161145dc2SMartin Matuska // SPDX-License-Identifier: GPL-2.0-or-later
2eda14cbcSMatt Macy /*
3eda14cbcSMatt Macy * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
4eda14cbcSMatt Macy * Copyright (C) 2007 The Regents of the University of California.
5eda14cbcSMatt Macy * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
6eda14cbcSMatt Macy * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
7eda14cbcSMatt Macy * UCRL-CODE-235197
8eda14cbcSMatt Macy *
9eda14cbcSMatt Macy * This file is part of the SPL, Solaris Porting Layer.
10eda14cbcSMatt Macy *
11eda14cbcSMatt Macy * The SPL is free software; you can redistribute it and/or modify it
12eda14cbcSMatt Macy * under the terms of the GNU General Public License as published by the
13eda14cbcSMatt Macy * Free Software Foundation; either version 2 of the License, or (at your
14eda14cbcSMatt Macy * option) any later version.
15eda14cbcSMatt Macy *
16eda14cbcSMatt Macy * The SPL is distributed in the hope that it will be useful, but WITHOUT
17eda14cbcSMatt Macy * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18eda14cbcSMatt Macy * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19eda14cbcSMatt Macy * for more details.
20eda14cbcSMatt Macy *
21eda14cbcSMatt Macy * You should have received a copy of the GNU General Public License along
22eda14cbcSMatt Macy * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23eda14cbcSMatt Macy */
24eda14cbcSMatt Macy
2575e1fea6SMartin Matuska #define SPL_KMEM_CACHE_IMPLEMENTING
2675e1fea6SMartin Matuska
27eda14cbcSMatt Macy #include <sys/kmem.h>
28eda14cbcSMatt Macy #include <sys/kmem_cache.h>
29eda14cbcSMatt Macy #include <sys/taskq.h>
30eda14cbcSMatt Macy #include <sys/timer.h>
31eda14cbcSMatt Macy #include <sys/vmem.h>
32eda14cbcSMatt Macy #include <sys/wait.h>
33fd45b686SMartin Matuska #include <sys/string.h>
34eda14cbcSMatt Macy #include <linux/slab.h>
35eda14cbcSMatt Macy #include <linux/swap.h>
36eda14cbcSMatt Macy #include <linux/prefetch.h>
37eda14cbcSMatt Macy
38eda14cbcSMatt Macy /*
39eda14cbcSMatt Macy * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
40eda14cbcSMatt Macy * with smp_mb__{before,after}_atomic() because they were redundant. This is
41eda14cbcSMatt Macy * only used inside our SLAB allocator, so we implement an internal wrapper
42eda14cbcSMatt Macy * here to give us smp_mb__{before,after}_atomic() on older kernels.
43eda14cbcSMatt Macy */
44eda14cbcSMatt Macy #ifndef smp_mb__before_atomic
45eda14cbcSMatt Macy #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
46eda14cbcSMatt Macy #endif
47eda14cbcSMatt Macy
48eda14cbcSMatt Macy #ifndef smp_mb__after_atomic
49eda14cbcSMatt Macy #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
50eda14cbcSMatt Macy #endif
51eda14cbcSMatt Macy
52eda14cbcSMatt Macy /*
53eda14cbcSMatt Macy * Cache magazines are an optimization designed to minimize the cost of
54eda14cbcSMatt Macy * allocating memory. They do this by keeping a per-cpu cache of recently
55eda14cbcSMatt Macy * freed objects, which can then be reallocated without taking a lock. This
56eda14cbcSMatt Macy * can improve performance on highly contended caches. However, because
57eda14cbcSMatt Macy * objects in magazines will prevent otherwise empty slabs from being
58eda14cbcSMatt Macy * immediately released this may not be ideal for low memory machines.
59eda14cbcSMatt Macy *
60eda14cbcSMatt Macy * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
61eda14cbcSMatt Macy * magazine size. When this value is set to 0 the magazine size will be
62eda14cbcSMatt Macy * automatically determined based on the object size. Otherwise magazines
63eda14cbcSMatt Macy * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
64eda14cbcSMatt Macy * may never be entirely disabled in this implementation.
65eda14cbcSMatt Macy */
66e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_magazine_size = 0;
67eda14cbcSMatt Macy module_param(spl_kmem_cache_magazine_size, uint, 0444);
68eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
69eda14cbcSMatt Macy "Default magazine size (2-256), set automatically (0)");
70eda14cbcSMatt Macy
71e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
72eda14cbcSMatt Macy module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
73eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
74eda14cbcSMatt Macy
75e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
76eda14cbcSMatt Macy module_param(spl_kmem_cache_max_size, uint, 0644);
77eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
78eda14cbcSMatt Macy
79eda14cbcSMatt Macy /*
80eda14cbcSMatt Macy * For small objects the Linux slab allocator should be used to make the most
81eda14cbcSMatt Macy * efficient use of the memory. However, large objects are not supported by
82eda14cbcSMatt Macy * the Linux slab and therefore the SPL implementation is preferred. A cutoff
8316038816SMartin Matuska * of 16K was determined to be optimal for architectures using 4K pages and
8416038816SMartin Matuska * to also work well on architecutres using larger 64K page sizes.
85eda14cbcSMatt Macy */
8678ae60b4SMartin Matuska static unsigned int spl_kmem_cache_slab_limit =
8778ae60b4SMartin Matuska SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE;
88eda14cbcSMatt Macy module_param(spl_kmem_cache_slab_limit, uint, 0644);
89eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
90eda14cbcSMatt Macy "Objects less than N bytes use the Linux slab");
91eda14cbcSMatt Macy
92eda14cbcSMatt Macy /*
93eda14cbcSMatt Macy * The number of threads available to allocate new slabs for caches. This
94eda14cbcSMatt Macy * should not need to be tuned but it is available for performance analysis.
95eda14cbcSMatt Macy */
96e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_kmem_threads = 4;
97eda14cbcSMatt Macy module_param(spl_kmem_cache_kmem_threads, uint, 0444);
98eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
99eda14cbcSMatt Macy "Number of spl_kmem_cache threads");
100eda14cbcSMatt Macy
101eda14cbcSMatt Macy /*
102eda14cbcSMatt Macy * Slab allocation interfaces
103eda14cbcSMatt Macy *
104eda14cbcSMatt Macy * While the Linux slab implementation was inspired by the Solaris
105eda14cbcSMatt Macy * implementation I cannot use it to emulate the Solaris APIs. I
106eda14cbcSMatt Macy * require two features which are not provided by the Linux slab.
107eda14cbcSMatt Macy *
108eda14cbcSMatt Macy * 1) Constructors AND destructors. Recent versions of the Linux
109eda14cbcSMatt Macy * kernel have removed support for destructors. This is a deal
110eda14cbcSMatt Macy * breaker for the SPL which contains particularly expensive
111eda14cbcSMatt Macy * initializers for mutex's, condition variables, etc. We also
112eda14cbcSMatt Macy * require a minimal level of cleanup for these data types unlike
113eda14cbcSMatt Macy * many Linux data types which do need to be explicitly destroyed.
114eda14cbcSMatt Macy *
115eda14cbcSMatt Macy * 2) Virtual address space backed slab. Callers of the Solaris slab
116eda14cbcSMatt Macy * expect it to work well for both small are very large allocations.
117eda14cbcSMatt Macy * Because of memory fragmentation the Linux slab which is backed
118eda14cbcSMatt Macy * by kmalloc'ed memory performs very badly when confronted with
119eda14cbcSMatt Macy * large numbers of large allocations. Basing the slab on the
120eda14cbcSMatt Macy * virtual address space removes the need for contiguous pages
121eda14cbcSMatt Macy * and greatly improve performance for large allocations.
122eda14cbcSMatt Macy *
123eda14cbcSMatt Macy * For these reasons, the SPL has its own slab implementation with
124eda14cbcSMatt Macy * the needed features. It is not as highly optimized as either the
125eda14cbcSMatt Macy * Solaris or Linux slabs, but it should get me most of what is
126eda14cbcSMatt Macy * needed until it can be optimized or obsoleted by another approach.
127eda14cbcSMatt Macy *
128eda14cbcSMatt Macy * One serious concern I do have about this method is the relatively
129eda14cbcSMatt Macy * small virtual address space on 32bit arches. This will seriously
130eda14cbcSMatt Macy * constrain the size of the slab caches and their performance.
131eda14cbcSMatt Macy */
132eda14cbcSMatt Macy
133eda14cbcSMatt Macy struct list_head spl_kmem_cache_list; /* List of caches */
134eda14cbcSMatt Macy struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
135dbd5678dSMartin Matuska static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */
136eda14cbcSMatt Macy
137eda14cbcSMatt Macy static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
138eda14cbcSMatt Macy
139eda14cbcSMatt Macy static void *
kv_alloc(spl_kmem_cache_t * skc,int size,int flags)140eda14cbcSMatt Macy kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
141eda14cbcSMatt Macy {
142eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(flags);
143eda14cbcSMatt Macy void *ptr;
144eda14cbcSMatt Macy
145ce4dcb97SMartin Matuska if (skc->skc_flags & KMC_RECLAIMABLE)
146ce4dcb97SMartin Matuska lflags |= __GFP_RECLAIMABLE;
147eda14cbcSMatt Macy ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
148eda14cbcSMatt Macy
149eda14cbcSMatt Macy /* Resulting allocated memory will be page aligned */
150eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
151eda14cbcSMatt Macy
152eda14cbcSMatt Macy return (ptr);
153eda14cbcSMatt Macy }
154eda14cbcSMatt Macy
155eda14cbcSMatt Macy static void
kv_free(spl_kmem_cache_t * skc,void * ptr,int size)156eda14cbcSMatt Macy kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
157eda14cbcSMatt Macy {
158eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
159eda14cbcSMatt Macy
160eda14cbcSMatt Macy /*
161eda14cbcSMatt Macy * The Linux direct reclaim path uses this out of band value to
162eda14cbcSMatt Macy * determine if forward progress is being made. Normally this is
163eda14cbcSMatt Macy * incremented by kmem_freepages() which is part of the various
164eda14cbcSMatt Macy * Linux slab implementations. However, since we are using none
165eda14cbcSMatt Macy * of that infrastructure we are responsible for incrementing it.
166eda14cbcSMatt Macy */
167eda14cbcSMatt Macy if (current->reclaim_state)
1684e8d558cSMartin Matuska #ifdef HAVE_RECLAIM_STATE_RECLAIMED
1694e8d558cSMartin Matuska current->reclaim_state->reclaimed += size >> PAGE_SHIFT;
1704e8d558cSMartin Matuska #else
171eda14cbcSMatt Macy current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
1724e8d558cSMartin Matuska #endif
173eda14cbcSMatt Macy vfree(ptr);
174eda14cbcSMatt Macy }
175eda14cbcSMatt Macy
176eda14cbcSMatt Macy /*
177eda14cbcSMatt Macy * Required space for each aligned sks.
