == 0) { 1195 list_del(&sks->sks_list); 1196 list_add_tail(&sks->sks_list, &skc->skc_partial_list); 1197 skc->skc_slab_alloc--; 1198 } 1199 } 1200 1201 /* 1202 * Allocate an object from the per-cpu magazine, or if the magazine 1203 * is empty directly allocate from a slab and repopulate the magazine. 1204 */ 1205 void * 1206 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags) 1207 { 1208 spl_kmem_magazine_t *skm; 1209 void *obj = NULL; 1210 1211 ASSERT0(flags & ~KM_PUBLIC_MASK); 1212 ASSERT(skc->skc_magic == SKC_MAGIC); 1213 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1214 1215 /* 1216 * Allocate directly from a Linux slab. All optimizations are left 1217 * to the underlying cache we only need to guarantee that KM_SLEEP 1218 * callers will never fail. 1219 */ 1220 if (skc->skc_flags & KMC_SLAB) { 1221 struct kmem_cache *slc = skc->skc_linux_cache; 1222 do { 1223 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags)); 1224 } while ((obj == NULL) && !(flags & KM_NOSLEEP)); 1225 1226 if (obj != NULL) { 1227 /* 1228 * Even though we leave everything up to the 1229 * underlying cache we still keep track of 1230 * how many objects we've allocated in it for 1231 * better debuggability. 1232 */ 1233 percpu_counter_inc(&skc->skc_linux_alloc); 1234 } 1235 goto ret; 1236 } 1237 1238 local_irq_disable(); 1239 1240 restart: 1241 /* 1242 * Safe to update per-cpu structure without lock, but 1243 * in the restart case we must be careful to reacquire 1244 * the local magazine since this may have changed 1245 * when we need to grow the cache. 1246 */ 1247 skm = skc->skc_mag[smp_processor_id()]; 1248 ASSERT(skm->skm_magic == SKM_MAGIC); 1249 1250 if (likely(skm->skm_avail)) { 1251 /* Object available in CPU cache, use it */ 1252 obj = skm->skm_objs[--skm->skm_avail]; 1253 } else { 1254 obj = spl_cache_refill(skc, skm, flags); 1255 if ((obj == NULL) && !(flags & KM_NOSLEEP)) 1256 goto restart; 1257 1258 local_irq_enable(); 1259 goto ret; 1260 } 1261 1262 local_irq_enable(); 1263 ASSERT(obj); 1264 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 1265 1266 ret: 1267 /* Pre-emptively migrate object to CPU L1 cache */ 1268 if (obj) { 1269 if (obj && skc->skc_ctor) 1270 skc->skc_ctor(obj, skc->skc_private, flags); 1271 else 1272 prefetchw(obj); 1273 } 1274 1275 return (obj); 1276 } 1277 EXPORT_SYMBOL(spl_kmem_cache_alloc); 1278 1279 /* 1280 * Free an object back to the local per-cpu magazine, there is no 1281 * guarantee that this is the same magazine the object was originally 1282 * allocated from. We may need to flush entire from the magazine 1283 * back to the slabs to make space. 1284 */ 1285 void 1286 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj) 1287 { 1288 spl_kmem_magazine_t *skm; 1289 unsigned long flags; 1290 int do_reclaim = 0; 1291 int do_emergency = 0; 1292 1293 ASSERT(skc->skc_magic == SKC_MAGIC); 1294 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1295 1296 /* 1297 * Run the destructor 1298 */ 1299 if (skc->skc_dtor) 1300 skc->skc_dtor(obj, skc->skc_private); 1301 1302 /* 1303 * Free the object from the Linux underlying Linux slab. 1304 */ 1305 if (skc->skc_flags & KMC_SLAB) { 1306 kmem_cache_free(skc->skc_linux_cache, obj); 1307 percpu_counter_dec(&skc->skc_linux_alloc); 1308 return; 1309 } 1310 1311 /* 1312 * While a cache has outstanding emergency objects all freed objects 1313 * must be checked. However, since emergency objects will never use 1314 * a virtual address these objects can be safely excluded as an 1315 * optimization. 