xref: /freebsd/sys/contrib/openzfs/module/os/linux/spl/spl-kmem-cache.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*
2  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3  *  Copyright (C) 2007 The Regents of the University of California.
4  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6  *  UCRL-CODE-235197
7  *
8  *  This file is part of the SPL, Solaris Porting Layer.
9  *
10  *  The SPL is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or (at your
13  *  option) any later version.
14  *
15  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #define	SPL_KMEM_CACHE_IMPLEMENTING
25 
26 #include <linux/percpu_compat.h>
27 #include <sys/kmem.h>
28 #include <sys/kmem_cache.h>
29 #include <sys/taskq.h>
30 #include <sys/timer.h>
31 #include <sys/vmem.h>
32 #include <sys/wait.h>
33 #include <sys/string.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/prefetch.h>
37 
38 /*
39  * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
40  * with smp_mb__{before,after}_atomic() because they were redundant. This is
41  * only used inside our SLAB allocator, so we implement an internal wrapper
42  * here to give us smp_mb__{before,after}_atomic() on older kernels.
43  */
44 #ifndef smp_mb__before_atomic
45 #define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
46 #endif
47 
48 #ifndef smp_mb__after_atomic
49 #define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
50 #endif
51 
52 /* BEGIN CSTYLED */
53 /*
54  * Cache magazines are an optimization designed to minimize the cost of
55  * allocating memory.  They do this by keeping a per-cpu cache of recently
56  * freed objects, which can then be reallocated without taking a lock. This
57  * can improve performance on highly contended caches.  However, because
58  * objects in magazines will prevent otherwise empty slabs from being
59  * immediately released this may not be ideal for low memory machines.
60  *
61  * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
62  * magazine size.  When this value is set to 0 the magazine size will be
63  * automatically determined based on the object size.  Otherwise magazines
64  * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
65  * may never be entirely disabled in this implementation.
66  */
67 static unsigned int spl_kmem_cache_magazine_size = 0;
68 module_param(spl_kmem_cache_magazine_size, uint, 0444);
69 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
70 	"Default magazine size (2-256), set automatically (0)");
71 
72 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
73 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
74 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
75 
76 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
77 module_param(spl_kmem_cache_max_size, uint, 0644);
78 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
79 
80 /*
81  * For small objects the Linux slab allocator should be used to make the most
82  * efficient use of the memory.  However, large objects are not supported by
83  * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
84  * of 16K was determined to be optimal for architectures using 4K pages and
85  * to also work well on architecutres using larger 64K page sizes.
86  */
87 static unsigned int spl_kmem_cache_slab_limit =
88     SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE;
89 module_param(spl_kmem_cache_slab_limit, uint, 0644);
90 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
91 	"Objects less than N bytes use the Linux slab");
92 
93 /*
94  * The number of threads available to allocate new slabs for caches.  This
95  * should not need to be tuned but it is available for performance analysis.
96  */
97 static unsigned int spl_kmem_cache_kmem_threads = 4;
98 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
99 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
100 	"Number of spl_kmem_cache threads");
101 /* END CSTYLED */
102 
103 /*
104  * Slab allocation interfaces
105  *
106  * While the Linux slab implementation was inspired by the Solaris
107  * implementation I cannot use it to emulate the Solaris APIs.  I
108  * require two features which are not provided by the Linux slab.
109  *
110  * 1) Constructors AND destructors.  Recent versions of the Linux
111  *    kernel have removed support for destructors.  This is a deal
112  *    breaker for the SPL which contains particularly expensive
113  *    initializers for mutex's, condition variables, etc.  We also
114  *    require a minimal level of cleanup for these data types unlike
115  *    many Linux data types which do need to be explicitly destroyed.
116  *
117  * 2) Virtual address space backed slab.  Callers of the Solaris slab
118  *    expect it to work well for both small are very large allocations.
119  *    Because of memory fragmentation the Linux slab which is backed
120  *    by kmalloc'ed memory performs very badly when confronted with
121  *    large numbers of large allocations.  Basing the slab on the
122  *    virtual address space removes the need for contiguous pages
123  *    and greatly improve performance for large allocations.
124  *
125  * For these reasons, the SPL has its own slab implementation with
126  * the needed features.  It is not as highly optimized as either the
127  * Solaris or Linux slabs, but it should get me most of what is
128  * needed until it can be optimized or obsoleted by another approach.
129  *
130  * One serious concern I do have about this method is the relatively
131  * small virtual address space on 32bit arches.  This will seriously
132  * constrain the size of the slab caches and their performance.
133  */
134 
135 struct list_head spl_kmem_cache_list;   /* List of caches */
136 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
137 static taskq_t *spl_kmem_cache_taskq;   /* Task queue for aging / reclaim */
138 
139 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
140 
141 static void *
142 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
143 {
144 	gfp_t lflags = kmem_flags_convert(flags);
145 	void *ptr;
146 
147 	ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
148 
149 	/* Resulting allocated memory will be page aligned */
150 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
151 
152 	return (ptr);
153 }
154 
155 static void
156 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
157 {
158 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
159 
160 	/*
161 	 * The Linux direct reclaim path uses this out of band value to
162 	 * determine if forward progress is being made.  Normally this is
163 	 * incremented by kmem_freepages() which is part of the various
164 	 * Linux slab implementations.  However, since we are using none
165 	 * of that infrastructure we are responsible for incrementing it.
166 	 */
167 	if (current->reclaim_state)
168 #ifdef	HAVE_RECLAIM_STATE_RECLAIMED
169 		current->reclaim_state->reclaimed += size >> PAGE_SHIFT;
170 #else
171 		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
172 #endif
173 	vfree(ptr);
174 }
175 
176 /*
177  * Required space for each aligned sks.
178  */
179 static inline uint32_t
180 spl_sks_size(spl_kmem_cache_t *skc)
181 {
182 	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
183 	    skc->skc_obj_align, uint32_t));
184 }
185 
186 /*
187  * Required space for each aligned object.