178eda14cbcSMatt Macy */
179eda14cbcSMatt Macy static inline uint32_t
spl_sks_size(spl_kmem_cache_t * skc)180eda14cbcSMatt Macy spl_sks_size(spl_kmem_cache_t *skc)
181eda14cbcSMatt Macy {
182eda14cbcSMatt Macy return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
183eda14cbcSMatt Macy skc->skc_obj_align, uint32_t));
184eda14cbcSMatt Macy }
185eda14cbcSMatt Macy
186eda14cbcSMatt Macy /*
187eda14cbcSMatt Macy * Required space for each aligned object.
188eda14cbcSMatt Macy */
189eda14cbcSMatt Macy static inline uint32_t
spl_obj_size(spl_kmem_cache_t * skc)190eda14cbcSMatt Macy spl_obj_size(spl_kmem_cache_t *skc)
191eda14cbcSMatt Macy {
192eda14cbcSMatt Macy uint32_t align = skc->skc_obj_align;
193eda14cbcSMatt Macy
194eda14cbcSMatt Macy return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
195eda14cbcSMatt Macy P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
196eda14cbcSMatt Macy }
197eda14cbcSMatt Macy
198eda14cbcSMatt Macy uint64_t
spl_kmem_cache_inuse(kmem_cache_t * cache)199eda14cbcSMatt Macy spl_kmem_cache_inuse(kmem_cache_t *cache)
200eda14cbcSMatt Macy {
201eda14cbcSMatt Macy return (cache->skc_obj_total);
202eda14cbcSMatt Macy }
203eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_inuse);
204eda14cbcSMatt Macy
205eda14cbcSMatt Macy uint64_t
spl_kmem_cache_entry_size(kmem_cache_t * cache)206eda14cbcSMatt Macy spl_kmem_cache_entry_size(kmem_cache_t *cache)
207eda14cbcSMatt Macy {
208eda14cbcSMatt Macy return (cache->skc_obj_size);
209eda14cbcSMatt Macy }
210eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_entry_size);
211eda14cbcSMatt Macy
212eda14cbcSMatt Macy /*
213eda14cbcSMatt Macy * Lookup the spl_kmem_object_t for an object given that object.
214eda14cbcSMatt Macy */
215eda14cbcSMatt Macy static inline spl_kmem_obj_t *
spl_sko_from_obj(spl_kmem_cache_t * skc,void * obj)216eda14cbcSMatt Macy spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
217eda14cbcSMatt Macy {
218eda14cbcSMatt Macy return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
219eda14cbcSMatt Macy skc->skc_obj_align, uint32_t));
220eda14cbcSMatt Macy }
221eda14cbcSMatt Macy
222eda14cbcSMatt Macy /*
223eda14cbcSMatt Macy * It's important that we pack the spl_kmem_obj_t structure and the
224eda14cbcSMatt Macy * actual objects in to one large address space to minimize the number
225eda14cbcSMatt Macy * of calls to the allocator. It is far better to do a few large
226eda14cbcSMatt Macy * allocations and then subdivide it ourselves. Now which allocator
227eda14cbcSMatt Macy * we use requires balancing a few trade offs.
228eda14cbcSMatt Macy *
229eda14cbcSMatt Macy * For small objects we use kmem_alloc() because as long as you are
230eda14cbcSMatt Macy * only requesting a small number of pages (ideally just one) its cheap.
231eda14cbcSMatt Macy * However, when you start requesting multiple pages with kmem_alloc()
232eda14cbcSMatt Macy * it gets increasingly expensive since it requires contiguous pages.
233eda14cbcSMatt Macy * For this reason we shift to vmem_alloc() for slabs of large objects
234eda14cbcSMatt Macy * which removes the need for contiguous pages. We do not use
235eda14cbcSMatt Macy * vmem_alloc() in all cases because there is significant locking
236eda14cbcSMatt Macy * overhead in __get_vm_area_node(). This function takes a single
237eda14cbcSMatt Macy * global lock when acquiring an available virtual address range which
238eda14cbcSMatt Macy * serializes all vmem_alloc()'s for all slab caches. Using slightly
239eda14cbcSMatt Macy * different allocation functions for small and large objects should
240eda14cbcSMatt Macy * give us the best of both worlds.
241eda14cbcSMatt Macy *
242eda14cbcSMatt Macy * +------------------------+
243eda14cbcSMatt Macy * | spl_kmem_slab_t --+-+ |
244eda14cbcSMatt Macy * | skc_obj_size <-+ | |
245eda14cbcSMatt Macy * | spl_kmem_obj_t | |
246eda14cbcSMatt Macy * | skc_obj_size <---+ |
247eda14cbcSMatt Macy * | spl_kmem_obj_t | |
248eda14cbcSMatt Macy * | ... v |
249eda14cbcSMatt Macy * +------------------------+
250eda14cbcSMatt Macy */
251eda14cbcSMatt Macy static spl_kmem_slab_t *
spl_slab_alloc(spl_kmem_cache_t * skc,int flags)252eda14cbcSMatt Macy spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
253eda14cbcSMatt Macy {
254eda14cbcSMatt Macy spl_kmem_slab_t *sks;
255eda14cbcSMatt Macy void *base;
256eda14cbcSMatt Macy uint32_t obj_size;
257eda14cbcSMatt Macy
258eda14cbcSMatt Macy base = kv_alloc(skc, skc->skc_slab_size, flags);
259eda14cbcSMatt Macy if (base == NULL)
260eda14cbcSMatt Macy return (NULL);
261eda14cbcSMatt Macy
262eda14cbcSMatt Macy sks = (spl_kmem_slab_t *)base;
263eda14cbcSMatt Macy sks->sks_magic = SKS_MAGIC;
264eda14cbcSMatt Macy sks->sks_objs = skc->skc_slab_objs;
265eda14cbcSMatt Macy sks->sks_age = jiffies;
266eda14cbcSMatt Macy sks->sks_cache = skc;
267eda14cbcSMatt Macy INIT_LIST_HEAD(&sks->sks_list);
268eda14cbcSMatt Macy INIT_LIST_HEAD(&sks->sks_free_list);
269eda14cbcSMatt Macy sks->sks_ref = 0;
270eda14cbcSMatt Macy obj_size = spl_obj_size(skc);
271eda14cbcSMatt Macy
272eda14cbcSMatt Macy for (int i = 0; i < sks->sks_objs; i++) {
273eda14cbcSMatt Macy void *obj = base + spl_sks_size(skc) + (i * obj_size);
274eda14cbcSMatt Macy
275eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
276eda14cbcSMatt Macy spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
277eda14cbcSMatt Macy sko->sko_addr = obj;
278eda14cbcSMatt Macy sko->sko_magic = SKO_MAGIC;
279eda14cbcSMatt Macy sko->sko_slab = sks;
280eda14cbcSMatt Macy INIT_LIST_HEAD(&sko->sko_list);
281eda14cbcSMatt Macy list_add_tail(&sko->sko_list, &sks->sks_free_list);
282eda14cbcSMatt Macy }
283eda14cbcSMatt Macy
284eda14cbcSMatt Macy return (sks);
285eda14cbcSMatt Macy }
286eda14cbcSMatt Macy
287eda14cbcSMatt Macy /*
288eda14cbcSMatt Macy * Remove a slab from complete or partial list, it must be called with
289eda14cbcSMatt Macy * the 'skc->skc_lock' held but the actual free must be performed
290eda14cbcSMatt Macy * outside the lock to prevent deadlocking on vmem addresses.
291eda14cbcSMatt Macy */
292eda14cbcSMatt Macy static void
spl_slab_free(spl_kmem_slab_t * sks,struct list_head * sks_list,struct list_head * sko_list)293eda14cbcSMatt Macy spl_slab_free(spl_kmem_slab_t *sks,
294eda14cbcSMatt Macy struct list_head *sks_list, struct list_head *sko_list)
295eda14cbcSMatt Macy {
296eda14cbcSMatt Macy spl_kmem_cache_t *skc;
297eda14cbcSMatt Macy
298eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC);
299*d0abb9a6SMartin Matuska ASSERT0(sks->sks_ref);
300eda14cbcSMatt Macy
301eda14cbcSMatt Macy skc = sks->sks_cache;
302eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC);
303eda14cbcSMatt Macy
304eda14cbcSMatt Macy /*
305eda14cbcSMatt Macy * Update slab/objects counters in the cache, then remove the
306eda14cbcSMatt Macy * slab from the skc->skc_partial_list. Finally add the slab
307eda14cbcSMatt Macy * and all its objects in to the private work lists where the
308eda14cbcSMatt Macy * destructors will be called and the memory freed to the system.
309eda14cbcSMatt Macy */
310eda14cbcSMatt Macy skc->skc_obj_total -= sks->sks_objs;
311eda14cbcSMatt Macy skc->skc_slab_total--;
312eda14cbcSMatt Macy list_del(&sks->sks_list);
313eda14cbcSMatt Macy list_add(&sks->sks_list, sks_list);
314eda14cbcSMatt Macy list_splice_init(&sks->sks_free_list, sko_list);
315eda14cbcSMatt Macy }
316eda14cbcSMatt Macy
317eda14cbcSMatt Macy /*
318eda14cbcSMatt Macy * Reclaim empty slabs at the end of the partial list.
319eda14cbcSMatt Macy */
320eda14cbcSMatt Macy static void
spl_slab_reclaim(spl_kmem_cache_t * skc)321eda14cbcSMatt Macy spl_slab_reclaim(spl_kmem_cache_t *skc)
322eda14cbcSMatt Macy {
323eda14cbcSMatt Macy spl_kmem_slab_t *sks = NULL, *m = NULL;
324eda14cbcSMatt Macy spl_kmem_obj_t *sko = NULL, *n = NULL;
325eda14cbcSMatt Macy LIST_HEAD(sks_list);
326eda14cbcSMatt Macy LIST_HEAD(sko_list);
327eda14cbcSMatt Macy
328eda14cbcSMatt Macy /*
329eda14cbcSMatt Macy * Empty slabs and objects must be moved to a private list so they
330eda14cbcSMatt Macy * can be safely freed outside the spin lock. All empty slabs are
331eda14cbcSMatt Macy * at the end of skc->skc_partial_list, therefore once a non-empty
332eda14cbcSMatt Macy * slab is found we can stop scanning.
333eda14cbcSMatt Macy */
334eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
335eda14cbcSMatt Macy list_for_each_entry_safe_reverse(sks, m,
336eda14cbcSMatt Macy &skc->skc_partial_list, sks_list) {
337eda14cbcSMatt Macy
338eda14cbcSMatt Macy if (sks->sks_ref > 0)
339eda14cbcSMatt Macy break;
340eda14cbcSMatt Macy
341eda14cbcSMatt Macy spl_slab_free(sks, &sks_list, &sko_list);
342eda14cbcSMatt Macy }
343eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
344eda14cbcSMatt Macy
345eda14cbcSMatt Macy /*
346eda14cbcSMatt Macy * The following two loops ensure all the object destructors are run,
347eda14cbcSMatt Macy * and the slabs themselves are freed. This is all done outside the
348eda14cbcSMatt Macy * skc->skc_lock since this allows the destructor to sleep, and
349eda14cbcSMatt Macy * allows us to perform a conditional reschedule when a freeing a
350eda14cbcSMatt Macy * large number of objects and slabs back to the system.