1316 */ 1317 if (!is_vmalloc_addr(obj)) { 1318 spin_lock(&skc->skc_lock); 1319 do_emergency = (skc->skc_obj_emergency > 0); 1320 spin_unlock(&skc->skc_lock); 1321 1322 if (do_emergency && (spl_emergency_free(skc, obj) == 0)) 1323 return; 1324 } 1325 1326 local_irq_save(flags); 1327 1328 /* 1329 * Safe to update per-cpu structure without lock, but 1330 * no remote memory allocation tracking is being performed 1331 * it is entirely possible to allocate an object from one 1332 * CPU cache and return it to another. 1333 */ 1334 skm = skc->skc_mag[smp_processor_id()]; 1335 ASSERT(skm->skm_magic == SKM_MAGIC); 1336 1337 /* 1338 * Per-CPU cache full, flush it to make space for this object, 1339 * this may result in an empty slab which can be reclaimed once 1340 * interrupts are re-enabled. 1341 */ 1342 if (unlikely(skm->skm_avail >= skm->skm_size)) { 1343 spl_cache_flush(skc, skm, skm->skm_refill); 1344 do_reclaim = 1; 1345 } 1346 1347 /* Available space in cache, use it */ 1348 skm->skm_objs[skm->skm_avail++] = obj; 1349 1350 local_irq_restore(flags); 1351 1352 if (do_reclaim) 1353 spl_slab_reclaim(skc); 1354 } 1355 EXPORT_SYMBOL(spl_kmem_cache_free); 1356 1357 /* 1358 * Depending on how many and which objects are released it may simply 1359 * repopulate the local magazine which will then need to age-out. Objects 1360 * which cannot fit in the magazine will be released back to their slabs 1361 * which will also need to age out before being released. This is all just 1362 * best effort and we do not want to thrash creating and destroying slabs. 1363 */ 1364 void 1365 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc) 1366 { 1367 ASSERT(skc->skc_magic == SKC_MAGIC); 1368 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1369 1370 if (skc->skc_flags & KMC_SLAB) 1371 return; 1372 1373 atomic_inc(&skc->skc_ref); 1374 1375 /* 1376 * Prevent concurrent cache reaping when contended. 1377 */ 1378 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) 1379 goto out; 1380 1381 /* Reclaim from the magazine and free all now empty slabs. */ 1382 unsigned long irq_flags; 1383 local_irq_save(irq_flags); 1384 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()]; 1385 spl_cache_flush(skc, skm, skm->skm_avail); 1386 local_irq_restore(irq_flags); 1387 1388 spl_slab_reclaim(skc); 1389 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags); 1390 smp_mb__after_atomic(); 1391 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING); 1392 out: 1393 atomic_dec(&skc->skc_ref); 1394 } 1395 EXPORT_SYMBOL(spl_kmem_cache_reap_now); 1396 1397 /* 1398 * This is stubbed out for code consistency with other platforms. There 1399 * is existing logic to prevent concurrent reaping so while this is ugly 1400 * it should do no harm. 1401 */ 1402 int 1403 spl_kmem_cache_reap_active(void) 1404 { 1405 return (0); 1406 } 1407 EXPORT_SYMBOL(spl_kmem_cache_reap_active); 1408 1409 /* 1410 * Reap all free slabs from all registered caches. 1411 */ 1412 void 1413 spl_kmem_reap(void) 1414 { 1415 spl_kmem_cache_t *skc = NULL; 1416 1417 down_read(&spl_kmem_cache_sem); 1418 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { 1419 spl_kmem_cache_reap_now(skc); 1420 } 1421 up_read(&spl_kmem_cache_sem); 1422 } 1423 EXPORT_SYMBOL(spl_kmem_reap); 1424 1425 int 1426 spl_kmem_cache_init(void) 1427 { 1428 init_rwsem(&spl_kmem_cache_sem); 1429 INIT_LIST_HEAD(&spl_kmem_cache_list); 1430 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache", 1431 spl_kmem_cache_kmem_threads, maxclsyspri, 1432 spl_kmem_cache_kmem_threads * 8, INT_MAX, 1433 TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1434 1435 if (spl_kmem_cache_taskq == NULL) 1436 return (-ENOMEM); 1437 1438 return (0); 1439 } 1440 1441 void 1442 spl_kmem_cache_fini(void) 1443 { 1444 taskq_destroy(spl_kmem_cache_taskq); 1445 } 1446