188  */
189 static inline uint32_t
190 spl_obj_size(spl_kmem_cache_t *skc)
191 {
192 	uint32_t align = skc->skc_obj_align;
193 
194 	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
195 	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
196 }
197 
198 uint64_t
199 spl_kmem_cache_inuse(kmem_cache_t *cache)
200 {
201 	return (cache->skc_obj_total);
202 }
203 EXPORT_SYMBOL(spl_kmem_cache_inuse);
204 
205 uint64_t
206 spl_kmem_cache_entry_size(kmem_cache_t *cache)
207 {
208 	return (cache->skc_obj_size);
209 }
210 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
211 
212 /*
213  * Lookup the spl_kmem_object_t for an object given that object.
214  */
215 static inline spl_kmem_obj_t *
216 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
217 {
218 	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
219 	    skc->skc_obj_align, uint32_t));
220 }
221 
222 /*
223  * It's important that we pack the spl_kmem_obj_t structure and the
224  * actual objects in to one large address space to minimize the number
225  * of calls to the allocator.  It is far better to do a few large
226  * allocations and then subdivide it ourselves.  Now which allocator
227  * we use requires balancing a few trade offs.
228  *
229  * For small objects we use kmem_alloc() because as long as you are
230  * only requesting a small number of pages (ideally just one) its cheap.
231  * However, when you start requesting multiple pages with kmem_alloc()
232  * it gets increasingly expensive since it requires contiguous pages.
233  * For this reason we shift to vmem_alloc() for slabs of large objects
234  * which removes the need for contiguous pages.  We do not use
235  * vmem_alloc() in all cases because there is significant locking
236  * overhead in __get_vm_area_node().  This function takes a single
237  * global lock when acquiring an available virtual address range which
238  * serializes all vmem_alloc()'s for all slab caches.  Using slightly
239  * different allocation functions for small and large objects should
240  * give us the best of both worlds.
241  *
242  * +------------------------+
243  * | spl_kmem_slab_t --+-+  |
244  * | skc_obj_size    <-+ |  |
245  * | spl_kmem_obj_t      |  |
246  * | skc_obj_size    <---+  |
247  * | spl_kmem_obj_t      |  |
248  * | ...                 v  |
249  * +------------------------+
250  */
251 static spl_kmem_slab_t *
252 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
253 {
254 	spl_kmem_slab_t *sks;
255 	void *base;
256 	uint32_t obj_size;
257 
258 	base = kv_alloc(skc, skc->skc_slab_size, flags);
259 	if (base == NULL)
260 		return (NULL);
261 
262 	sks = (spl_kmem_slab_t *)base;
263 	sks->sks_magic = SKS_MAGIC;
264 	sks->sks_objs = skc->skc_slab_objs;
265 	sks->sks_age = jiffies;
266 	sks->sks_cache = skc;
267 	INIT_LIST_HEAD(&sks->sks_list);
268 	INIT_LIST_HEAD(&sks->sks_free_list);
269 	sks->sks_ref = 0;
270 	obj_size = spl_obj_size(skc);
271 
272 	for (int i = 0; i < sks->sks_objs; i++) {
273 		void *obj = base + spl_sks_size(skc) + (i * obj_size);
274 
275 		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
276 		spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
277 		sko->sko_addr = obj;
278 		sko->sko_magic = SKO_MAGIC;
279 		sko->sko_slab = sks;
280 		INIT_LIST_HEAD(&sko->sko_list);
281 		list_add_tail(&sko->sko_list, &sks->sks_free_list);
282 	}
283 
284 	return (sks);
285 }
286 
287 /*
288  * Remove a slab from complete or partial list, it must be called with
289  * the 'skc->skc_lock' held but the actual free must be performed
290  * outside the lock to prevent deadlocking on vmem addresses.
291  */
292 static void
293 spl_slab_free(spl_kmem_slab_t *sks,
294     struct list_head *sks_list, struct list_head *sko_list)
295 {
296 	spl_kmem_cache_t *skc;
297 
298 	ASSERT(sks->sks_magic == SKS_MAGIC);
299 	ASSERT(sks->sks_ref == 0);
300 
301 	skc = sks->sks_cache;
302 	ASSERT(skc->skc_magic == SKC_MAGIC);
303 
304 	/*
305 	 * Update slab/objects counters in the cache, then remove the
306 	 * slab from the skc->skc_partial_list.  Finally add the slab
307 	 * and all its objects in to the private work lists where the
308 	 * destructors will be called and the memory freed to the system.
309 	 */
310 	skc->skc_obj_total -= sks->sks_objs;
311 	skc->skc_slab_total--;
312 	list_del(&sks->sks_list);
313 	list_add(&sks->sks_list, sks_list);
314 	list_splice_init(&sks->sks_free_list, sko_list);
315 }
316 
317 /*
318  * Reclaim empty slabs at the end of the partial list.
319  */
320 static void
321 spl_slab_reclaim(spl_kmem_cache_t *skc)
322 {
323 	spl_kmem_slab_t *sks = NULL, *m = NULL;
324 	spl_kmem_obj_t *sko = NULL, *n = NULL;
325 	LIST_HEAD(sks_list);
326 	LIST_HEAD(sko_list);
327 
328 	/*
329 	 * Empty slabs and objects must be moved to a private list so they
330 	 * can be safely freed outside the spin lock.  All empty slabs are
331 	 * at the end of skc->skc_partial_list, therefore once a non-empty
332 	 * slab is found we can stop scanning.
333 	 */
334 	spin_lock(&skc->skc_lock);
335 	list_for_each_entry_safe_reverse(sks, m,
336 	    &skc->skc_partial_list, sks_list) {
337 
338 		if (sks->sks_ref > 0)
339 			break;
340 
341 		spl_slab_free(sks, &sks_list, &sko_list);
342 	}
343 	spin_unlock(&skc->skc_lock);
344 
345 	/*
346 	 * The following two loops ensure all the object destructors are run,
347 	 * and the slabs themselves are freed.  This is all done outside the
348 	 * skc->skc_lock since this allows the destructor to sleep, and
349 	 * allows us to perform a conditional reschedule when a freeing a
350 	 * large number of objects and slabs back to the system.