351eda14cbcSMatt Macy */
352eda14cbcSMatt Macy
353eda14cbcSMatt Macy list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
354eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC);
355eda14cbcSMatt Macy }
356eda14cbcSMatt Macy
357eda14cbcSMatt Macy list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
358eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC);
359eda14cbcSMatt Macy kv_free(skc, sks, skc->skc_slab_size);
360eda14cbcSMatt Macy }
361eda14cbcSMatt Macy }
362eda14cbcSMatt Macy
363eda14cbcSMatt Macy static spl_kmem_emergency_t *
spl_emergency_search(struct rb_root * root,void * obj)364eda14cbcSMatt Macy spl_emergency_search(struct rb_root *root, void *obj)
365eda14cbcSMatt Macy {
366eda14cbcSMatt Macy struct rb_node *node = root->rb_node;
367eda14cbcSMatt Macy spl_kmem_emergency_t *ske;
368eda14cbcSMatt Macy unsigned long address = (unsigned long)obj;
369eda14cbcSMatt Macy
370eda14cbcSMatt Macy while (node) {
371eda14cbcSMatt Macy ske = container_of(node, spl_kmem_emergency_t, ske_node);
372eda14cbcSMatt Macy
373eda14cbcSMatt Macy if (address < ske->ske_obj)
374eda14cbcSMatt Macy node = node->rb_left;
375eda14cbcSMatt Macy else if (address > ske->ske_obj)
376eda14cbcSMatt Macy node = node->rb_right;
377eda14cbcSMatt Macy else
378eda14cbcSMatt Macy return (ske);
379eda14cbcSMatt Macy }
380eda14cbcSMatt Macy
381eda14cbcSMatt Macy return (NULL);
382eda14cbcSMatt Macy }
383eda14cbcSMatt Macy
384eda14cbcSMatt Macy static int
spl_emergency_insert(struct rb_root * root,spl_kmem_emergency_t * ske)385eda14cbcSMatt Macy spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
386eda14cbcSMatt Macy {
387eda14cbcSMatt Macy struct rb_node **new = &(root->rb_node), *parent = NULL;
388eda14cbcSMatt Macy spl_kmem_emergency_t *ske_tmp;
389eda14cbcSMatt Macy unsigned long address = ske->ske_obj;
390eda14cbcSMatt Macy
391eda14cbcSMatt Macy while (*new) {
392eda14cbcSMatt Macy ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
393eda14cbcSMatt Macy
394eda14cbcSMatt Macy parent = *new;
395eda14cbcSMatt Macy if (address < ske_tmp->ske_obj)
396eda14cbcSMatt Macy new = &((*new)->rb_left);
397eda14cbcSMatt Macy else if (address > ske_tmp->ske_obj)
398eda14cbcSMatt Macy new = &((*new)->rb_right);
399eda14cbcSMatt Macy else
400eda14cbcSMatt Macy return (0);
401eda14cbcSMatt Macy }
402eda14cbcSMatt Macy
403eda14cbcSMatt Macy rb_link_node(&ske->ske_node, parent, new);
404eda14cbcSMatt Macy rb_insert_color(&ske->ske_node, root);
405eda14cbcSMatt Macy
406eda14cbcSMatt Macy return (1);
407eda14cbcSMatt Macy }
408eda14cbcSMatt Macy
409eda14cbcSMatt Macy /*
410eda14cbcSMatt Macy * Allocate a single emergency object and track it in a red black tree.
411eda14cbcSMatt Macy */
412eda14cbcSMatt Macy static int
spl_emergency_alloc(spl_kmem_cache_t * skc,int flags,void ** obj)413eda14cbcSMatt Macy spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
414eda14cbcSMatt Macy {
415eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(flags);
416eda14cbcSMatt Macy spl_kmem_emergency_t *ske;
417eda14cbcSMatt Macy int order = get_order(skc->skc_obj_size);
418eda14cbcSMatt Macy int empty;
419eda14cbcSMatt Macy
420eda14cbcSMatt Macy /* Last chance use a partial slab if one now exists */
421eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
422eda14cbcSMatt Macy empty = list_empty(&skc->skc_partial_list);
423eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
424eda14cbcSMatt Macy if (!empty)
425eda14cbcSMatt Macy return (-EEXIST);
426eda14cbcSMatt Macy
427ce4dcb97SMartin Matuska if (skc->skc_flags & KMC_RECLAIMABLE)
428ce4dcb97SMartin Matuska lflags |= __GFP_RECLAIMABLE;
429eda14cbcSMatt Macy ske = kmalloc(sizeof (*ske), lflags);
430eda14cbcSMatt Macy if (ske == NULL)
431eda14cbcSMatt Macy return (-ENOMEM);
432eda14cbcSMatt Macy
433eda14cbcSMatt Macy ske->ske_obj = __get_free_pages(lflags, order);
434eda14cbcSMatt Macy if (ske->ske_obj == 0) {
435eda14cbcSMatt Macy kfree(ske);
436eda14cbcSMatt Macy return (-ENOMEM);
437eda14cbcSMatt Macy }
438eda14cbcSMatt Macy
439eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
440eda14cbcSMatt Macy empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
441eda14cbcSMatt Macy if (likely(empty)) {
442eda14cbcSMatt Macy skc->skc_obj_total++;
443eda14cbcSMatt Macy skc->skc_obj_emergency++;
444eda14cbcSMatt Macy if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
445eda14cbcSMatt Macy skc->skc_obj_emergency_max = skc->skc_obj_emergency;
446eda14cbcSMatt Macy }
447eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
448eda14cbcSMatt Macy
449eda14cbcSMatt Macy if (unlikely(!empty)) {
450eda14cbcSMatt Macy free_pages(ske->ske_obj, order);
451eda14cbcSMatt Macy kfree(ske);
452eda14cbcSMatt Macy return (-EINVAL);
453eda14cbcSMatt Macy }
454eda14cbcSMatt Macy
455eda14cbcSMatt Macy *obj = (void *)ske->ske_obj;
456eda14cbcSMatt Macy
457eda14cbcSMatt Macy return (0);
458eda14cbcSMatt Macy }
459eda14cbcSMatt Macy
460eda14cbcSMatt Macy /*
461eda14cbcSMatt Macy * Locate the passed object in the red black tree and free it.
462eda14cbcSMatt Macy */
463eda14cbcSMatt Macy static int
spl_emergency_free(spl_kmem_cache_t * skc,void * obj)464eda14cbcSMatt Macy spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
465eda14cbcSMatt Macy {
466eda14cbcSMatt Macy spl_kmem_emergency_t *ske;
467eda14cbcSMatt Macy int order = get_order(skc->skc_obj_size);
468eda14cbcSMatt Macy
469eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
470eda14cbcSMatt Macy ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
471eda14cbcSMatt Macy if (ske) {
472eda14cbcSMatt Macy rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
473eda14cbcSMatt Macy skc->skc_obj_emergency--;
474eda14cbcSMatt Macy skc->skc_obj_total--;
475eda14cbcSMatt Macy }
476eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
477eda14cbcSMatt Macy
478eda14cbcSMatt Macy if (ske == NULL)
479eda14cbcSMatt Macy return (-ENOENT);
480eda14cbcSMatt Macy
481eda14cbcSMatt Macy free_pages(ske->ske_obj, order);
482eda14cbcSMatt Macy kfree(ske);
483eda14cbcSMatt Macy
484eda14cbcSMatt Macy return (0);
485eda14cbcSMatt Macy }
486eda14cbcSMatt Macy
487eda14cbcSMatt Macy /*
488eda14cbcSMatt Macy * Release objects from the per-cpu magazine back to their slab. The flush
489eda14cbcSMatt Macy * argument contains the max number of entries to remove from the magazine.
490eda14cbcSMatt Macy */
491eda14cbcSMatt Macy static void
spl_cache_flush(spl_kmem_cache_t * skc,spl_kmem_magazine_t * skm,int flush)492eda14cbcSMatt Macy spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
493eda14cbcSMatt Macy {
494eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
495eda14cbcSMatt Macy
496eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC);
497eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC);
498eda14cbcSMatt Macy
499eda14cbcSMatt Macy int count = MIN(flush, skm->skm_avail);
500eda14cbcSMatt Macy for (int i = 0; i < count; i++)
501eda14cbcSMatt Macy spl_cache_shrink(skc, skm->skm_objs[i]);
502eda14cbcSMatt Macy
503eda14cbcSMatt Macy skm->skm_avail -= count;
504eda14cbcSMatt Macy memmove(skm->skm_objs, &(skm->skm_objs[count]),
505eda14cbcSMatt Macy sizeof (void *) * skm->skm_avail);
506eda14cbcSMatt Macy
507eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
508eda14cbcSMatt Macy }
509eda14cbcSMatt Macy
510eda14cbcSMatt Macy /*
511eda14cbcSMatt Macy * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
512eda14cbcSMatt Macy * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
513eda14cbcSMatt Macy * for very small objects we may end up with more than this so as not
51416038816SMartin Matuska * to waste space in the minimal allocation of a single page.
515eda14cbcSMatt Macy */
516eda14cbcSMatt Macy static int
spl_slab_size(spl_kmem_cache_t * skc,uint32_t * objs,uint32_t * size)517eda14cbcSMatt Macy spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
518eda14cbcSMatt Macy {
519eda14cbcSMatt Macy uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
520eda14cbcSMatt Macy
521eda14cbcSMatt Macy sks_size = spl_sks_size(skc);
522eda14cbcSMatt Macy obj_size = spl_obj_size(skc);
523eda14cbcSMatt Macy max_size = (spl_kmem_cache_max_size * 1024 * 1024);
524eda14cbcSMatt Macy tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
525eda14cbcSMatt Macy
526eda14cbcSMatt Macy if (tgt_size <= max_size) {
527eda14cbcSMatt Macy tgt_objs = (tgt_size - sks_size) / obj_size;
528eda14cbcSMatt Macy } else {
529eda14cbcSMatt Macy tgt_objs = (max_size - sks_size) / obj_size;
530eda14cbcSMatt Macy tgt_size = (tgt_objs * obj_size) + sks_size;
531eda14cbcSMatt Macy }
532eda14cbcSMatt Macy
533eda14cbcSMatt Macy if (tgt_objs == 0)
534eda14cbcSMatt Macy return (-ENOSPC);
535eda14cbcSMatt Macy
536eda14cbcSMatt Macy *objs = tgt_objs;
537eda14cbcSMatt Macy *size = tgt_size;
538eda14cbcSMatt Macy
539eda14cbcSMatt Macy return (0);
540eda14cbcSMatt Macy }
541eda14cbcSMatt Macy
542eda14cbcSMatt Macy /*
543eda14cbcSMatt Macy * Make a guess at reasonable per-cpu magazine size based on the size of
544eda14cbcSMatt Macy * each object and the cost of caching N of them in each magazine. Long
545eda14cbcSMatt Macy * term this should really adapt based on an observed usage heuristic.
