1 /* 2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3 * Copyright (C) 2007 The Regents of the University of California. 4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6 * UCRL-CODE-235197 7 * 8 * This file is part of the SPL, Solaris Porting Layer. 9 * 10 * The SPL is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * The SPL is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22 * 23 * Solaris Porting Layer (SPL) Generic Implementation. 24 */ 25 26 #include <sys/sysmacros.h> 27 #include <sys/systeminfo.h> 28 #include <sys/vmsystm.h> 29 #include <sys/kmem.h> 30 #include <sys/kmem_cache.h> 31 #include <sys/vmem.h> 32 #include <sys/mutex.h> 33 #include <sys/rwlock.h> 34 #include <sys/taskq.h> 35 #include <sys/tsd.h> 36 #include <sys/zmod.h> 37 #include <sys/debug.h> 38 #include <sys/proc.h> 39 #include <sys/kstat.h> 40 #include <sys/file.h> 41 #include <sys/sunddi.h> 42 #include <linux/ctype.h> 43 #include <sys/disp.h> 44 #include <sys/random.h> 45 #include <sys/strings.h> 46 #include <linux/kmod.h> 47 #include <linux/mod_compat.h> 48 #include <sys/cred.h> 49 #include <sys/vnode.h> 50 51 unsigned long spl_hostid = 0; 52 EXPORT_SYMBOL(spl_hostid); 53 54 /* CSTYLED */ 55 module_param(spl_hostid, ulong, 0644); 56 MODULE_PARM_DESC(spl_hostid, "The system hostid."); 57 58 proc_t p0; 59 EXPORT_SYMBOL(p0); 60 61 /* 62 * Xorshift Pseudo Random Number Generator based on work by Sebastiano Vigna 63 * 64 * "Further scramblings of Marsaglia's xorshift generators" 65 * http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf 66 * 67 * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose 68 * is to provide bytes containing random numbers. It is mapped to /dev/urandom 69 * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's 70 * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so 71 * we can implement it using a fast PRNG that we seed using Linux' actual 72 * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU 73 * with an independent seed so that all calls to random_get_pseudo_bytes() are 74 * free of atomic instructions. 75 * 76 * A consequence of using a fast PRNG is that using random_get_pseudo_bytes() 77 * to generate words larger than 128 bits will paradoxically be limited to 78 * `2^128 - 1` possibilities. This is because we have a sequence of `2^128 - 1` 79 * 128-bit words and selecting the first will implicitly select the second. If 80 * a caller finds this behavior undesirable, random_get_bytes() should be used 81 * instead. 82 * 83 * XXX: Linux interrupt handlers that trigger within the critical section 84 * formed by `s[1] = xp[1];` and `xp[0] = s[0];` and call this function will 85 * see the same numbers. Nothing in the code currently calls this in an 86 * interrupt handler, so this is considered to be okay. If that becomes a 87 * problem, we could create a set of per-cpu variables for interrupt handlers 88 * and use them when in_interrupt() from linux/preempt_mask.h evaluates to 89 * true. 90 */ 91 void __percpu *spl_pseudo_entropy; 92 93 /* 94 * spl_rand_next()/spl_rand_jump() are copied from the following CC-0 licensed 95 * file: 96 * 97 * http://xorshift.di.unimi.it/xorshift128plus.c 98 */ 99 100 static inline uint64_t 101 spl_rand_next(uint64_t *s) 102 { 103 uint64_t s1 = s[0]; 104 const uint64_t s0 = s[1]; 105 s[0] = s0; 106 s1 ^= s1 << 23; // a 107 s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c 108 return (s[1] + s0); 109 } 110 111 static inline void 112 spl_rand_jump(uint64_t *s) 113 { 114 static const uint64_t JUMP[] = 115 { 