351 	 */
352 
353 	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
354 		ASSERT(sko->sko_magic == SKO_MAGIC);
355 	}
356 
357 	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
358 		ASSERT(sks->sks_magic == SKS_MAGIC);
359 		kv_free(skc, sks, skc->skc_slab_size);
360 	}
361 }
362 
363 static spl_kmem_emergency_t *
364 spl_emergency_search(struct rb_root *root, void *obj)
365 {
366 	struct rb_node *node = root->rb_node;
367 	spl_kmem_emergency_t *ske;
368 	unsigned long address = (unsigned long)obj;
369 
370 	while (node) {
371 		ske = container_of(node, spl_kmem_emergency_t, ske_node);
372 
373 		if (address < ske->ske_obj)
374 			node = node->rb_left;
375 		else if (address > ske->ske_obj)
376 			node = node->rb_right;
377 		else
378 			return (ske);
379 	}
380 
381 	return (NULL);
382 }
383 
384 static int
385 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
386 {
387 	struct rb_node **new = &(root->rb_node), *parent = NULL;
388 	spl_kmem_emergency_t *ske_tmp;
389 	unsigned long address = ske->ske_obj;
390 
391 	while (*new) {
392 		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
393 
394 		parent = *new;
395 		if (address < ske_tmp->ske_obj)
396 			new = &((*new)->rb_left);
397 		else if (address > ske_tmp->ske_obj)
398 			new = &((*new)->rb_right);
399 		else
400 			return (0);
401 	}
402 
403 	rb_link_node(&ske->ske_node, parent, new);
404 	rb_insert_color(&ske->ske_node, root);
405 
406 	return (1);
407 }
408 
409 /*
410  * Allocate a single emergency object and track it in a red black tree.
411  */
412 static int
413 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
414 {
415 	gfp_t lflags = kmem_flags_convert(flags);
416 	spl_kmem_emergency_t *ske;
417 	int order = get_order(skc->skc_obj_size);
418 	int empty;
419 
420 	/* Last chance use a partial slab if one now exists */
421 	spin_lock(&skc->skc_lock);
422 	empty = list_empty(&skc->skc_partial_list);
423 	spin_unlock(&skc->skc_lock);
424 	if (!empty)
425 		return (-EEXIST);
426 
427 	ske = kmalloc(sizeof (*ske), lflags);
428 	if (ske == NULL)
429 		return (-ENOMEM);
430 
431 	ske->ske_obj = __get_free_pages(lflags, order);
432 	if (ske->ske_obj == 0) {
433 		kfree(ske);
434 		return (-ENOMEM);
435 	}
436 
437 	spin_lock(&skc->skc_lock);
438 	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
439 	if (likely(empty)) {
440 		skc->skc_obj_total++;
441 		skc->skc_obj_emergency++;
442 		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
443 			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
444 	}
445 	spin_unlock(&skc->skc_lock);
446 
447 	if (unlikely(!empty)) {
448 		free_pages(ske->ske_obj, order);
449 		kfree(ske);
450 		return (-EINVAL);
451 	}
452 
453 	*obj = (void *)ske->ske_obj;
454 
455 	return (0);
456 }
457 
458 /*
459  * Locate the passed object in the red black tree and free it.
460  */
461 static int
462 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
463 {
464 	spl_kmem_emergency_t *ske;
465 	int order = get_order(skc->skc_obj_size);
466 
467 	spin_lock(&skc->skc_lock);
468 	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
469 	if (ske) {
470 		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
471 		skc->skc_obj_emergency--;
472 		skc->skc_obj_total--;
473 	}
474 	spin_unlock(&skc->skc_lock);
475 
476 	if (ske == NULL)
477 		return (-ENOENT);
478 
479 	free_pages(ske->ske_obj, order);
480 	kfree(ske);
481 
482 	return (0);
483 }
484 
485 /*
486  * Release objects from the per-cpu magazine back to their slab.  The flush
487  * argument contains the max number of entries to remove from the magazine.
488  */
489 static void
490 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
491 {
492 	spin_lock(&skc->skc_lock);
493 
494 	ASSERT(skc->skc_magic == SKC_MAGIC);
495 	ASSERT(skm->skm_magic == SKM_MAGIC);
496 
497 	int count = MIN(flush, skm->skm_avail);
498 	for (int i = 0; i < count; i++)
499 		spl_cache_shrink(skc, skm->skm_objs[i]);
500 
501 	skm->skm_avail -= count;
502 	memmove(skm->skm_objs, &(skm->skm_objs[count]),
503 	    sizeof (void *) * skm->skm_avail);
504 
505 	spin_unlock(&skc->skc_lock);
506 }
507 
508 /*
509  * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
510  * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
511  * for very small objects we may end up with more than this so as not
512  * to waste space in the minimal allocation of a single page.
513  */
514 static int
515 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
516 {
517 	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
518 
519 	sks_size = spl_sks_size(skc);
520 	obj_size = spl_obj_size(skc);
521 	max_size = (spl_kmem_cache_max_size * 1024 * 1024);
522 	tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
523 
524 	if (tgt_size <= max_size) {
525 		tgt_objs = (tgt_size - sks_size) / obj_size;
526 	} else {
527 		tgt_objs = (max_size - sks_size) / obj_size;
528 		tgt_size = (tgt_objs * obj_size) + sks_size;
529 	}
530 
531 	if (tgt_objs == 0)
532 		return (-ENOSPC);
533 
534 	*objs = tgt_objs;
535 	*size = tgt_size;
536 
537 	return (0);
538 }
539 
540 /*
541  * Make a guess at reasonable per-cpu magazine size based on the size of
542  * each object and the cost of caching N of them in each magazine.  Long
543  * term this should really adapt based on an observed usage heuristic.
544  */
545 static int
546 spl_magazine_size(spl_kmem_cache_t *skc)
547 {
548 	uint32_t obj_size = spl_obj_size(skc);
549 	int size;
550 
551 	if (spl_kmem_cache_magazine_size > 0)
552 		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
553 
554 	/* Per-magazine sizes below assume a 4Kib page size */
555 	if (obj_size > (PAGE_SIZE * 256))
556 		size = 4;  /* Minimum 4Mib per-magazine */
557 	else if (obj_size > (PAGE_SIZE * 32))
558 		size = 16; /* Minimum 2Mib per-magazine */
559 	else if (obj_size > (PAGE_SIZE))
560 		size = 64; /* Minimum 256Kib per-magazine */
561 	else if (obj_size > (PAGE_SIZE / 4))
562 		size = 128; /* Minimum 128Kib per-magazine */
563 	else
564 		size = 256;
565 
566 	return (size);
567 }
568 
569 /*
570  * Allocate a per-cpu magazine to associate with a specific core.