546eda14cbcSMatt Macy */
547eda14cbcSMatt Macy static int
spl_magazine_size(spl_kmem_cache_t * skc)548eda14cbcSMatt Macy spl_magazine_size(spl_kmem_cache_t *skc)
549eda14cbcSMatt Macy {
550eda14cbcSMatt Macy uint32_t obj_size = spl_obj_size(skc);
551eda14cbcSMatt Macy int size;
552eda14cbcSMatt Macy
553eda14cbcSMatt Macy if (spl_kmem_cache_magazine_size > 0)
554eda14cbcSMatt Macy return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
555eda14cbcSMatt Macy
556eda14cbcSMatt Macy /* Per-magazine sizes below assume a 4Kib page size */
557eda14cbcSMatt Macy if (obj_size > (PAGE_SIZE * 256))
558eda14cbcSMatt Macy size = 4; /* Minimum 4Mib per-magazine */
559eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE * 32))
560eda14cbcSMatt Macy size = 16; /* Minimum 2Mib per-magazine */
561eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE))
562eda14cbcSMatt Macy size = 64; /* Minimum 256Kib per-magazine */
563eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE / 4))
564eda14cbcSMatt Macy size = 128; /* Minimum 128Kib per-magazine */
565eda14cbcSMatt Macy else
566eda14cbcSMatt Macy size = 256;
567eda14cbcSMatt Macy
568eda14cbcSMatt Macy return (size);
569eda14cbcSMatt Macy }
570eda14cbcSMatt Macy
571eda14cbcSMatt Macy /*
572eda14cbcSMatt Macy * Allocate a per-cpu magazine to associate with a specific core.
573eda14cbcSMatt Macy */
574eda14cbcSMatt Macy static spl_kmem_magazine_t *
spl_magazine_alloc(spl_kmem_cache_t * skc,int cpu)575eda14cbcSMatt Macy spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
576eda14cbcSMatt Macy {
577eda14cbcSMatt Macy spl_kmem_magazine_t *skm;
578eda14cbcSMatt Macy int size = sizeof (spl_kmem_magazine_t) +
579eda14cbcSMatt Macy sizeof (void *) * skc->skc_mag_size;
580eda14cbcSMatt Macy
581eda14cbcSMatt Macy skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
582eda14cbcSMatt Macy if (skm) {
583eda14cbcSMatt Macy skm->skm_magic = SKM_MAGIC;
584eda14cbcSMatt Macy skm->skm_avail = 0;
585eda14cbcSMatt Macy skm->skm_size = skc->skc_mag_size;
586eda14cbcSMatt Macy skm->skm_refill = skc->skc_mag_refill;
587eda14cbcSMatt Macy skm->skm_cache = skc;
588eda14cbcSMatt Macy skm->skm_cpu = cpu;
589eda14cbcSMatt Macy }
590eda14cbcSMatt Macy
591eda14cbcSMatt Macy return (skm);
592eda14cbcSMatt Macy }
593eda14cbcSMatt Macy
594eda14cbcSMatt Macy /*
595eda14cbcSMatt Macy * Free a per-cpu magazine associated with a specific core.
596eda14cbcSMatt Macy */
597eda14cbcSMatt Macy static void
spl_magazine_free(spl_kmem_magazine_t * skm)598eda14cbcSMatt Macy spl_magazine_free(spl_kmem_magazine_t *skm)
599eda14cbcSMatt Macy {
600eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC);
601*d0abb9a6SMartin Matuska ASSERT0(skm->skm_avail);
602eda14cbcSMatt Macy kfree(skm);
603eda14cbcSMatt Macy }
604eda14cbcSMatt Macy
605eda14cbcSMatt Macy /*
606eda14cbcSMatt Macy * Create all pre-cpu magazines of reasonable sizes.
607eda14cbcSMatt Macy */
608eda14cbcSMatt Macy static int
spl_magazine_create(spl_kmem_cache_t * skc)609eda14cbcSMatt Macy spl_magazine_create(spl_kmem_cache_t *skc)
610eda14cbcSMatt Macy {
611eda14cbcSMatt Macy int i = 0;
612eda14cbcSMatt Macy
613*d0abb9a6SMartin Matuska ASSERT0((skc->skc_flags & KMC_SLAB));
614eda14cbcSMatt Macy
615eda14cbcSMatt Macy skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
616eda14cbcSMatt Macy num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
617eda14cbcSMatt Macy skc->skc_mag_size = spl_magazine_size(skc);
618eda14cbcSMatt Macy skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
619eda14cbcSMatt Macy
620eda14cbcSMatt Macy for_each_possible_cpu(i) {
621eda14cbcSMatt Macy skc->skc_mag[i] = spl_magazine_alloc(skc, i);
622eda14cbcSMatt Macy if (!skc->skc_mag[i]) {
623eda14cbcSMatt Macy for (i--; i >= 0; i--)
624eda14cbcSMatt Macy spl_magazine_free(skc->skc_mag[i]);
625eda14cbcSMatt Macy
626eda14cbcSMatt Macy kfree(skc->skc_mag);
627eda14cbcSMatt Macy return (-ENOMEM);
628eda14cbcSMatt Macy }
629eda14cbcSMatt Macy }
630eda14cbcSMatt Macy
631eda14cbcSMatt Macy return (0);
632eda14cbcSMatt Macy }
633eda14cbcSMatt Macy
634eda14cbcSMatt Macy /*
635eda14cbcSMatt Macy * Destroy all pre-cpu magazines.
636eda14cbcSMatt Macy */
637eda14cbcSMatt Macy static void
spl_magazine_destroy(spl_kmem_cache_t * skc)638eda14cbcSMatt Macy spl_magazine_destroy(spl_kmem_cache_t *skc)
639eda14cbcSMatt Macy {
640eda14cbcSMatt Macy spl_kmem_magazine_t *skm;
641eda14cbcSMatt Macy int i = 0;
642eda14cbcSMatt Macy
643*d0abb9a6SMartin Matuska ASSERT0((skc->skc_flags & KMC_SLAB));
644eda14cbcSMatt Macy
645eda14cbcSMatt Macy for_each_possible_cpu(i) {
646eda14cbcSMatt Macy skm = skc->skc_mag[i];
647eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_avail);
648eda14cbcSMatt Macy spl_magazine_free(skm);
649eda14cbcSMatt Macy }
650eda14cbcSMatt Macy
651eda14cbcSMatt Macy kfree(skc->skc_mag);
652eda14cbcSMatt Macy }
653eda14cbcSMatt Macy
654eda14cbcSMatt Macy /*
655eda14cbcSMatt Macy * Create a object cache based on the following arguments:
656eda14cbcSMatt Macy * name cache name
657eda14cbcSMatt Macy * size cache object size
658eda14cbcSMatt Macy * align cache object alignment
659eda14cbcSMatt Macy * ctor cache object constructor
660eda14cbcSMatt Macy * dtor cache object destructor
661eda14cbcSMatt Macy * reclaim cache object reclaim
662eda14cbcSMatt Macy * priv cache private data for ctor/dtor/reclaim
663eda14cbcSMatt Macy * vmp unused must be NULL
664eda14cbcSMatt Macy * flags
665eda14cbcSMatt Macy * KMC_KVMEM Force kvmem backed SPL cache
666eda14cbcSMatt Macy * KMC_SLAB Force Linux slab backed cache
667eda14cbcSMatt Macy * KMC_NODEBUG Disable debugging (unsupported)
668ce4dcb97SMartin Matuska * KMC_RECLAIMABLE Memory can be freed under pressure
669eda14cbcSMatt Macy */
670eda14cbcSMatt Macy spl_kmem_cache_t *
spl_kmem_cache_create(const char * name,size_t size,size_t align,spl_kmem_ctor_t ctor,spl_kmem_dtor_t dtor,void * reclaim,void * priv,void * vmp,int flags)671a0b956f5SMartin Matuska spl_kmem_cache_create(const char *name, size_t size, size_t align,
672eda14cbcSMatt Macy spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
673eda14cbcSMatt Macy void *priv, void *vmp, int flags)
674eda14cbcSMatt Macy {
675eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(KM_SLEEP);
676eda14cbcSMatt Macy spl_kmem_cache_t *skc;
677eda14cbcSMatt Macy int rc;
678eda14cbcSMatt Macy
679eda14cbcSMatt Macy /*
680eda14cbcSMatt Macy * Unsupported flags
681eda14cbcSMatt Macy */
682*d0abb9a6SMartin Matuska ASSERT0P(vmp);
683*d0abb9a6SMartin Matuska ASSERT0P(reclaim);
684eda14cbcSMatt Macy
685eda14cbcSMatt Macy might_sleep();
686eda14cbcSMatt Macy
687eda14cbcSMatt Macy skc = kzalloc(sizeof (*skc), lflags);
688eda14cbcSMatt Macy if (skc == NULL)
689eda14cbcSMatt Macy return (NULL);
690eda14cbcSMatt Macy
691eda14cbcSMatt Macy skc->skc_magic = SKC_MAGIC;
692eda14cbcSMatt Macy skc->skc_name_size = strlen(name) + 1;
69315f0b8c3SMartin Matuska skc->skc_name = kmalloc(skc->skc_name_size, lflags);
694eda14cbcSMatt Macy if (skc->skc_name == NULL) {
695eda14cbcSMatt Macy kfree(skc);
696eda14cbcSMatt Macy return (NULL);
697eda14cbcSMatt Macy }
698be181ee2SMartin Matuska strlcpy(skc->skc_name, name, skc->skc_name_size);
699eda14cbcSMatt Macy
700eda14cbcSMatt Macy skc->skc_ctor = ctor;
701eda14cbcSMatt Macy skc->skc_dtor = dtor;
702eda14cbcSMatt Macy skc->skc_private = priv;
703eda14cbcSMatt Macy skc->skc_vmp = vmp;
704eda14cbcSMatt Macy skc->skc_linux_cache = NULL;
705eda14cbcSMatt Macy skc->skc_flags = flags;
706eda14cbcSMatt Macy skc->skc_obj_size = size;
707eda14cbcSMatt Macy skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
708eda14cbcSMatt Macy atomic_set(&skc->skc_ref, 0);
709eda14cbcSMatt Macy
710eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_list);
711eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_complete_list);
712eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_partial_list);
713eda14cbcSMatt Macy skc->skc_emergency_tree = RB_ROOT;
714eda14cbcSMatt Macy spin_lock_init(&skc->skc_lock);
715eda14cbcSMatt Macy init_waitqueue_head(&skc->skc_waitq);
716eda14cbcSMatt Macy skc->skc_slab_fail = 0;
717eda14cbcSMatt Macy skc->skc_slab_create = 0;
718eda14cbcSMatt Macy skc->skc_slab_destroy = 0;
719eda14cbcSMatt Macy skc->skc_slab_total = 0;
720eda14cbcSMatt Macy skc->skc_slab_alloc = 0;
721eda14cbcSMatt Macy skc->skc_slab_max = 0;
722eda14cbcSMatt Macy skc->skc_obj_total = 0;
723eda14cbcSMatt Macy skc->skc_obj_alloc = 0;
724eda14cbcSMatt Macy skc->skc_obj_max = 0;
725eda14cbcSMatt Macy skc->skc_obj_deadlock = 0;
726eda14cbcSMatt Macy skc->skc_obj_emergency = 0;
727eda14cbcSMatt Macy skc->skc_obj_emergency_max = 0;
728eda14cbcSMatt Macy
7297a7741afSMartin Matuska rc = percpu_counter_init(&skc->skc_linux_alloc, 0, GFP_KERNEL);
730eda14cbcSMatt Macy if (rc != 0) {
731b59a0cdeSMartin Matuska kfree(skc->skc_name);
732eda14cbcSMatt Macy kfree(skc);
733eda14cbcSMatt Macy return (NULL);
734eda14cbcSMatt Macy }
735eda14cbcSMatt Macy
736eda14cbcSMatt Macy /*
737eda14cbcSMatt Macy * Verify the requested alignment restriction is sane.