0x8a5cd789635d2dff, 0x121fd2155c472f96 }; 116 117 uint64_t s0 = 0; 118 uint64_t s1 = 0; 119 int i, b; 120 for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++) 121 for (b = 0; b < 64; b++) { 122 if (JUMP[i] & 1ULL << b) { 123 s0 ^= s[0]; 124 s1 ^= s[1]; 125 } 126 (void) spl_rand_next(s); 127 } 128 129 s[0] = s0; 130 s[1] = s1; 131 } 132 133 int 134 random_get_pseudo_bytes(uint8_t *ptr, size_t len) 135 { 136 uint64_t *xp, s[2]; 137 138 ASSERT(ptr); 139 140 xp = get_cpu_ptr(spl_pseudo_entropy); 141 142 s[0] = xp[0]; 143 s[1] = xp[1]; 144 145 while (len) { 146 union { 147 uint64_t ui64; 148 uint8_t byte[sizeof (uint64_t)]; 149 }entropy; 150 int i = MIN(len, sizeof (uint64_t)); 151 152 len -= i; 153 entropy.ui64 = spl_rand_next(s); 154 155 while (i--) 156 *ptr++ = entropy.byte[i]; 157 } 158 159 xp[0] = s[0]; 160 xp[1] = s[1]; 161 162 put_cpu_ptr(spl_pseudo_entropy); 163 164 return (0); 165 } 166 167 168 EXPORT_SYMBOL(random_get_pseudo_bytes); 169 170 #if BITS_PER_LONG == 32 171 172 /* 173 * Support 64/64 => 64 division on a 32-bit platform. While the kernel 174 * provides a div64_u64() function for this we do not use it because the 175 * implementation is flawed. There are cases which return incorrect 176 * results as late as linux-2.6.35. Until this is fixed upstream the 177 * spl must provide its own implementation. 178 * 179 * This implementation is a slightly modified version of the algorithm 180 * proposed by the book 'Hacker's Delight'. The original source can be 181 * found here and is available for use without restriction. 182 * 183 * http://www.hackersdelight.org/HDcode/newCode/divDouble.c 184 */ 185 186 /* 187 * Calculate number of leading of zeros for a 64-bit value. 188 */ 189 static int 190 nlz64(uint64_t x) 191 { 192 register int n = 0; 193 194 if (x == 0) 195 return (64); 196 197 if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; } 198 if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; } 199 if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; } 200 if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; } 201 if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; } 202 if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; } 203 204 return (n); 205 } 206 207 /* 208 * Newer kernels have a div_u64() function but we define our own 209 * to simplify portability between kernel versions. 210 */ 211 static inline uint64_t 212 __div_u64(uint64_t u, uint32_t v) 213 { 214 (void) do_div(u, v); 215 return (u); 216 } 217 218 /* 219 * Turn off missing prototypes warning for these functions. They are 220 * replacements for libgcc-provided functions and will never be called 221 * directly. 222 */ 223 #pragma GCC diagnostic push 224 #pragma GCC diagnostic ignored "-Wmissing-prototypes" 225 226 /* 227 * Implementation of 64-bit unsigned division for 32-bit machines. 228 * 229 * First the procedure takes care of the case in which the divisor is a 230 * 32-bit quantity. There are two subcases: (1) If the left half of the 231 * dividend is less than the divisor, one execution of do_div() is all that 232 * is required (overflow is not possible). (2) Otherwise it does two 233 * divisions, using the grade school method. 234 */ 235 uint64_t 236 __udivdi3(uint64_t u, uint64_t v) 237 { 238 uint64_t u0, u1, v1, q0, q1, k; 239 int n; 240 241 if (v >> 32 == 0) { // If v < 2**32: 242 if (u >> 32 < v) { // If u/v cannot overflow, 243 return (__div_u64(u, v)); // just do one division. 244 } else { // If u/v would overflow: 245 u1 = u >> 32; // Break u into two halves. 