571  */
572 static spl_kmem_magazine_t *
573 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
574 {
575 	spl_kmem_magazine_t *skm;
576 	int size = sizeof (spl_kmem_magazine_t) +
577 	    sizeof (void *) * skc->skc_mag_size;
578 
579 	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
580 	if (skm) {
581 		skm->skm_magic = SKM_MAGIC;
582 		skm->skm_avail = 0;
583 		skm->skm_size = skc->skc_mag_size;
584 		skm->skm_refill = skc->skc_mag_refill;
585 		skm->skm_cache = skc;
586 		skm->skm_cpu = cpu;
587 	}
588 
589 	return (skm);
590 }
591 
592 /*
593  * Free a per-cpu magazine associated with a specific core.
594  */
595 static void
596 spl_magazine_free(spl_kmem_magazine_t *skm)
597 {
598 	ASSERT(skm->skm_magic == SKM_MAGIC);
599 	ASSERT(skm->skm_avail == 0);
600 	kfree(skm);
601 }
602 
603 /*
604  * Create all pre-cpu magazines of reasonable sizes.
605  */
606 static int
607 spl_magazine_create(spl_kmem_cache_t *skc)
608 {
609 	int i = 0;
610 
611 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
612 
613 	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
614 	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
615 	skc->skc_mag_size = spl_magazine_size(skc);
616 	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
617 
618 	for_each_possible_cpu(i) {
619 		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
620 		if (!skc->skc_mag[i]) {
621 			for (i--; i >= 0; i--)
622 				spl_magazine_free(skc->skc_mag[i]);
623 
624 			kfree(skc->skc_mag);
625 			return (-ENOMEM);
626 		}
627 	}
628 
629 	return (0);
630 }
631 
632 /*
633  * Destroy all pre-cpu magazines.
634  */
635 static void
636 spl_magazine_destroy(spl_kmem_cache_t *skc)
637 {
638 	spl_kmem_magazine_t *skm;
639 	int i = 0;
640 
641 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
642 
643 	for_each_possible_cpu(i) {
644 		skm = skc->skc_mag[i];
645 		spl_cache_flush(skc, skm, skm->skm_avail);
646 		spl_magazine_free(skm);
647 	}
648 
649 	kfree(skc->skc_mag);
650 }
651 
652 /*
653  * Create a object cache based on the following arguments:
654  * name		cache name
655  * size		cache object size
656  * align	cache object alignment
657  * ctor		cache object constructor
658  * dtor		cache object destructor
659  * reclaim	cache object reclaim
660  * priv		cache private data for ctor/dtor/reclaim
661  * vmp		unused must be NULL
662  * flags
663  *	KMC_KVMEM       Force kvmem backed SPL cache
664  *	KMC_SLAB        Force Linux slab backed cache
665  *	KMC_NODEBUG	Disable debugging (unsupported)
666  */
667 spl_kmem_cache_t *
668 spl_kmem_cache_create(const char *name, size_t size, size_t align,
669     spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
670     void *priv, void *vmp, int flags)
671 {
672 	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
673 	spl_kmem_cache_t *skc;
674 	int rc;
675 
676 	/*
677 	 * Unsupported flags
678 	 */
679 	ASSERT(vmp == NULL);
680 	ASSERT(reclaim == NULL);
681 
682 	might_sleep();
683 
684 	skc = kzalloc(sizeof (*skc), lflags);
685 	if (skc == NULL)
686 		return (NULL);
687 
688 	skc->skc_magic = SKC_MAGIC;
689 	skc->skc_name_size = strlen(name) + 1;
690 	skc->skc_name = kmalloc(skc->skc_name_size, lflags);
691 	if (skc->skc_name == NULL) {
692 		kfree(skc);
693 		return (NULL);
694 	}
695 	strlcpy(skc->skc_name, name, skc->skc_name_size);
696 
697 	skc->skc_ctor = ctor;
698 	skc->skc_dtor = dtor;
699 	skc->skc_private = priv;
700 	skc->skc_vmp = vmp;
701 	skc->skc_linux_cache = NULL;
702 	skc->skc_flags = flags;
703 	skc->skc_obj_size = size;
704 	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
705 	atomic_set(&skc->skc_ref, 0);
706 
707 	INIT_LIST_HEAD(&skc->skc_list);
708 	INIT_LIST_HEAD(&skc->skc_complete_list);
709 	INIT_LIST_HEAD(&skc->skc_partial_list);
710 	skc->skc_emergency_tree = RB_ROOT;
711 	spin_lock_init(&skc->skc_lock);
712 	init_waitqueue_head(&skc->skc_waitq);
713 	skc->skc_slab_fail = 0;
714 	skc->skc_slab_create = 0;
715 	skc->skc_slab_destroy = 0;
716 	skc->skc_slab_total = 0;
717 	skc->skc_slab_alloc = 0;
718 	skc->skc_slab_max = 0;
719 	skc->skc_obj_total = 0;
720 	skc->skc_obj_alloc = 0;
721 	skc->skc_obj_max = 0;
722 	skc->skc_obj_deadlock = 0;
723 	skc->skc_obj_emergency = 0;
724 	skc->skc_obj_emergency_max = 0;
725 
726 	rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
727 	    GFP_KERNEL);
728 	if (rc != 0) {
729 		kfree(skc);
730 		return (NULL);
731 	}
732 
733 	/*
734 	 * Verify the requested alignment restriction is sane.
735 	 */
736 	if (align) {
737 		VERIFY(ISP2(align));
738 		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
739 		VERIFY3U(align, <=, PAGE_SIZE);
740 		skc->skc_obj_align = align;
741 	}
742 
743 	/*
744 	 * When no specific type of slab is requested (kmem, vmem, or
745 	 * linuxslab) then select a cache type based on the object size
746 	 * and default tunables.