738eda14cbcSMatt Macy */
739eda14cbcSMatt Macy if (align) {
740eda14cbcSMatt Macy VERIFY(ISP2(align));
741eda14cbcSMatt Macy VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
742eda14cbcSMatt Macy VERIFY3U(align, <=, PAGE_SIZE);
743eda14cbcSMatt Macy skc->skc_obj_align = align;
744eda14cbcSMatt Macy }
745eda14cbcSMatt Macy
746eda14cbcSMatt Macy /*
747eda14cbcSMatt Macy * When no specific type of slab is requested (kmem, vmem, or
748eda14cbcSMatt Macy * linuxslab) then select a cache type based on the object size
749eda14cbcSMatt Macy * and default tunables.
750eda14cbcSMatt Macy */
751eda14cbcSMatt Macy if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
752eda14cbcSMatt Macy if (spl_kmem_cache_slab_limit &&
753eda14cbcSMatt Macy size <= (size_t)spl_kmem_cache_slab_limit) {
754eda14cbcSMatt Macy /*
755eda14cbcSMatt Macy * Objects smaller than spl_kmem_cache_slab_limit can
756eda14cbcSMatt Macy * use the Linux slab for better space-efficiency.
757eda14cbcSMatt Macy */
758eda14cbcSMatt Macy skc->skc_flags |= KMC_SLAB;
759eda14cbcSMatt Macy } else {
760eda14cbcSMatt Macy /*
761eda14cbcSMatt Macy * All other objects are considered large and are
762eda14cbcSMatt Macy * placed on kvmem backed slabs.
763eda14cbcSMatt Macy */
764eda14cbcSMatt Macy skc->skc_flags |= KMC_KVMEM;
765eda14cbcSMatt Macy }
766eda14cbcSMatt Macy }
767eda14cbcSMatt Macy
768eda14cbcSMatt Macy /*
769eda14cbcSMatt Macy * Given the type of slab allocate the required resources.
770eda14cbcSMatt Macy */
771eda14cbcSMatt Macy if (skc->skc_flags & KMC_KVMEM) {
772eda14cbcSMatt Macy rc = spl_slab_size(skc,
773eda14cbcSMatt Macy &skc->skc_slab_objs, &skc->skc_slab_size);
774eda14cbcSMatt Macy if (rc)
775eda14cbcSMatt Macy goto out;
776eda14cbcSMatt Macy
777eda14cbcSMatt Macy rc = spl_magazine_create(skc);
778eda14cbcSMatt Macy if (rc)
779eda14cbcSMatt Macy goto out;
780eda14cbcSMatt Macy } else {
781eda14cbcSMatt Macy unsigned long slabflags = 0;
782eda14cbcSMatt Macy
78378ae60b4SMartin Matuska if (size > spl_kmem_cache_slab_limit)
784eda14cbcSMatt Macy goto out;
785eda14cbcSMatt Macy
786ce4dcb97SMartin Matuska if (skc->skc_flags & KMC_RECLAIMABLE)
787ce4dcb97SMartin Matuska slabflags |= SLAB_RECLAIM_ACCOUNT;
788ce4dcb97SMartin Matuska
789eda14cbcSMatt Macy skc->skc_linux_cache = kmem_cache_create_usercopy(
790eda14cbcSMatt Macy skc->skc_name, size, align, slabflags, 0, size, NULL);
79115f0b8c3SMartin Matuska if (skc->skc_linux_cache == NULL)
792eda14cbcSMatt Macy goto out;
793eda14cbcSMatt Macy }
794eda14cbcSMatt Macy
795eda14cbcSMatt Macy down_write(&spl_kmem_cache_sem);
796eda14cbcSMatt Macy list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
797eda14cbcSMatt Macy up_write(&spl_kmem_cache_sem);
798eda14cbcSMatt Macy
799eda14cbcSMatt Macy return (skc);
800eda14cbcSMatt Macy out:
801eda14cbcSMatt Macy kfree(skc->skc_name);
802eda14cbcSMatt Macy percpu_counter_destroy(&skc->skc_linux_alloc);
803eda14cbcSMatt Macy kfree(skc);
804eda14cbcSMatt Macy return (NULL);
805eda14cbcSMatt Macy }
806eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_create);
807eda14cbcSMatt Macy
808eda14cbcSMatt Macy /*
809eda14cbcSMatt Macy * Register a move callback for cache defragmentation.
810eda14cbcSMatt Macy * XXX: Unimplemented but harmless to stub out for now.
811eda14cbcSMatt Macy */
812eda14cbcSMatt Macy void
spl_kmem_cache_set_move(spl_kmem_cache_t * skc,kmem_cbrc_t (move)(void *,void *,size_t,void *))813eda14cbcSMatt Macy spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
814eda14cbcSMatt Macy kmem_cbrc_t (move)(void *, void *, size_t, void *))
815eda14cbcSMatt Macy {
816eda14cbcSMatt Macy ASSERT(move != NULL);
817eda14cbcSMatt Macy }
818eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_set_move);
819eda14cbcSMatt Macy
820eda14cbcSMatt Macy /*
821eda14cbcSMatt Macy * Destroy a cache and all objects associated with the cache.
822eda14cbcSMatt Macy */
823eda14cbcSMatt Macy void
spl_kmem_cache_destroy(spl_kmem_cache_t * skc)824eda14cbcSMatt Macy spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
825eda14cbcSMatt Macy {
826eda14cbcSMatt Macy DECLARE_WAIT_QUEUE_HEAD(wq);
827eda14cbcSMatt Macy taskqid_t id;
828eda14cbcSMatt Macy
829eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC);
830eda14cbcSMatt Macy ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
831eda14cbcSMatt Macy
832eda14cbcSMatt Macy down_write(&spl_kmem_cache_sem);
833eda14cbcSMatt Macy list_del_init(&skc->skc_list);
834eda14cbcSMatt Macy up_write(&spl_kmem_cache_sem);
835eda14cbcSMatt Macy
836eda14cbcSMatt Macy /* Cancel any and wait for any pending delayed tasks */
837eda14cbcSMatt Macy VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
838eda14cbcSMatt Macy
839eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
840eda14cbcSMatt Macy id = skc->skc_taskqid;
841eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
842eda14cbcSMatt Macy
843eda14cbcSMatt Macy taskq_cancel_id(spl_kmem_cache_taskq, id);
844eda14cbcSMatt Macy
845eda14cbcSMatt Macy /*
846eda14cbcSMatt Macy * Wait until all current callers complete, this is mainly
847eda14cbcSMatt Macy * to catch the case where a low memory situation triggers a
848eda14cbcSMatt Macy * cache reaping action which races with this destroy.
849eda14cbcSMatt Macy */
850eda14cbcSMatt Macy wait_event(wq, atomic_read(&skc->skc_ref) == 0);
851eda14cbcSMatt Macy
852eda14cbcSMatt Macy if (skc->skc_flags & KMC_KVMEM) {
853eda14cbcSMatt Macy spl_magazine_destroy(skc);
854eda14cbcSMatt Macy spl_slab_reclaim(skc);
855eda14cbcSMatt Macy } else {
856eda14cbcSMatt Macy ASSERT(skc->skc_flags & KMC_SLAB);
857eda14cbcSMatt Macy kmem_cache_destroy(skc->skc_linux_cache);
858eda14cbcSMatt Macy }
859eda14cbcSMatt Macy
860eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
861eda14cbcSMatt Macy
862eda14cbcSMatt Macy /*
863eda14cbcSMatt Macy * Validate there are no objects in use and free all the
864eda14cbcSMatt Macy * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
865eda14cbcSMatt Macy */
866*d0abb9a6SMartin Matuska ASSERT0(skc->skc_slab_alloc);
867*d0abb9a6SMartin Matuska ASSERT0(skc->skc_obj_alloc);
868*d0abb9a6SMartin Matuska ASSERT0(skc->skc_slab_total);
869*d0abb9a6SMartin Matuska ASSERT0(skc->skc_obj_total);
870*d0abb9a6SMartin Matuska ASSERT0(skc->skc_obj_emergency);
871eda14cbcSMatt Macy ASSERT(list_empty(&skc->skc_complete_list));
872eda14cbcSMatt Macy
873eda14cbcSMatt Macy ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
874eda14cbcSMatt Macy percpu_counter_destroy(&skc->skc_linux_alloc);
875eda14cbcSMatt Macy
876eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
877eda14cbcSMatt Macy
878eda14cbcSMatt Macy kfree(skc->skc_name);
879eda14cbcSMatt Macy kfree(skc);
880eda14cbcSMatt Macy }
881eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_destroy);
882eda14cbcSMatt Macy
883eda14cbcSMatt Macy /*
884eda14cbcSMatt Macy * Allocate an object from a slab attached to the cache. This is used to
885eda14cbcSMatt Macy * repopulate the per-cpu magazine caches in batches when they run low.