246 u0 = u & 0xFFFFFFFF; 247 q1 = __div_u64(u1, v); // First quotient digit. 248 k = u1 - q1 * v; // First remainder, < v. 249 u0 += (k << 32); 250 q0 = __div_u64(u0, v); // Seconds quotient digit. 251 return ((q1 << 32) + q0); 252 } 253 } else { // If v >= 2**32: 254 n = nlz64(v); // 0 <= n <= 31. 255 v1 = (v << n) >> 32; // Normalize divisor, MSB is 1. 256 u1 = u >> 1; // To ensure no overflow. 257 q1 = __div_u64(u1, v1); // Get quotient from 258 q0 = (q1 << n) >> 31; // Undo normalization and 259 // division of u by 2. 260 if (q0 != 0) // Make q0 correct or 261 q0 = q0 - 1; // too small by 1. 262 if ((u - q0 * v) >= v) 263 q0 = q0 + 1; // Now q0 is correct. 264 265 return (q0); 266 } 267 } 268 EXPORT_SYMBOL(__udivdi3); 269 270 #ifndef abs64 271 /* CSTYLED */ 272 #define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; }) 273 #endif 274 275 /* 276 * Implementation of 64-bit signed division for 32-bit machines. 277 */ 278 int64_t 279 __divdi3(int64_t u, int64_t v) 280 { 281 int64_t q, t; 282 q = __udivdi3(abs64(u), abs64(v)); 283 t = (u ^ v) >> 63; // If u, v have different 284 return ((q ^ t) - t); // signs, negate q. 285 } 286 EXPORT_SYMBOL(__divdi3); 287 288 /* 289 * Implementation of 64-bit unsigned modulo for 32-bit machines. 290 */ 291 uint64_t 292 __umoddi3(uint64_t dividend, uint64_t divisor) 293 { 294 return (dividend - (divisor * __udivdi3(dividend, divisor))); 295 } 296 EXPORT_SYMBOL(__umoddi3); 297 298 /* 64-bit signed modulo for 32-bit machines. */ 299 int64_t 300 __moddi3(int64_t n, int64_t d) 301 { 302 int64_t q; 303 boolean_t nn = B_FALSE; 304 305 if (n < 0) { 306 nn = B_TRUE; 307 n = -n; 308 } 309 if (d < 0) 310 d = -d; 311 312 q = __umoddi3(n, d); 313 314 return (nn ? -q : q); 315 } 316 EXPORT_SYMBOL(__moddi3); 317 318 /* 319 * Implementation of 64-bit unsigned division/modulo for 32-bit machines. 320 */ 321 uint64_t 322 __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r) 323 { 324 uint64_t q = __udivdi3(n, d); 325 if (r) 326 *r = n - d * q; 327 return (q); 328 } 329 EXPORT_SYMBOL(__udivmoddi4); 330 331 /* 332 * Implementation of 64-bit signed division/modulo for 32-bit machines. 333 */ 334 int64_t 335 __divmoddi4(int64_t n, int64_t d, int64_t *r) 336 { 337 int64_t q, rr; 338 boolean_t nn = B_FALSE; 339 boolean_t nd = B_FALSE; 340 if (n < 0) { 341 nn = B_TRUE; 342 n = -n; 343 } 344 if (d < 0) { 345 nd = B_TRUE; 346 d = -d; 347 } 348 349 q = __udivmoddi4(n, d, (uint64_t *)&rr); 350 351 if (nn != nd) 352 q = -q; 353 if (nn) 354 rr = -rr; 355 if (r) 356 *r = rr; 357 return (q); 358 } 359 EXPORT_SYMBOL(__divmoddi4); 360 361 #if defined(__arm) || defined(__arm__) 362 /* 363 * Implementation of 64-bit (un)signed division for 32-bit arm machines. 364 * 365 * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned) 366 * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1}, 367 * and the remainder in {r2, r3}. The return type is specifically left 368 * set to 'void' to ensure the compiler does not overwrite these registers 369 * during the return. All results are in registers as per ABI 370 */ 371 void 372 __aeabi_uldivmod(uint64_t u, uint64_t v) 373 { 374 uint64_t res; 375 uint64_t mod; 376 377 res = __udivdi3(u, v); 378 mod = __umoddi3(u, v); 379 { 380 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 381 register uint32_t r1 asm("r1") = (res >> 32); 382 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 383 register uint32_t r3 asm("r3") = (mod >> 32); 384 385 asm volatile("" 386 : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */ 387 : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 388 389 return; /* r0; */ 390 } 391 } 392 EXPORT_SYMBOL(__aeabi_uldivmod); 393 394 void 395 __aeabi_ldivmod(int64_t u, int64_t v) 396 { 397 int64_t res; 398 uint64_t mod; 399 400 res = __divdi3(u, v); 401 mod = __umoddi3(u, v); 402 { 403 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 404 register uint32_t r1 asm("r1") = (res >> 32); 405 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 406 register uint32_t r3 asm("r3") = (mod >> 32); 407 408 asm volatile("" 409 : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */ 410 : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 411 412 return; /* r0; */ 413 } 414 } 415 EXPORT_SYMBOL(__aeabi_ldivmod); 416 #endif /* __arm || __arm__ */ 417 418 #pragma GCC diagnostic pop 419 420 #endif /* BITS_PER_LONG */ 421 422 /* 423 * NOTE: The strtoxx behavior is solely based on my reading of the Solaris 424 * ddi_strtol(9F) man page. I have not verified the behavior of these 425 * functions against their Solaris counterparts. It is possible that I 426 * may have misinterpreted the man page or the man page is incorrect. 427 */ 428 int ddi_strtoul(const char *, char **, int, unsigned long *); 429 int ddi_strtol(const char *, char **, int, long *); 430 int ddi_strtoull(const char *, char **, int, unsigned long long *); 431 int ddi_strtoll(const char *, char **, int, long long *); 432 433 #define define_ddi_strtoux(type, valtype) \ 434 int ddi_strtou##type(const char *str, char **endptr, \ 435 int base, valtype *result) \ 436 { \ 437 valtype last_value, value = 0; \ 438 char *ptr = (char *)str; \ 439 int flag = 1, digit; \ 440 \ 441 if (strlen(ptr) == 0) \ 442 return (EINVAL); \ 443 \ 444 /* Auto-detect base based on prefix */ \ 445 if (!base) { \ 446 if (str[0] == '0') { \ 447 if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \ 448 base = 16; /* hex */ \ 449 ptr += 2; \ 450 } else if (str[1] >= '0' && str[1] < 8) { \ 451 base = 8; /* octal */ \ 452 ptr += 1; \ 453 } else { \ 454 return (EINVAL); \ 455 } \ 456 } else { \ 457 base = 10; /* decimal */ \ 458 } \ 459 } \ 460 \ 461 while (1) { \ 462 if (isdigit(*ptr)) \ 463 digit = *ptr - '0'; \ 464 else if (isalpha(*ptr)) \ 465 digit = tolower(*ptr) - 'a' + 10; \ 466 else \ 467 break; \ 468 \ 469 if (digit >= base) \ 470 break; \ 471 \ 472 last_value = value; \ 473 value = value * base + digit; \ 474 if (last_value > value) /* Overflow */ \ 475 return (ERANGE); \ 476 \ 477 flag = 1; \ 478 ptr++; \ 479 } \ 480 \ 481 if (flag) \ 482 *result = value; \ 483 \ 484 if (endptr) \ 485 *endptr = (char *)(flag ? ptr : str); \ 486 \ 487 return (0); \ 488 } \ 489 490 #define define_ddi_strtox(type, valtype) \ 491 int ddi_strto##type(const char *str, char **endptr, \ 492 int base, valtype *result) \ 493 { \ 494 int rc; \ 495 \ 496 if (*str == '-') { \ 497 rc = ddi_strtou##type(str + 1, endptr, base, result); \ 498 if (!rc) { \ 499 if (*endptr == str + 1) \ 500 *endptr = (char *)str; \ 501 else \ 502 *result = -*result; \ 503 } \ 504 } else { \ 505 rc = ddi_strtou##type(str, endptr, base, result); \ 506 } \ 507 \ 508 return (rc); \ 509 } 510 511 define_ddi_strtoux(l, unsigned long) 512 define_ddi_strtox(l, long) 513 define_ddi_strtoux(ll, unsigned long long) 514 define_ddi_strtox(ll, long long) 515 516 EXPORT_SYMBOL(ddi_strtoul); 517 EXPORT_SYMBOL(ddi_strtol); 518 EXPORT_SYMBOL(ddi_strtoll); 519 EXPORT_SYMBOL(ddi_strtoull); 520 521 int 522 ddi_copyin(const void *from, void *to, size_t len, int flags) 523 { 524 /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 525 if (flags & FKIOCTL) { 526 memcpy(to, from, len); 527 return (0); 528 } 529 530 return (copyin(from, to, len)); 531 } 532 EXPORT_SYMBOL(ddi_copyin); 533 534 int 535 ddi_copyout(const void *from, void *to, size_t len, int flags) 536 { 537 /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 538 if (flags & FKIOCTL) { 539 memcpy(to, from, len); 540 return (0); 541 } 542 543 return (copyout(from, to, len)); 544 } 545 EXPORT_SYMBOL(ddi_copyout); 546 547 static ssize_t 548 spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos) 549 { 550 #if defined(HAVE_KERNEL_READ_PPOS) 551 return (kernel_read(file, buf, count, pos)); 552 #else 553 mm_segment_t saved_fs; 554 ssize_t ret; 555 556 saved_fs = get_fs(); 557 set_fs(KERNEL_DS); 558 559 ret = vfs_read(file, (void __user *)buf, count, pos); 560 561 set_fs(saved_fs); 562 563 return (ret); 564 #endif 565 } 566 567 static int 568 spl_getattr(struct file *filp, struct kstat *stat) 569 { 570 int rc; 571 572 ASSERT(filp); 573 ASSERT(stat); 574 575 #if defined(HAVE_4ARGS_VFS_GETATTR) 576 rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS, 577 AT_STATX_SYNC_AS_STAT); 578 #elif defined(HAVE_2ARGS_VFS_GETATTR) 579 rc = vfs_getattr(&filp->f_path, stat); 580 #elif defined(HAVE_3ARGS_VFS_GETATTR) 581 rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat); 582 #else 583 #error "No available vfs_getattr()" 584 #endif 585 if (rc) 586 return (-rc); 587 588 return (0); 589 } 590 591 /* 592 * Read the unique system identifier from the /etc/hostid file. 593 * 594 * The behavior of /usr/bin/hostid on Linux systems with the 595 * regular eglibc and coreutils is: 596 * 597 * 1. Generate the value if the /etc/hostid file does not exist 598 * or if the /etc/hostid file is less than four bytes in size. 599 * 600 * 2. If the /etc/hostid file is at least 4 bytes, then return 601 * the first four bytes [0..3] in native endian order. 602 * 603 * 3. Always ignore bytes [4..] if they exist in the file. 604 * 605 * Only the first four bytes are significant, even on systems that 606 * have a 64-bit word size. 607 * 608 * See: 609 * 610 * eglibc: sysdeps/unix/sysv/linux/gethostid.c 611 * coreutils: src/hostid.c 612 * 613 * Notes: 614 * 615 * The /etc/hostid file on Solaris is a text file that often reads: 616 * 617 * # DO NOT EDIT 618 * "0123456789" 619 * 620 * Directly copying this file to Linux results in a constant 621 * hostid of 4f442023 because the default comment constitutes 622 * the first four bytes of the file. 623 * 624 */ 625 626 static char *spl_hostid_path = HW_HOSTID_PATH; 627 module_param(spl_hostid_path, charp, 0444); 628 MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)"); 629 630 static int 631 hostid_read(uint32_t *hostid) 632 { 633 uint64_t size; 634 uint32_t value = 0; 635 int error; 636 loff_t off; 637 struct file *filp; 638 struct kstat stat; 639 640 filp = filp_open(spl_hostid_path, 0, 0); 641 642 if (IS_ERR(filp)) 643 return (ENOENT); 644 645 error = spl_getattr(filp, &stat); 646 if (error) { 647 filp_close(filp, 0); 648 return (error); 649 } 650 size = stat.size; 651 // cppcheck-suppress sizeofwithnumericparameter 652 if (size < sizeof (HW_HOSTID_MASK)) { 653 filp_close(filp, 0); 654 return (EINVAL); 655 } 656 657 off = 0; 658 /* 659 * Read directly into the variable like eglibc does. 660 * Short reads are okay; native behavior is preserved. 