747 	 */
748 	if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
749 		if (spl_kmem_cache_slab_limit &&
750 		    size <= (size_t)spl_kmem_cache_slab_limit) {
751 			/*
752 			 * Objects smaller than spl_kmem_cache_slab_limit can
753 			 * use the Linux slab for better space-efficiency.
754 			 */
755 			skc->skc_flags |= KMC_SLAB;
756 		} else {
757 			/*
758 			 * All other objects are considered large and are
759 			 * placed on kvmem backed slabs.
760 			 */
761 			skc->skc_flags |= KMC_KVMEM;
762 		}
763 	}
764 
765 	/*
766 	 * Given the type of slab allocate the required resources.
767 	 */
768 	if (skc->skc_flags & KMC_KVMEM) {
769 		rc = spl_slab_size(skc,
770 		    &skc->skc_slab_objs, &skc->skc_slab_size);
771 		if (rc)
772 			goto out;
773 
774 		rc = spl_magazine_create(skc);
775 		if (rc)
776 			goto out;
777 	} else {
778 		unsigned long slabflags = 0;
779 
780 		if (size > spl_kmem_cache_slab_limit)
781 			goto out;
782 
783 #if defined(SLAB_USERCOPY)
784 		/*
785 		 * Required for PAX-enabled kernels if the slab is to be
786 		 * used for copying between user and kernel space.
787 		 */
788 		slabflags |= SLAB_USERCOPY;
789 #endif
790 
791 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
792 		/*
793 		 * Newer grsec patchset uses kmem_cache_create_usercopy()
794 		 * instead of SLAB_USERCOPY flag
795 		 */
796 		skc->skc_linux_cache = kmem_cache_create_usercopy(
797 		    skc->skc_name, size, align, slabflags, 0, size, NULL);
798 #else
799 		skc->skc_linux_cache = kmem_cache_create(
800 		    skc->skc_name, size, align, slabflags, NULL);
801 #endif
802 		if (skc->skc_linux_cache == NULL)
803 			goto out;
804 	}
805 
806 	down_write(&spl_kmem_cache_sem);
807 	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
808 	up_write(&spl_kmem_cache_sem);
809 
810 	return (skc);
811 out:
812 	kfree(skc->skc_name);
813 	percpu_counter_destroy(&skc->skc_linux_alloc);
814 	kfree(skc);
815 	return (NULL);
816 }
817 EXPORT_SYMBOL(spl_kmem_cache_create);
818 
819 /*
820  * Register a move callback for cache defragmentation.
821  * XXX: Unimplemented but harmless to stub out for now.
822  */
823 void
824 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
825     kmem_cbrc_t (move)(void *, void *, size_t, void *))
826 {
827 	ASSERT(move != NULL);
828 }
829 EXPORT_SYMBOL(spl_kmem_cache_set_move);
830 
831 /*
832  * Destroy a cache and all objects associated with the cache.
833  */
834 void
835 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
836 {
837 	DECLARE_WAIT_QUEUE_HEAD(wq);
838 	taskqid_t id;
839 
840 	ASSERT(skc->skc_magic == SKC_MAGIC);
841 	ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
842 
843 	down_write(&spl_kmem_cache_sem);
844 	list_del_init(&skc->skc_list);
845 	up_write(&spl_kmem_cache_sem);
846 
847 	/* Cancel any and wait for any pending delayed tasks */
848 	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
849 
850 	spin_lock(&skc->skc_lock);
851 	id = skc->skc_taskqid;
852 	spin_unlock(&skc->skc_lock);
853 
854 	taskq_cancel_id(spl_kmem_cache_taskq, id);
855 
856 	/*
857 	 * Wait until all current callers complete, this is mainly
858 	 * to catch the case where a low memory situation triggers a
859 	 * cache reaping action which races with this destroy.
860 	 */
861 	wait_event(wq, atomic_read(&skc->skc_ref) == 0);
862 
863 	if (skc->skc_flags & KMC_KVMEM) {
864 		spl_magazine_destroy(skc);
865 		spl_slab_reclaim(skc);
866 	} else {
867 		ASSERT(skc->skc_flags & KMC_SLAB);
868 		kmem_cache_destroy(skc->skc_linux_cache);
869 	}
870 
871 	spin_lock(&skc->skc_lock);
872 
873 	/*
874 	 * Validate there are no objects in use and free all the
875 	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
876 	 */
877 	ASSERT3U(skc->skc_slab_alloc, ==, 0);
878 	ASSERT3U(skc->skc_obj_alloc, ==, 0);
879 	ASSERT3U(skc->skc_slab_total, ==, 0);
880 	ASSERT3U(skc->skc_obj_total, ==, 0);
881 	ASSERT3U(skc->skc_obj_emergency, ==, 0);
882 	ASSERT(list_empty(&skc->skc_complete_list));
883 
884 	ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
885 	percpu_counter_destroy(&skc->skc_linux_alloc);
886 
887 	spin_unlock(&skc->skc_lock);
888 
889 	kfree(skc->skc_name);
890 	kfree(skc);
891 }
892 EXPORT_SYMBOL(spl_kmem_cache_destroy);
893 
894 /*
895  * Allocate an object from a slab attached to the cache.  This is used to
896  * repopulate the per-cpu magazine caches in batches when they run low.
897  */
898 static void *
899 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
900 {
901 	spl_kmem_obj_t *sko;
902 
903 	ASSERT(skc->skc_magic == SKC_MAGIC);
904 	ASSERT(sks->sks_magic == SKS_MAGIC);
905 
906 	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
907 	ASSERT(sko->sko_magic == SKO_MAGIC);
908 	ASSERT(sko->sko_addr != NULL);
909 
910 	/* Remove from sks_free_list */
911 	list_del_init(&sko->sko_list);
912 
913 	sks->sks_age = jiffies;
914 	sks->sks_ref++;
915 	skc->skc_obj_alloc++;
916 
917 	/* Track max obj usage statistics */
918 	if (skc->skc_obj_alloc > skc->skc_obj_max)
919 		skc->skc_obj_max = skc->skc_obj_alloc;
920 
921 	/* Track max slab usage statistics */
922 	if (sks->sks_ref == 1) {
923 		skc->skc_slab_alloc++;
924 
925 		if (skc->skc_slab_alloc > skc->skc_slab_max)
926 			skc->skc_slab_max = skc->skc_slab_alloc;
927 	}
928 
929 	return (sko->sko_addr);
930 }
931 
932 /*
933  * Generic slab allocation function to run by the global work queues.