886eda14cbcSMatt Macy */
887eda14cbcSMatt Macy static void *
spl_cache_obj(spl_kmem_cache_t * skc,spl_kmem_slab_t * sks)888eda14cbcSMatt Macy spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
889eda14cbcSMatt Macy {
890eda14cbcSMatt Macy spl_kmem_obj_t *sko;
891eda14cbcSMatt Macy
892eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC);
893eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC);
894eda14cbcSMatt Macy
895eda14cbcSMatt Macy sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
896eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC);
897eda14cbcSMatt Macy ASSERT(sko->sko_addr != NULL);
898eda14cbcSMatt Macy
899eda14cbcSMatt Macy /* Remove from sks_free_list */
900eda14cbcSMatt Macy list_del_init(&sko->sko_list);
901eda14cbcSMatt Macy
902eda14cbcSMatt Macy sks->sks_age = jiffies;
903eda14cbcSMatt Macy sks->sks_ref++;
904eda14cbcSMatt Macy skc->skc_obj_alloc++;
905eda14cbcSMatt Macy
906eda14cbcSMatt Macy /* Track max obj usage statistics */
907eda14cbcSMatt Macy if (skc->skc_obj_alloc > skc->skc_obj_max)
908eda14cbcSMatt Macy skc->skc_obj_max = skc->skc_obj_alloc;
909eda14cbcSMatt Macy
910eda14cbcSMatt Macy /* Track max slab usage statistics */
911eda14cbcSMatt Macy if (sks->sks_ref == 1) {
912eda14cbcSMatt Macy skc->skc_slab_alloc++;
913eda14cbcSMatt Macy
914eda14cbcSMatt Macy if (skc->skc_slab_alloc > skc->skc_slab_max)
915eda14cbcSMatt Macy skc->skc_slab_max = skc->skc_slab_alloc;
916eda14cbcSMatt Macy }
917eda14cbcSMatt Macy
918eda14cbcSMatt Macy return (sko->sko_addr);
919eda14cbcSMatt Macy }
920eda14cbcSMatt Macy
921eda14cbcSMatt Macy /*
922eda14cbcSMatt Macy * Generic slab allocation function to run by the global work queues.
923eda14cbcSMatt Macy * It is responsible for allocating a new slab, linking it in to the list
924eda14cbcSMatt Macy * of partial slabs, and then waking any waiters.
925eda14cbcSMatt Macy */
926eda14cbcSMatt Macy static int
__spl_cache_grow(spl_kmem_cache_t * skc,int flags)927eda14cbcSMatt Macy __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
928eda14cbcSMatt Macy {
929eda14cbcSMatt Macy spl_kmem_slab_t *sks;
930eda14cbcSMatt Macy
931eda14cbcSMatt Macy fstrans_cookie_t cookie = spl_fstrans_mark();
932eda14cbcSMatt Macy sks = spl_slab_alloc(skc, flags);
933eda14cbcSMatt Macy spl_fstrans_unmark(cookie);
934eda14cbcSMatt Macy
935eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
936eda14cbcSMatt Macy if (sks) {
937eda14cbcSMatt Macy skc->skc_slab_total++;
938eda14cbcSMatt Macy skc->skc_obj_total += sks->sks_objs;
939eda14cbcSMatt Macy list_add_tail(&sks->sks_list, &skc->skc_partial_list);
940eda14cbcSMatt Macy
941eda14cbcSMatt Macy smp_mb__before_atomic();
942eda14cbcSMatt Macy clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
943eda14cbcSMatt Macy smp_mb__after_atomic();
944eda14cbcSMatt Macy }
945eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
946eda14cbcSMatt Macy
947eda14cbcSMatt Macy return (sks == NULL ? -ENOMEM : 0);
948eda14cbcSMatt Macy }
949eda14cbcSMatt Macy
950eda14cbcSMatt Macy static void
spl_cache_grow_work(void * data)951eda14cbcSMatt Macy spl_cache_grow_work(void *data)
952eda14cbcSMatt Macy {
953eda14cbcSMatt Macy spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
954eda14cbcSMatt Macy spl_kmem_cache_t *skc = ska->ska_cache;
955eda14cbcSMatt Macy
956eda14cbcSMatt Macy int error = __spl_cache_grow(skc, ska->ska_flags);
957eda14cbcSMatt Macy
958eda14cbcSMatt Macy atomic_dec(&skc->skc_ref);
959eda14cbcSMatt Macy smp_mb__before_atomic();
960eda14cbcSMatt Macy clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
961eda14cbcSMatt Macy smp_mb__after_atomic();
962eda14cbcSMatt Macy if (error == 0)
963eda14cbcSMatt Macy wake_up_all(&skc->skc_waitq);
964eda14cbcSMatt Macy
965eda14cbcSMatt Macy kfree(ska);
966eda14cbcSMatt Macy }
967eda14cbcSMatt Macy
968eda14cbcSMatt Macy /*
969eda14cbcSMatt Macy * Returns non-zero when a new slab should be available.
970eda14cbcSMatt Macy */
971eda14cbcSMatt Macy static int
spl_cache_grow_wait(spl_kmem_cache_t * skc)972eda14cbcSMatt Macy spl_cache_grow_wait(spl_kmem_cache_t *skc)
973eda14cbcSMatt Macy {
974eda14cbcSMatt Macy return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
975eda14cbcSMatt Macy }
976eda14cbcSMatt Macy
977eda14cbcSMatt Macy /*
978eda14cbcSMatt Macy * No available objects on any slabs, create a new slab. Note that this
979eda14cbcSMatt Macy * functionality is disabled for KMC_SLAB caches which are backed by the
980eda14cbcSMatt Macy * Linux slab.
981eda14cbcSMatt Macy */
982eda14cbcSMatt Macy static int
spl_cache_grow(spl_kmem_cache_t * skc,int flags,void ** obj)983eda14cbcSMatt Macy spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
984eda14cbcSMatt Macy {
985eda14cbcSMatt Macy int remaining, rc = 0;
986eda14cbcSMatt Macy
987eda14cbcSMatt Macy ASSERT0(flags & ~KM_PUBLIC_MASK);
988eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC);
989*d0abb9a6SMartin Matuska ASSERT0((skc->skc_flags & KMC_SLAB));
9904e8d558cSMartin Matuska
991eda14cbcSMatt Macy *obj = NULL;
992eda14cbcSMatt Macy
993eda14cbcSMatt Macy /*
9944e8d558cSMartin Matuska * Since we can't sleep attempt an emergency allocation to satisfy
9954e8d558cSMartin Matuska * the request. The only alterative is to fail the allocation but
9964e8d558cSMartin Matuska * it's preferable try. The use of KM_NOSLEEP is expected to be rare.
9974e8d558cSMartin Matuska */
9984e8d558cSMartin Matuska if (flags & KM_NOSLEEP)
9994e8d558cSMartin Matuska return (spl_emergency_alloc(skc, flags, obj));
10004e8d558cSMartin Matuska
10014e8d558cSMartin Matuska might_sleep();
10024e8d558cSMartin Matuska
10034e8d558cSMartin Matuska /*
1004eda14cbcSMatt Macy * Before allocating a new slab wait for any reaping to complete and
1005eda14cbcSMatt Macy * then return so the local magazine can be rechecked for new objects.
1006eda14cbcSMatt Macy */
1007eda14cbcSMatt Macy if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
10087a7741afSMartin Matuska rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1009eda14cbcSMatt Macy TASK_UNINTERRUPTIBLE);
1010eda14cbcSMatt Macy return (rc ? rc : -EAGAIN);
1011eda14cbcSMatt Macy }
1012eda14cbcSMatt Macy
1013eda14cbcSMatt Macy /*
1014eda14cbcSMatt Macy * Note: It would be nice to reduce the overhead of context switch
1015eda14cbcSMatt Macy * and improve NUMA locality, by trying to allocate a new slab in the
1016eda14cbcSMatt Macy * current process context with KM_NOSLEEP flag.
1017eda14cbcSMatt Macy *
1018eda14cbcSMatt Macy * However, this can't be applied to vmem/kvmem due to a bug that
1019eda14cbcSMatt Macy * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1020eda14cbcSMatt Macy */
1021eda14cbcSMatt Macy
1022eda14cbcSMatt Macy /*
1023eda14cbcSMatt Macy * This is handled by dispatching a work request to the global work
1024eda14cbcSMatt Macy * queue. This allows us to asynchronously allocate a new slab while
1025eda14cbcSMatt Macy * retaining the ability to safely fall back to a smaller synchronous
1026eda14cbcSMatt Macy * allocations to ensure forward progress is always maintained.
1027eda14cbcSMatt Macy */
1028eda14cbcSMatt Macy if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1029eda14cbcSMatt Macy spl_kmem_alloc_t *ska;
1030eda14cbcSMatt Macy
1031eda14cbcSMatt Macy ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1032eda14cbcSMatt Macy if (ska == NULL) {
1033eda14cbcSMatt Macy clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1034eda14cbcSMatt Macy smp_mb__after_atomic();
1035eda14cbcSMatt Macy wake_up_all(&skc->skc_waitq);
1036eda14cbcSMatt Macy return (-ENOMEM);
1037eda14cbcSMatt Macy }
1038eda14cbcSMatt Macy
1039eda14cbcSMatt Macy atomic_inc(&skc->skc_ref);
1040eda14cbcSMatt Macy ska->ska_cache = skc;
1041eda14cbcSMatt Macy ska->ska_flags = flags;
1042eda14cbcSMatt Macy taskq_init_ent(&ska->ska_tqe);
1043eda14cbcSMatt Macy taskq_dispatch_ent(spl_kmem_cache_taskq,
1044eda14cbcSMatt Macy spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1045eda14cbcSMatt Macy }
1046eda14cbcSMatt Macy
1047eda14cbcSMatt Macy /*
1048eda14cbcSMatt Macy * The goal here is to only detect the rare case where a virtual slab
1049eda14cbcSMatt Macy * allocation has deadlocked. We must be careful to minimize the use
1050eda14cbcSMatt Macy * of emergency objects which are more expensive to track. Therefore,
1051eda14cbcSMatt Macy * we set a very long timeout for the asynchronous allocation and if
1052eda14cbcSMatt Macy * the timeout is reached the cache is flagged as deadlocked. From
1053eda14cbcSMatt Macy * this point only new emergency objects will be allocated until the
1054eda14cbcSMatt Macy * asynchronous allocation completes and clears the deadlocked flag.
1055eda14cbcSMatt Macy */
1056eda14cbcSMatt Macy if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1057eda14cbcSMatt Macy rc = spl_emergency_alloc(skc, flags, obj);
1058eda14cbcSMatt Macy } else {
1059eda14cbcSMatt Macy remaining = wait_event_timeout(skc->skc_waitq,
1060eda14cbcSMatt Macy spl_cache_grow_wait(skc), HZ / 10);
1061eda14cbcSMatt Macy
1062eda14cbcSMatt Macy if (!remaining) {
1063eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
1064eda14cbcSMatt Macy if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1065eda14cbcSMatt Macy set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1066eda14cbcSMatt Macy skc->skc_obj_deadlock++;
1067eda14cbcSMatt Macy }
1068eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
1069eda14cbcSMatt Macy }
1070eda14cbcSMatt Macy
1071eda14cbcSMatt Macy rc = -ENOMEM;
1072eda14cbcSMatt Macy }
1073eda14cbcSMatt Macy
1074eda14cbcSMatt Macy return (rc);
1075eda14cbcSMatt Macy }
1076eda14cbcSMatt Macy
1077eda14cbcSMatt Macy /*
1078eda14cbcSMatt Macy * Refill a per-cpu magazine with objects from the slabs for this cache.