661 */ 662 error = spl_kernel_read(filp, &value, sizeof (value), &off); 663 if (error < 0) { 664 filp_close(filp, 0); 665 return (EIO); 666 } 667 668 /* Mask down to 32 bits like coreutils does. */ 669 *hostid = (value & HW_HOSTID_MASK); 670 filp_close(filp, 0); 671 672 return (0); 673 } 674 675 /* 676 * Return the system hostid. Preferentially use the spl_hostid module option 677 * when set, otherwise use the value in the /etc/hostid file. 678 */ 679 uint32_t 680 zone_get_hostid(void *zone) 681 { 682 uint32_t hostid; 683 684 ASSERT3P(zone, ==, NULL); 685 686 if (spl_hostid != 0) 687 return ((uint32_t)(spl_hostid & HW_HOSTID_MASK)); 688 689 if (hostid_read(&hostid) == 0) 690 return (hostid); 691 692 return (0); 693 } 694 EXPORT_SYMBOL(zone_get_hostid); 695 696 static int 697 spl_kvmem_init(void) 698 { 699 int rc = 0; 700 701 rc = spl_kmem_init(); 702 if (rc) 703 return (rc); 704 705 rc = spl_vmem_init(); 706 if (rc) { 707 spl_kmem_fini(); 708 return (rc); 709 } 710 711 return (rc); 712 } 713 714 /* 715 * We initialize the random number generator with 128 bits of entropy from the 716 * system random number generator. In the improbable case that we have a zero 717 * seed, we fallback to the system jiffies, unless it is also zero, in which 718 * situation we use a preprogrammed seed. We step forward by 2^64 iterations to 719 * initialize each of the per-cpu seeds so that the sequences generated on each 720 * CPU are guaranteed to never overlap in practice. 721 */ 722 static void __init 723 spl_random_init(void) 724 { 725 uint64_t s[2]; 726 int i = 0; 727 728 spl_pseudo_entropy = __alloc_percpu(2 * sizeof (uint64_t), 729 sizeof (uint64_t)); 730 731 get_random_bytes(s, sizeof (s)); 732 733 if (s[0] == 0 && s[1] == 0) { 734 if (jiffies != 0) { 735 s[0] = jiffies; 736 s[1] = ~0 - jiffies; 737 } else { 738 (void) memcpy(s, "improbable seed", sizeof (s)); 739 } 740 printk("SPL: get_random_bytes() returned 0 " 741 "when generating random seed. Setting initial seed to " 742 "0x%016llx%016llx.\n", cpu_to_be64(s[0]), 743 cpu_to_be64(s[1])); 744 } 745 746 for_each_possible_cpu(i) { 747 uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i); 748 749 spl_rand_jump(s); 750 751 wordp[0] = s[0]; 752 wordp[1] = s[1]; 753 } 754 } 755 756 static void 757 spl_random_fini(void) 758 { 759 free_percpu(spl_pseudo_entropy); 760 } 761 762 static void 763 spl_kvmem_fini(void) 764 { 765 spl_vmem_fini(); 766 spl_kmem_fini(); 767 } 768 769 static int __init 770 spl_init(void) 771 { 772 int rc = 0; 773 774 bzero(&p0, sizeof (proc_t)); 775 spl_random_init(); 776 777 if ((rc = spl_kvmem_init())) 778 goto out1; 779 780 if ((rc = spl_tsd_init())) 781 goto out2; 782 783 if ((rc = spl_taskq_init())) 784 goto out3; 785 786 if ((rc = spl_kmem_cache_init())) 787 goto out4; 788 789 if ((rc = spl_proc_init())) 790 goto out5; 791 792 if ((rc = spl_kstat_init())) 793 goto out6; 794 795 if ((rc = spl_zlib_init())) 796 goto out7; 797 798 return (rc); 799 800 out7: 801 spl_kstat_fini(); 802 out6: 803 spl_proc_fini(); 804 out5: 805 spl_kmem_cache_fini(); 806 out4: 807 spl_taskq_fini(); 808 out3: 809 spl_tsd_fini(); 810 out2: 811 spl_kvmem_fini(); 812 out1: 813 return (rc); 814 } 815 816 static void __exit 817 spl_fini(void) 818 { 819 spl_zlib_fini(); 820 spl_kstat_fini(); 821 spl_proc_fini(); 822 spl_kmem_cache_fini(); 823 spl_taskq_fini(); 824 spl_tsd_fini(); 825 spl_kvmem_fini(); 826 spl_random_fini(); 827 } 828 829 module_init(spl_init); 830 module_exit(spl_fini); 831 832 ZFS_MODULE_DESCRIPTION("Solaris Porting Layer"); 833 ZFS_MODULE_AUTHOR(ZFS_META_AUTHOR); 834 ZFS_MODULE_LICENSE("GPL"); 835 ZFS_MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE); 836