934  * It is responsible for allocating a new slab, linking it in to the list
935  * of partial slabs, and then waking any waiters.
936  */
937 static int
938 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
939 {
940 	spl_kmem_slab_t *sks;
941 
942 	fstrans_cookie_t cookie = spl_fstrans_mark();
943 	sks = spl_slab_alloc(skc, flags);
944 	spl_fstrans_unmark(cookie);
945 
946 	spin_lock(&skc->skc_lock);
947 	if (sks) {
948 		skc->skc_slab_total++;
949 		skc->skc_obj_total += sks->sks_objs;
950 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
951 
952 		smp_mb__before_atomic();
953 		clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
954 		smp_mb__after_atomic();
955 	}
956 	spin_unlock(&skc->skc_lock);
957 
958 	return (sks == NULL ? -ENOMEM : 0);
959 }
960 
961 static void
962 spl_cache_grow_work(void *data)
963 {
964 	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
965 	spl_kmem_cache_t *skc = ska->ska_cache;
966 
967 	int error = __spl_cache_grow(skc, ska->ska_flags);
968 
969 	atomic_dec(&skc->skc_ref);
970 	smp_mb__before_atomic();
971 	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
972 	smp_mb__after_atomic();
973 	if (error == 0)
974 		wake_up_all(&skc->skc_waitq);
975 
976 	kfree(ska);
977 }
978 
979 /*
980  * Returns non-zero when a new slab should be available.
981  */
982 static int
983 spl_cache_grow_wait(spl_kmem_cache_t *skc)
984 {
985 	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
986 }
987 
988 /*
989  * No available objects on any slabs, create a new slab.  Note that this
990  * functionality is disabled for KMC_SLAB caches which are backed by the
991  * Linux slab.
992  */
993 static int
994 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
995 {
996 	int remaining, rc = 0;
997 
998 	ASSERT0(flags & ~KM_PUBLIC_MASK);
999 	ASSERT(skc->skc_magic == SKC_MAGIC);
1000 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1001 
1002 	*obj = NULL;
1003 
1004 	/*
1005 	 * Since we can't sleep attempt an emergency allocation to satisfy
1006 	 * the request.  The only alterative is to fail the allocation but
1007 	 * it's preferable try.  The use of KM_NOSLEEP is expected to be rare.
1008 	 */
1009 	if (flags & KM_NOSLEEP)
1010 		return (spl_emergency_alloc(skc, flags, obj));
1011 
1012 	might_sleep();
1013 
1014 	/*
1015 	 * Before allocating a new slab wait for any reaping to complete and
1016 	 * then return so the local magazine can be rechecked for new objects.
1017 	 */
1018 	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1019 		rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1020 		    TASK_UNINTERRUPTIBLE);
1021 		return (rc ? rc : -EAGAIN);
1022 	}
1023 
1024 	/*
1025 	 * Note: It would be nice to reduce the overhead of context switch
1026 	 * and improve NUMA locality, by trying to allocate a new slab in the
1027 	 * current process context with KM_NOSLEEP flag.
1028 	 *
1029 	 * However, this can't be applied to vmem/kvmem due to a bug that
1030 	 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1031 	 */
1032 
1033 	/*
1034 	 * This is handled by dispatching a work request to the global work
1035 	 * queue.  This allows us to asynchronously allocate a new slab while
1036 	 * retaining the ability to safely fall back to a smaller synchronous
1037 	 * allocations to ensure forward progress is always maintained.
1038 	 */
1039 	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1040 		spl_kmem_alloc_t *ska;
1041 
1042 		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1043 		if (ska == NULL) {
1044 			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1045 			smp_mb__after_atomic();
1046 			wake_up_all(&skc->skc_waitq);
1047 			return (-ENOMEM);
1048 		}
1049 
1050 		atomic_inc(&skc->skc_ref);
1051 		ska->ska_cache = skc;
1052 		ska->ska_flags = flags;
1053 		taskq_init_ent(&ska->ska_tqe);
1054 		taskq_dispatch_ent(spl_kmem_cache_taskq,
1055 		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1056 	}
1057 
1058 	/*
1059 	 * The goal here is to only detect the rare case where a virtual slab
1060 	 * allocation has deadlocked.  We must be careful to minimize the use
1061 	 * of emergency objects which are more expensive to track.  Therefore,
1062 	 * we set a very long timeout for the asynchronous allocation and if
1063 	 * the timeout is reached the cache is flagged as deadlocked.  From
1064 	 * this point only new emergency objects will be allocated until the
1065 	 * asynchronous allocation completes and clears the deadlocked flag.
1066 	 */
1067 	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1068 		rc = spl_emergency_alloc(skc, flags, obj);
1069 	} else {
1070 		remaining = wait_event_timeout(skc->skc_waitq,
1071 		    spl_cache_grow_wait(skc), HZ / 10);
1072 
1073 		if (!remaining) {
1074 			spin_lock(&skc->skc_lock);
1075 			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1076 				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1077 				skc->skc_obj_deadlock++;
1078 			}
1079 			spin_unlock(&skc->skc_lock);
1080 		}
1081 
1082 		rc = -ENOMEM;
1083 	}
1084 
1085 	return (rc);
1086 }
1087 
1088 /*
1089  * Refill a per-cpu magazine with objects from the slabs for this cache.
1090  * Ideally the magazine can be repopulated using existing objects which have
1091  * been released, however if we are unable to locate enough free objects new
1092  * slabs of objects will be created.  On success NULL is returned, otherwise
1093  * the address of a single emergency object is returned for use by the caller.