1079eda14cbcSMatt Macy * Ideally the magazine can be repopulated using existing objects which have
1080eda14cbcSMatt Macy * been released, however if we are unable to locate enough free objects new
1081eda14cbcSMatt Macy * slabs of objects will be created. On success NULL is returned, otherwise
1082eda14cbcSMatt Macy * the address of a single emergency object is returned for use by the caller.
1083eda14cbcSMatt Macy */
1084eda14cbcSMatt Macy static void *
spl_cache_refill(spl_kmem_cache_t * skc,spl_kmem_magazine_t * skm,int flags)1085eda14cbcSMatt Macy spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1086eda14cbcSMatt Macy {
1087eda14cbcSMatt Macy spl_kmem_slab_t *sks;
1088eda14cbcSMatt Macy int count = 0, rc, refill;
1089eda14cbcSMatt Macy void *obj = NULL;
1090eda14cbcSMatt Macy
1091eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC);
1092eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC);
1093eda14cbcSMatt Macy
1094eda14cbcSMatt Macy refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1095eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
1096eda14cbcSMatt Macy
1097eda14cbcSMatt Macy while (refill > 0) {
1098eda14cbcSMatt Macy /* No slabs available we may need to grow the cache */
1099eda14cbcSMatt Macy if (list_empty(&skc->skc_partial_list)) {
1100eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
1101eda14cbcSMatt Macy
1102eda14cbcSMatt Macy local_irq_enable();
1103eda14cbcSMatt Macy rc = spl_cache_grow(skc, flags, &obj);
1104eda14cbcSMatt Macy local_irq_disable();
1105eda14cbcSMatt Macy
1106eda14cbcSMatt Macy /* Emergency object for immediate use by caller */
1107eda14cbcSMatt Macy if (rc == 0 && obj != NULL)
1108eda14cbcSMatt Macy return (obj);
1109eda14cbcSMatt Macy
1110eda14cbcSMatt Macy if (rc)
1111eda14cbcSMatt Macy goto out;
1112eda14cbcSMatt Macy
1113eda14cbcSMatt Macy /* Rescheduled to different CPU skm is not local */
1114eda14cbcSMatt Macy if (skm != skc->skc_mag[smp_processor_id()])
1115eda14cbcSMatt Macy goto out;
1116eda14cbcSMatt Macy
1117eda14cbcSMatt Macy /*
1118eda14cbcSMatt Macy * Potentially rescheduled to the same CPU but
1119eda14cbcSMatt Macy * allocations may have occurred from this CPU while
1120eda14cbcSMatt Macy * we were sleeping so recalculate max refill.
1121eda14cbcSMatt Macy */
1122eda14cbcSMatt Macy refill = MIN(refill, skm->skm_size - skm->skm_avail);
1123eda14cbcSMatt Macy
1124eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
1125eda14cbcSMatt Macy continue;
1126eda14cbcSMatt Macy }
1127eda14cbcSMatt Macy
1128eda14cbcSMatt Macy /* Grab the next available slab */
1129eda14cbcSMatt Macy sks = list_entry((&skc->skc_partial_list)->next,
1130eda14cbcSMatt Macy spl_kmem_slab_t, sks_list);
1131eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC);
1132eda14cbcSMatt Macy ASSERT(sks->sks_ref < sks->sks_objs);
1133eda14cbcSMatt Macy ASSERT(!list_empty(&sks->sks_free_list));
1134eda14cbcSMatt Macy
1135eda14cbcSMatt Macy /*
1136eda14cbcSMatt Macy * Consume as many objects as needed to refill the requested
1137eda14cbcSMatt Macy * cache. We must also be careful not to overfill it.
1138eda14cbcSMatt Macy */
1139eda14cbcSMatt Macy while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1140eda14cbcSMatt Macy ++count) {
1141eda14cbcSMatt Macy ASSERT(skm->skm_avail < skm->skm_size);
1142eda14cbcSMatt Macy ASSERT(count < skm->skm_size);
1143eda14cbcSMatt Macy skm->skm_objs[skm->skm_avail++] =
1144eda14cbcSMatt Macy spl_cache_obj(skc, sks);
1145eda14cbcSMatt Macy }
1146eda14cbcSMatt Macy
1147eda14cbcSMatt Macy /* Move slab to skc_complete_list when full */
1148eda14cbcSMatt Macy if (sks->sks_ref == sks->sks_objs) {
1149eda14cbcSMatt Macy list_del(&sks->sks_list);
1150eda14cbcSMatt Macy list_add(&sks->sks_list, &skc->skc_complete_list);
1151eda14cbcSMatt Macy }
1152eda14cbcSMatt Macy }
1153eda14cbcSMatt Macy
1154eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
1155eda14cbcSMatt Macy out:
1156eda14cbcSMatt Macy return (NULL);
1157eda14cbcSMatt Macy }
1158eda14cbcSMatt Macy
1159eda14cbcSMatt Macy /*
1160eda14cbcSMatt Macy * Release an object back to the slab from which it came.
1161eda14cbcSMatt Macy */
1162eda14cbcSMatt Macy static void
spl_cache_shrink(spl_kmem_cache_t * skc,void * obj)1163eda14cbcSMatt Macy spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1164eda14cbcSMatt Macy {
1165eda14cbcSMatt Macy spl_kmem_slab_t *sks = NULL;
1166eda14cbcSMatt Macy spl_kmem_obj_t *sko = NULL;
1167eda14cbcSMatt Macy
1168eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC);
1169eda14cbcSMatt Macy
1170eda14cbcSMatt Macy sko = spl_sko_from_obj(skc, obj);
1171eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC);
1172eda14cbcSMatt Macy sks = sko->sko_slab;
1173eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC);
1174eda14cbcSMatt Macy ASSERT(sks->sks_cache == skc);
1175eda14cbcSMatt Macy list_add(&sko->sko_list, &sks->sks_free_list);
1176eda14cbcSMatt Macy
1177eda14cbcSMatt Macy sks->sks_age = jiffies;
1178eda14cbcSMatt Macy sks->sks_ref--;
1179eda14cbcSMatt Macy skc->skc_obj_alloc--;
1180eda14cbcSMatt Macy
1181eda14cbcSMatt Macy /*
1182eda14cbcSMatt Macy * Move slab to skc_partial_list when no longer full. Slabs
1183eda14cbcSMatt Macy * are added to the head to keep the partial list is quasi-full
1184eda14cbcSMatt Macy * sorted order. Fuller at the head, emptier at the tail.
1185eda14cbcSMatt Macy */
1186eda14cbcSMatt Macy if (sks->sks_ref == (sks->sks_objs - 1)) {
1187eda14cbcSMatt Macy list_del(&sks->sks_list);
1188eda14cbcSMatt Macy list_add(&sks->sks_list, &skc->skc_partial_list);
1189eda14cbcSMatt Macy }
1190eda14cbcSMatt Macy
1191eda14cbcSMatt Macy /*
1192eda14cbcSMatt Macy * Move empty slabs to the end of the partial list so
1193eda14cbcSMatt Macy * they can be easily found and freed during reclamation.
1194eda14cbcSMatt Macy */
1195eda14cbcSMatt Macy if (sks->sks_ref == 0) {
1196eda14cbcSMatt Macy list_del(&sks->sks_list);
1197eda14cbcSMatt Macy list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1198eda14cbcSMatt Macy skc->skc_slab_alloc--;
1199eda14cbcSMatt Macy }
1200eda14cbcSMatt Macy }
1201eda14cbcSMatt Macy
1202eda14cbcSMatt Macy /*
1203eda14cbcSMatt Macy * Allocate an object from the per-cpu magazine, or if the magazine
1204eda14cbcSMatt Macy * is empty directly allocate from a slab and repopulate the magazine.
1205eda14cbcSMatt Macy */
1206eda14cbcSMatt Macy void *
spl_kmem_cache_alloc(spl_kmem_cache_t * skc,int flags)1207eda14cbcSMatt Macy spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1208eda14cbcSMatt Macy {
1209eda14cbcSMatt Macy spl_kmem_magazine_t *skm;
1210eda14cbcSMatt Macy void *obj = NULL;
1211eda14cbcSMatt Macy
1212eda14cbcSMatt Macy ASSERT0(flags & ~KM_PUBLIC_MASK);
1213eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC);
1214eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1215eda14cbcSMatt Macy
1216eda14cbcSMatt Macy /*
1217eda14cbcSMatt Macy * Allocate directly from a Linux slab. All optimizations are left
1218eda14cbcSMatt Macy * to the underlying cache we only need to guarantee that KM_SLEEP
1219eda14cbcSMatt Macy * callers will never fail.
1220eda14cbcSMatt Macy */
1221eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) {
1222eda14cbcSMatt Macy struct kmem_cache *slc = skc->skc_linux_cache;
1223eda14cbcSMatt Macy do {
1224eda14cbcSMatt Macy obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1225eda14cbcSMatt Macy } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1226eda14cbcSMatt Macy
1227eda14cbcSMatt Macy if (obj != NULL) {
1228eda14cbcSMatt Macy /*
1229eda14cbcSMatt Macy * Even though we leave everything up to the
1230eda14cbcSMatt Macy * underlying cache we still keep track of
1231eda14cbcSMatt Macy * how many objects we've allocated in it for
1232eda14cbcSMatt Macy * better debuggability.
1233eda14cbcSMatt Macy */
1234eda14cbcSMatt Macy percpu_counter_inc(&skc->skc_linux_alloc);
1235eda14cbcSMatt Macy }
1236eda14cbcSMatt Macy goto ret;
1237eda14cbcSMatt Macy }
1238eda14cbcSMatt Macy
1239eda14cbcSMatt Macy local_irq_disable();
1240eda14cbcSMatt Macy
1241eda14cbcSMatt Macy restart:
1242eda14cbcSMatt Macy /*
1243eda14cbcSMatt Macy * Safe to update per-cpu structure without lock, but
1244eda14cbcSMatt Macy * in the restart case we must be careful to reacquire
1245eda14cbcSMatt Macy * the local magazine since this may have changed
1246eda14cbcSMatt Macy * when we need to grow the cache.
1247eda14cbcSMatt Macy */
1248eda14cbcSMatt Macy skm = skc->skc_mag[smp_processor_id()];
1249eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC);
1250eda14cbcSMatt Macy
1251eda14cbcSMatt Macy if (likely(skm->skm_avail)) {
1252eda14cbcSMatt Macy /* Object available in CPU cache, use it */
1253eda14cbcSMatt Macy obj = skm->skm_objs[--skm->skm_avail];
1254eda14cbcSMatt Macy } else {
1255eda14cbcSMatt Macy obj = spl_cache_refill(skc, skm, flags);
1256eda14cbcSMatt Macy if ((obj == NULL) && !(flags & KM_NOSLEEP))
1257eda14cbcSMatt Macy goto restart;
1258eda14cbcSMatt Macy
1259eda14cbcSMatt Macy local_irq_enable();
1260eda14cbcSMatt Macy goto ret;
1261eda14cbcSMatt Macy }
1262eda14cbcSMatt Macy
1263eda14cbcSMatt Macy local_irq_enable();
1264eda14cbcSMatt Macy ASSERT(obj);
1265eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1266eda14cbcSMatt Macy
1267eda14cbcSMatt Macy ret:
1268eda14cbcSMatt Macy /* Pre-emptively migrate object to CPU L1 cache */
1269eda14cbcSMatt Macy if (obj) {
1270eda14cbcSMatt Macy if (obj && skc->skc_ctor)
1271eda14cbcSMatt Macy skc->skc_ctor(obj, skc->skc_private, flags);
1272eda14cbcSMatt Macy else
1273eda14cbcSMatt Macy prefetchw(obj);
1274eda14cbcSMatt Macy }
1275eda14cbcSMatt Macy
1276eda14cbcSMatt Macy return (obj);
1277eda14cbcSMatt Macy }
1278eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_alloc);
1279eda14cbcSMatt Macy
1280eda14cbcSMatt Macy /*
1281eda14cbcSMatt Macy * Free an object back to the local per-cpu magazine, there is no
1282eda14cbcSMatt Macy * guarantee that this is the same magazine the object was originally
1283eda14cbcSMatt Macy * allocated from. We may need to flush entire from the magazine
1284eda14cbcSMatt Macy * back to the slabs to make space.
1285eda14cbcSMatt Macy */
1286eda14cbcSMatt Macy void
spl_kmem_cache_free(spl_kmem_cache_t * skc,void * obj)1287eda14cbcSMatt Macy spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1288eda14cbcSMatt Macy {
1289eda14cbcSMatt Macy spl_kmem_magazine_t *skm;
1290eda14cbcSMatt Macy unsigned long flags;
1291eda14cbcSMatt Macy int do_reclaim = 0;
1292eda14cbcSMatt Macy int do_emergency = 0;
1293eda14cbcSMatt Macy
1294eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC);
1295eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1296eda14cbcSMatt Macy
1297eda14cbcSMatt Macy /*
1298eda14cbcSMatt Macy * Run the destructor
1299eda14cbcSMatt Macy */
1300eda14cbcSMatt Macy if (skc->skc_dtor)
1301eda14cbcSMatt Macy skc->skc_dtor(obj, skc->skc_private);
1302eda14cbcSMatt Macy
1303eda14cbcSMatt Macy /*
1304eda14cbcSMatt Macy * Free the object from the Linux underlying Linux slab.
1305eda14cbcSMatt Macy */
1306eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) {
1307eda14cbcSMatt Macy kmem_cache_free(skc->skc_linux_cache, obj);
1308eda14cbcSMatt Macy percpu_counter_dec(&skc->skc_linux_alloc);
1309eda14cbcSMatt Macy return;
1310eda14cbcSMatt Macy }
1311eda14cbcSMatt Macy
1312eda14cbcSMatt Macy /*
1313eda14cbcSMatt Macy * While a cache has outstanding emergency objects all freed objects
1314eda14cbcSMatt Macy * must be checked. However, since emergency objects will never use
1315eda14cbcSMatt Macy * a virtual address these objects can be safely excluded as an
1316eda14cbcSMatt Macy * optimization.
1317eda14cbcSMatt Macy */
1318eda14cbcSMatt Macy if (!is_vmalloc_addr(obj)) {
1319eda14cbcSMatt Macy spin_lock(&skc->skc_lock);
1320eda14cbcSMatt Macy do_emergency = (skc->skc_obj_emergency > 0);
1321eda14cbcSMatt Macy spin_unlock(&skc->skc_lock);
1322eda14cbcSMatt Macy
1323eda14cbcSMatt Macy if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1324eda14cbcSMatt Macy return;
1325eda14cbcSMatt Macy }
1326eda14cbcSMatt Macy
1327eda14cbcSMatt Macy local_irq_save(flags);
1328eda14cbcSMatt Macy
1329eda14cbcSMatt Macy /*
1330eda14cbcSMatt Macy * Safe to update per-cpu structure without lock, but
1331eda14cbcSMatt Macy * no remote memory allocation tracking is being performed
1332eda14cbcSMatt Macy * it is entirely possible to allocate an object from one
1333eda14cbcSMatt Macy * CPU cache and return it to another.
1334eda14cbcSMatt Macy */
1335eda14cbcSMatt Macy skm = skc->skc_mag[smp_processor_id()];
1336eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC);
1337eda14cbcSMatt Macy
1338eda14cbcSMatt Macy /*
1339eda14cbcSMatt Macy * Per-CPU cache full, flush it to make space for this object,
1340eda14cbcSMatt Macy * this may result in an empty slab which can be reclaimed once
1341eda14cbcSMatt Macy * interrupts are re-enabled.
1342eda14cbcSMatt Macy */
1343eda14cbcSMatt Macy if (unlikely(skm->skm_avail >= skm->skm_size)) {
1344eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_refill);
1345eda14cbcSMatt Macy do_reclaim = 1;
1346eda14cbcSMatt Macy }
1347eda14cbcSMatt Macy
1348eda14cbcSMatt Macy /* Available space in cache, use it */
1349eda14cbcSMatt Macy skm->skm_objs[skm->skm_avail++] = obj;
1350eda14cbcSMatt Macy
1351eda14cbcSMatt Macy local_irq_restore(flags);
1352eda14cbcSMatt Macy
1353eda14cbcSMatt Macy if (do_reclaim)
1354eda14cbcSMatt Macy spl_slab_reclaim(skc);
1355eda14cbcSMatt Macy }
1356eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_free);
1357eda14cbcSMatt Macy
1358eda14cbcSMatt Macy /*
1359eda14cbcSMatt Macy * Depending on how many and which objects are released it may simply
1360eda14cbcSMatt Macy * repopulate the local magazine which will then need to age-out. Objects
1361eda14cbcSMatt Macy * which cannot fit in the magazine will be released back to their slabs
1362eda14cbcSMatt Macy * which will also need to age out before being released. This is all just
1363eda14cbcSMatt Macy * best effort and we do not want to thrash creating and destroying slabs.
1364eda14cbcSMatt Macy */
1365eda14cbcSMatt Macy void
spl_kmem_cache_reap_now(spl_kmem_cache_t * skc)1366eda14cbcSMatt Macy spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1367eda14cbcSMatt Macy {
1368eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC);
1369eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1370eda14cbcSMatt Macy
1371eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB)
1372eda14cbcSMatt Macy return;
1373eda14cbcSMatt Macy
1374eda14cbcSMatt Macy atomic_inc(&skc->skc_ref);
1375eda14cbcSMatt Macy
1376eda14cbcSMatt Macy /*
1377eda14cbcSMatt Macy * Prevent concurrent cache reaping when contended.
1378eda14cbcSMatt Macy */
1379eda14cbcSMatt Macy if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1380eda14cbcSMatt Macy goto out;
1381eda14cbcSMatt Macy
1382eda14cbcSMatt Macy /* Reclaim from the magazine and free all now empty slabs. */
1383eda14cbcSMatt Macy unsigned long irq_flags;
1384eda14cbcSMatt Macy local_irq_save(irq_flags);
1385eda14cbcSMatt Macy spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1386eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_avail);
1387eda14cbcSMatt Macy local_irq_restore(irq_flags);
1388eda14cbcSMatt Macy
1389eda14cbcSMatt Macy spl_slab_reclaim(skc);
1390eda14cbcSMatt Macy clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1391eda14cbcSMatt Macy smp_mb__after_atomic();
1392eda14cbcSMatt Macy wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1393eda14cbcSMatt Macy out:
1394eda14cbcSMatt Macy atomic_dec(&skc->skc_ref);
1395eda14cbcSMatt Macy }
1396eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1397eda14cbcSMatt Macy
1398eda14cbcSMatt Macy /*
1399eda14cbcSMatt Macy * This is stubbed out for code consistency with other platforms. There
1400eda14cbcSMatt Macy * is existing logic to prevent concurrent reaping so while this is ugly
1401eda14cbcSMatt Macy * it should do no harm.
1402eda14cbcSMatt Macy */
1403eda14cbcSMatt Macy int
spl_kmem_cache_reap_active(void)1404716fd348SMartin Matuska spl_kmem_cache_reap_active(void)
1405eda14cbcSMatt Macy {
1406eda14cbcSMatt Macy return (0);
1407eda14cbcSMatt Macy }
1408eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1409eda14cbcSMatt Macy
1410eda14cbcSMatt Macy /*
1411eda14cbcSMatt Macy * Reap all free slabs from all registered caches.
1412eda14cbcSMatt Macy */
1413eda14cbcSMatt Macy void
spl_kmem_reap(void)1414eda14cbcSMatt Macy spl_kmem_reap(void)
1415eda14cbcSMatt Macy {
1416eda14cbcSMatt Macy spl_kmem_cache_t *skc = NULL;
1417eda14cbcSMatt Macy
1418eda14cbcSMatt Macy down_read(&spl_kmem_cache_sem);
1419eda14cbcSMatt Macy list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1420eda14cbcSMatt Macy spl_kmem_cache_reap_now(skc);
1421eda14cbcSMatt Macy }
1422eda14cbcSMatt Macy up_read(&spl_kmem_cache_sem);
1423eda14cbcSMatt Macy }
1424eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_reap);
1425eda14cbcSMatt Macy
1426eda14cbcSMatt Macy int
spl_kmem_cache_init(void)1427eda14cbcSMatt Macy spl_kmem_cache_init(void)
1428eda14cbcSMatt Macy {
1429eda14cbcSMatt Macy init_rwsem(&spl_kmem_cache_sem);
1430eda14cbcSMatt Macy INIT_LIST_HEAD(&spl_kmem_cache_list);
1431eda14cbcSMatt Macy spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1432eda14cbcSMatt Macy spl_kmem_cache_kmem_threads, maxclsyspri,
1433eda14cbcSMatt Macy spl_kmem_cache_kmem_threads * 8, INT_MAX,
1434eda14cbcSMatt Macy TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1435eda14cbcSMatt Macy
1436c7046f76SMartin Matuska if (spl_kmem_cache_taskq == NULL)
1437c7046f76SMartin Matuska return (-ENOMEM);
1438c7046f76SMartin Matuska
1439eda14cbcSMatt Macy return (0);
1440eda14cbcSMatt Macy }
1441eda14cbcSMatt Macy
1442eda14cbcSMatt Macy void
spl_kmem_cache_fini(void)1443eda14cbcSMatt Macy spl_kmem_cache_fini(void)
1444eda14cbcSMatt Macy {
1445eda14cbcSMatt Macy taskq_destroy(spl_kmem_cache_taskq);
1446eda14cbcSMatt Macy }
1447