1094  */
1095 static void *
1096 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1097 {
1098 	spl_kmem_slab_t *sks;
1099 	int count = 0, rc, refill;
1100 	void *obj = NULL;
1101 
1102 	ASSERT(skc->skc_magic == SKC_MAGIC);
1103 	ASSERT(skm->skm_magic == SKM_MAGIC);
1104 
1105 	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1106 	spin_lock(&skc->skc_lock);
1107 
1108 	while (refill > 0) {
1109 		/* No slabs available we may need to grow the cache */
1110 		if (list_empty(&skc->skc_partial_list)) {
1111 			spin_unlock(&skc->skc_lock);
1112 
1113 			local_irq_enable();
1114 			rc = spl_cache_grow(skc, flags, &obj);
1115 			local_irq_disable();
1116 
1117 			/* Emergency object for immediate use by caller */
1118 			if (rc == 0 && obj != NULL)
1119 				return (obj);
1120 
1121 			if (rc)
1122 				goto out;
1123 
1124 			/* Rescheduled to different CPU skm is not local */
1125 			if (skm != skc->skc_mag[smp_processor_id()])
1126 				goto out;
1127 
1128 			/*
1129 			 * Potentially rescheduled to the same CPU but
1130 			 * allocations may have occurred from this CPU while
1131 			 * we were sleeping so recalculate max refill.
1132 			 */
1133 			refill = MIN(refill, skm->skm_size - skm->skm_avail);
1134 
1135 			spin_lock(&skc->skc_lock);
1136 			continue;
1137 		}
1138 
1139 		/* Grab the next available slab */
1140 		sks = list_entry((&skc->skc_partial_list)->next,
1141 		    spl_kmem_slab_t, sks_list);
1142 		ASSERT(sks->sks_magic == SKS_MAGIC);
1143 		ASSERT(sks->sks_ref < sks->sks_objs);
1144 		ASSERT(!list_empty(&sks->sks_free_list));
1145 
1146 		/*
1147 		 * Consume as many objects as needed to refill the requested
1148 		 * cache.  We must also be careful not to overfill it.
1149 		 */
1150 		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1151 		    ++count) {
1152 			ASSERT(skm->skm_avail < skm->skm_size);
1153 			ASSERT(count < skm->skm_size);
1154 			skm->skm_objs[skm->skm_avail++] =
1155 			    spl_cache_obj(skc, sks);
1156 		}
1157 
1158 		/* Move slab to skc_complete_list when full */
1159 		if (sks->sks_ref == sks->sks_objs) {
1160 			list_del(&sks->sks_list);
1161 			list_add(&sks->sks_list, &skc->skc_complete_list);
1162 		}
1163 	}
1164 
1165 	spin_unlock(&skc->skc_lock);
1166 out:
1167 	return (NULL);
1168 }
1169 
1170 /*
1171  * Release an object back to the slab from which it came.
1172  */
1173 static void
1174 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1175 {
1176 	spl_kmem_slab_t *sks = NULL;
1177 	spl_kmem_obj_t *sko = NULL;
1178 
1179 	ASSERT(skc->skc_magic == SKC_MAGIC);
1180 
1181 	sko = spl_sko_from_obj(skc, obj);
1182 	ASSERT(sko->sko_magic == SKO_MAGIC);
1183 	sks = sko->sko_slab;
1184 	ASSERT(sks->sks_magic == SKS_MAGIC);
1185 	ASSERT(sks->sks_cache == skc);
1186 	list_add(&sko->sko_list, &sks->sks_free_list);
1187 
1188 	sks->sks_age = jiffies;
1189 	sks->sks_ref--;
1190 	skc->skc_obj_alloc--;
1191 
1192 	/*
1193 	 * Move slab to skc_partial_list when no longer full.  Slabs
1194 	 * are added to the head to keep the partial list is quasi-full
1195 	 * sorted order.  Fuller at the head, emptier at the tail.
1196 	 */
1197 	if (sks->sks_ref == (sks->sks_objs - 1)) {
1198 		list_del(&sks->sks_list);
1199 		list_add(&sks->sks_list, &skc->skc_partial_list);
1200 	}
1201 
1202 	/*
1203 	 * Move empty slabs to the end of the partial list so
1204 	 * they can be easily found and freed during reclamation.
1205 	 */
1206 	if (sks->sks_ref == 0) {
1207 		list_del(&sks->sks_list);
1208 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1209 		skc->skc_slab_alloc--;
1210 	}
1211 }
1212 
1213 /*
1214  * Allocate an object from the per-cpu magazine, or if the magazine
1215  * is empty directly allocate from a slab and repopulate the magazine.
1216  */
1217 void *
1218 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1219 {
1220 	spl_kmem_magazine_t *skm;
1221 	void *obj = NULL;
1222 
1223 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1224 	ASSERT(skc->skc_magic == SKC_MAGIC);
1225 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1226 
1227 	/*
1228 	 * Allocate directly from a Linux slab.  All optimizations are left
1229 	 * to the underlying cache we only need to guarantee that KM_SLEEP
1230 	 * callers will never fail.
1231 	 */
1232 	if (skc->skc_flags & KMC_SLAB) {
1233 		struct kmem_cache *slc = skc->skc_linux_cache;
1234 		do {
1235 			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1236 		} while ((obj == NULL) && !(flags & KM_NOSLEEP));
1237 
1238 		if (obj != NULL) {
1239 			/*
1240 			 * Even though we leave everything up to the
1241 			 * underlying cache we still keep track of
1242 			 * how many objects we've allocated in it for
1243 			 * better debuggability.
1244 			 */
1245 			percpu_counter_inc(&skc->skc_linux_alloc);
1246 		}
1247 		goto ret;
1248 	}
1249 
1250 	local_irq_disable();
1251 
1252 restart:
1253 	/*
1254 	 * Safe to update per-cpu structure without lock, but
1255 	 * in the restart case we must be careful to reacquire
1256 	 * the local magazine since this may have changed
1257 	 * when we need to grow the cache.
1258 	 */
1259 	skm = skc->skc_mag[smp_processor_id()];
1260 	ASSERT(skm->skm_magic == SKM_MAGIC);
1261 
1262 	if (likely(skm->skm_avail)) {
1263 		/* Object available in CPU cache, use it */
1264 		obj = skm->skm_objs[--skm->skm_avail];
1265 	} else {
1266 		obj = spl_cache_refill(skc, skm, flags);
1267 		if ((obj == NULL) && !(flags & KM_NOSLEEP))
1268 			goto restart;
1269 
1270 		local_irq_enable();
1271 		goto ret;
1272 	}
1273 
1274 	local_irq_enable();
1275 	ASSERT(obj);
1276 	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1277 
1278 ret:
1279 	/* Pre-emptively migrate object to CPU L1 cache */
1280 	if (obj) {
1281 		if (obj && skc->skc_ctor)
1282 			skc->skc_ctor(obj, skc->skc_private, flags);
1283 		else
1284 			prefetchw(obj);
1285 	}
1286 
1287 	return (obj);
1288 }
1289 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1290 
1291 /*
1292  * Free an object back to the local per-cpu magazine, there is no
1293  * guarantee that this is the same magazine the object was originally
1294  * allocated from.  We may need to flush entire from the magazine
1295  * back to the slabs to make space.
1296  */
1297 void
1298 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1299 {
1300 	spl_kmem_magazine_t *skm;
1301 	unsigned long flags;
1302 	int do_reclaim = 0;
1303 	int do_emergency = 0;
1304 
1305 	ASSERT(skc->skc_magic == SKC_MAGIC);
1306 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1307 
1308 	/*
1309 	 * Run the destructor
1310 	 */
1311 	if (skc->skc_dtor)
1312 		skc->skc_dtor(obj, skc->skc_private);
1313 
1314 	/*
1315 	 * Free the object from the Linux underlying Linux slab.
1316 	 */
1317 	if (skc->skc_flags & KMC_SLAB) {
1318 		kmem_cache_free(skc->skc_linux_cache, obj);
1319 		percpu_counter_dec(&skc->skc_linux_alloc);
1320 		return;
1321 	}
1322 
1323 	/*
1324 	 * While a cache has outstanding emergency objects all freed objects
1325 	 * must be checked.  However, since emergency objects will never use
1326 	 * a virtual address these objects can be safely excluded as an
1327 	 * optimization.
1328 	 */
1329 	if (!is_vmalloc_addr(obj)) {
1330 		spin_lock(&skc->skc_lock);
1331 		do_emergency = (skc->skc_obj_emergency > 0);
1332 		spin_unlock(&skc->skc_lock);
1333 
1334 		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1335 			return;
1336 	}
1337 
1338 	local_irq_save(flags);
1339 
1340 	/*
1341 	 * Safe to update per-cpu structure without lock, but
1342 	 * no remote memory allocation tracking is being performed
1343 	 * it is entirely possible to allocate an object from one
1344 	 * CPU cache and return it to another.
1345 	 */
1346 	skm = skc->skc_mag[smp_processor_id()];
1347 	ASSERT(skm->skm_magic == SKM_MAGIC);
1348 
1349 	/*
1350 	 * Per-CPU cache full, flush it to make space for this object,
1351 	 * this may result in an empty slab which can be reclaimed once
1352 	 * interrupts are re-enabled.
1353 	 */
1354 	if (unlikely(skm->skm_avail >= skm->skm_size)) {
1355 		spl_cache_flush(skc, skm, skm->skm_refill);
1356 		do_reclaim = 1;
1357 	}
1358 
1359 	/* Available space in cache, use it */
1360 	skm->skm_objs[skm->skm_avail++] = obj;
1361 
1362 	local_irq_restore(flags);
1363 
1364 	if (do_reclaim)
1365 		spl_slab_reclaim(skc);
1366 }
1367 EXPORT_SYMBOL(spl_kmem_cache_free);
1368 
1369 /*
1370  * Depending on how many and which objects are released it may simply
1371  * repopulate the local magazine which will then need to age-out.  Objects
1372  * which cannot fit in the magazine will be released back to their slabs
1373  * which will also need to age out before being released.  This is all just
1374  * best effort and we do not want to thrash creating and destroying slabs.
1375  */
1376 void
1377 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1378 {
1379 	ASSERT(skc->skc_magic == SKC_MAGIC);
1380 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1381 
1382 	if (skc->skc_flags & KMC_SLAB)
1383 		return;
1384 
1385 	atomic_inc(&skc->skc_ref);
1386 
1387 	/*
1388 	 * Prevent concurrent cache reaping when contended.
1389 	 */
1390 	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1391 		goto out;
1392 
1393 	/* Reclaim from the magazine and free all now empty slabs. */
1394 	unsigned long irq_flags;
1395 	local_irq_save(irq_flags);
1396 	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1397 	spl_cache_flush(skc, skm, skm->skm_avail);
1398 	local_irq_restore(irq_flags);
1399 
1400 	spl_slab_reclaim(skc);
1401 	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1402 	smp_mb__after_atomic();
1403 	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1404 out:
1405 	atomic_dec(&skc->skc_ref);
1406 }
1407 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1408 
1409 /*
1410  * This is stubbed out for code consistency with other platforms.  There
1411  * is existing logic to prevent concurrent reaping so while this is ugly
1412  * it should do no harm.
1413  */
1414 int
1415 spl_kmem_cache_reap_active(void)
1416 {
1417 	return (0);
1418 }
1419 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1420 
1421 /*
1422  * Reap all free slabs from all registered caches.
1423  */
1424 void
1425 spl_kmem_reap(void)
1426 {
1427 	spl_kmem_cache_t *skc = NULL;
1428 
1429 	down_read(&spl_kmem_cache_sem);
1430 	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1431 		spl_kmem_cache_reap_now(skc);
1432 	}
1433 	up_read(&spl_kmem_cache_sem);
1434 }
1435 EXPORT_SYMBOL(spl_kmem_reap);
1436 
1437 int
1438 spl_kmem_cache_init(void)
1439 {
1440 	init_rwsem(&spl_kmem_cache_sem);
1441 	INIT_LIST_HEAD(&spl_kmem_cache_list);
1442 	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1443 	    spl_kmem_cache_kmem_threads, maxclsyspri,
1444 	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
1445 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1446 
1447 	if (spl_kmem_cache_taskq == NULL)
1448 		return (-ENOMEM);
1449 
1450 	return (0);
1451 }
1452 
1453 void
1454 spl_kmem_cache_fini(void)
1455 {
1456 	taskq_destroy(spl_kmem_cache_taskq);
1457 }
1458